
Functional Data StructuresChris Okasaki?School of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213(e-mail: cokasaki@cs.cmu.edu)1 IntroductionE�cient data structures have been studied extensively for over thirty years.Nowadays, when a C programmer needs an e�cient data structure for a par-ticular problem, he or she can often simply look one up in any of a number ofgood textbooks or handbooks. However, the same cannot be said for the ML orHaskell programmer. Although some imperative data structures can be adaptedquite easily to a functional setting, most cannot.Why should functional data structures be any more di�cult to design andimplement than imperative ones? There are two basic problems. First, from thepoint of view of designing and implementing e�cient data structures, functionalprogramming's stricture against destructive updates (assignments) is a stagger-ing handicap, tantamount to con�scating a master chef's knives. Like knives,destructive updates can be dangerous when misused, but tremendously e�ectivewhen used properly. Certainly the functional programmer expects to reap sub-stantial bene�ts by giving up destructive updates, but we must not be blind tothe potential costs of this tradeo�.The second di�culty is that functional data structures are expected to bemore exible than their imperative cousins. In particular, when we update animperative data structure we typically accept that the old version of the datastructure will no longer be available, but, when we update a functional datastructure, we expect that both the old and new versions of the data structurewill be available for further processing. A data structure that supports multipleversions is called persistent, while a data structure that allows only a singleversion at a time is called ephemeral [7]. Functional programming languageshave the curious property that all data structures are automatically persistent.Imperative data structures are typically ephemeral, but when a persistent datastructure is required, imperative programmers are not surprised if the persistentdata structure is more complicated and perhaps even asymptotically less e�cientthan its ephemeral counterparts.Exercise 1. List �ve situations in which persistence might be useful, even foran imperative programmer. 3? Research supported by the Advanced Research Projects Agency CSTO under thetitle \The Fox Project: Advanced Languages for Systems Software", ARPA OrderNo. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

In spite of these di�culties, however, researchers have developed numer-ous functional data structures that are asymptotically as e�cient as the bestimperative solutions for the same problems. In this tutorial, we will exploree�cient functional implementations of several common abstractions, includingFIFO queues, catenable lists, and mergeable heaps (priority queues). The empha-sis will always be on developing data structures that achieve a good compromisebetween simplicity and e�ciency in practice.Notation We will present all source code in Standard ML [20], extended withthe following primitives for lazy evaluation:type � suspval delay : (unit ! �) ! � suspval force : � susp ! �These primitives are actually supported by several implementations of StandardML, including Standard ML of New Jersey. As a notational convenience, we willwrite delay (fn ()) e) as $e, where the scope of $ extends as far to the right aspossible.We will also assume the presence of the small streams library shown in Fig-ure 1. This library is far from complete, containing only those stream operationswe will actually use in this paper. Note that the cons operation supplied by thislibrary is strict, not lazy. In fact, the only lazy operations in this library are ++(in�x append) and reverse.2 FIFO QueuesStacks and queues are usually the �rst two data structures studied by begin-ning computer science students. The typical imperative implementation of (un-bounded) stacks as linked lists translates very naturally to a functional setting.However, the typical imperative implementation of (unbounded) queues as linkedlists does not because it uses destructive updates at the end of the list. Thus,queues are perhaps the simplest example of a data structure whose implemen-tation in a functional setting is substantially di�erent from its implementationin an imperative setting. For this reason, functional queues have been widelystudied [11, 9, 3, 23, 24].A minimal signature for queues appears in Figure 2. The three main opera-tions are snoc (q, x), which adds an element x to the rear of queue q ; head (q),which extracts the �rst element of q ; and tail (q), which deletes the �rst ele-ment of q. The signature also includes a value empty representing the emptyqueue, and a predicate isEmpty. To be practical, a queue library should containmany more utility functions, but these can all be de�ned in terms of the aboveprimitives. 2

signature STREAM =sigtype � Streamexception EMPTYval empty : � Streamval isEmpty : � Stream ! boolval cons : � � � Stream ! � Stream (� strict cons �)val head : � Stream ! � (� raises EMPTY if stream is empty �)val tail : � Stream ! � Stream (� raises EMPTY if stream is empty �)val ++ : � Stream � � Stream ! � Stream (� in�x append �)val reverse : � Stream ! � Streamendstructure S : STREAM =structdatatype � StreamCell = Nil j Cons of � � � Streamwithtype � Stream = � StreamCell suspexception EMPTYval empty = $Nilfun isEmpty s = case force s of Nil) true j) falsefun cons (x, s) = $Cons (x, s)fun head s = case force s of Nil) raise EMPTY j Cons (x, s)) xfun tail s = case force s of Nil) raise EMPTY j Cons (x, s)) sfun s ++ t = $case force s ofNil) force tj Cons (x, s)) Cons (x, s ++ t)fun reverse s = let fun rev (Nil, t) = force tj rev (Cons (x, s), t) = rev (force s, cons (x, t))in $rev (force s, empty) endend Fig. 1. A small streams library.signature QUEUE =sigtype � Queueexception EMPTYval empty : � Queueval isEmpty : � Queue ! boolval snoc : � Queue � � ! � Queueval head : � Queue ! � (� raises EMPTY if queue is empty �)val tail : � Queue ! � Queue (� raises EMPTY if queue is empty �)end Fig. 2. Signature for queues.3

2.1 A Partial SolutionThe most common implementation of queues [9, 3] is as a pair of lists, onerepresenting the front portion of the queue and the other representing the rearportion of the queue in reverse order.datatype � Queue = Queue of � list � � listIn this representation, the �rst element of the queue is the head of the front listand the last element of the queue is the head of the rear list. These locationscan be accessed very quickly.fun snoc (Queue (f , r), x) = Queue (f , x :: r)fun head (Queue (x :: f , r)) = xfun tail (Queue (x :: f , r)) = Queue (f , r))However, what happens when we attempt to take the head or tail of a queuewhose front list is empty? If the rear list is also empty, then the queue is empty,so we raise an exception. Otherwise, the �rst element of the queue is the lastelement of the rear list. In this case, we reverse the rear list, install the result asthe new front list, and try again.fun head (Queue ([], [])) = raise EMPTYj head (Queue ([], r)) = head (Queue (rev r, []))j head (Queue (x :: f , r)) = xfun tail (Queue ([], [])) = raise EMPTYj tail (Queue ([], r)) = tail (Queue (rev r, []))j tail (Queue (x :: f , r)) = Queue (f , r)Note that the recursive calls in the second clauses of both head and tail willalways fall through to the third clauses because rev r is guaranteed to be non-empty. Hence, we could easily optimize these calls by inlining the appropriatecode from the third clauses. However, we won't bother because there is a moredisturbing ine�ciency. It is very common to ask for both the head and tail ofthe same queue. But, as it stands, this might result in reversing the same rearlist twice! To prevent this, we will maintain the invariant that the front list isempty only if the entire queue is empty. Then the head operation at least willnever need to reverse the rear list. The snoc operation must also be modi�ed toobey the invariant.fun snoc (Queue ([],), x) = Queue ([x], [])j snoc (Queue (f , r), x) = Queue (f , x :: r)fun head (Queue ([],)) = raise EMPTYj head (Queue (x :: f , r)) = xfun tail (Queue ([],)) = raise EMPTYj tail (Queue ([x], r)) = Queue (rev r, [])j tail (Queue (x :: f , r)) = Queue (f , r)4

Note the use of wildcards here. We know by the invariant that if the front listis empty, then so is the rear list, so we avoid the redundant check by using awildcard.A somewhat cleaner way to write this code is in terms of a pseudo-constructor(also called a smart constructor [1]) that enforces the invariant. This pseudo-constructor, called queue, takes the place of the real constructor Queue butveri�es that the front list is not empty.fun queue ([], r) = Queue (rev r, [])j queue (f , r) = Queue (f , r)Now, we replace Queue with queue in the de�nitions of snoc and tail.fun snoc (Queue (f , r), x) = queue (f , x :: r)fun tail (Queue ([],)) = raise EMPTYj tail (Queue (x :: f , r)) = queue (f , r))Note that the real constructor Queue is still used for pattern matching. Thecomplete source code for this implementation is given in Figure 3.structure Queue0 : QUEUE =structdatatype � Queue = Queue of � list � � list(� Invariant: null f implies null r �)exception EMPTYval empty = Queue ([], [])fun isEmpty (Queue (f , r)) = null ffun queue ([], r) = Queue (rev r, [])j queue (f , r) = Queue (f , r)fun snoc (Queue (f , r), x) = queue (f , x :: r)fun head (Queue ([],)) = raise EMPTYj head (Queue (x :: f , r)) = xfun tail (Queue ([],)) = raise EMPTYj tail (Queue (x :: f , r)) = queue (f , r)end Fig. 3. A common, but not always e�cient, implementation of queues.This implementation is easy to analyze using traditional techniques of amor-tization [27]. The basic idea is to save a credit with every snoc operation. Then,every queue has a number of credits equal to the length of the rear list and thesecredits can be used to pay for reversing the rear list when the front list becomesempty. By this argument, we see that every queue operation requires only O(1)amortized time. 5

Unfortunately, traditional analysis techniques for amortization were devel-oped in an imperative setting and rely on a hidden assumption that all datastructures are ephemeral, that is, that sequences of operations on data struc-tures are single-threaded [25]. However, this assumption is routinely violated ina functional setting, where all data structures are automatically persistent. Inthe next section, we modify this implementation of queues to support persis-tence e�ciently and introduce a proof technique for proving amortized boundsfor persistent data structures.Exercise 2. Show that the above implementation of queues takes greater thanO(1) amortized time per operation by constructing a (non-single-threaded) se-quence of n operations that requires greater than O(n) time to execute. 32.2 E�cient Persistent QueuesThe above queues are very e�cient as long as they are used in a single-threadedfashion. Many applications obey this restriction, but for a general-purpose queuelibrary, we would prefer an implementation that is e�cient even when usedpersistently.As discussed in [22, 24], lazy evaluation is the key to integrating amortizationand persistence. The memoization implicit in lazy evaluation allows the samework to be shared between di�erent threads instead of being repeated for eachthread. (Here the term \threads" refers not to concurrency, but to di�erent pathsof data ow.) The �rst step in modifying queues to deal with persistence is thusto use streams instead of lists.1 To simplify later operations, we also explicitlytrack the lengths of the two streams.datatype � Queue = Queue of � S.Stream � int � � S.Stream � intNote that a pleasant side e�ect of maintaining this length information is thatwe can trivially support a constant-time size operation.Next, we strengthen the invariant to guarantee that the front stream is alwaysat least as long as the rear stream.We call this the balance invariant. As a specialcase, the balance invariant implies that if the front stream is empty, then so is therear stream. When the rear stream becomes one longer than the front stream,we perform a rotation by reversing the rear stream and appending it to the frontstream. The major queue operations are now given byfun snoc (Queue (f , lenf, r, lenr), x) = queue (f , lenf, S.cons (x, r), lenr+1)fun head (Queue (f , lenf, r, lenr)) =if lenf > 0 then S.head f else raise EMPTYfun tail (Queue (f , lenf, r, lenr)) =if lenf > 0 then queue (S.tail f , lenf�1, r, lenr) else raise EMPTYwhere the pseudo-constructor queue is de�ned as1 Actually, only the front list must be changed to a stream. The rear list could remaina list, but for simplicity, we will use streams for both.6

fun queue (f , lenf, r, lenr) =if lenr � lenf then Queue (f , lenf, r, lenr)else Queue (S.++ (f , S.reverse r), lenf+lenr, S.empty, 0)The complete code for this implementation appears in Figure 4.structure Queue1 : QUEUE =structdatatype � Queue = Queue of � S.Stream � int � � S.Stream � int(� Invariant: jfj � jrj �)exception EMPTYval empty = Queue (S.empty, 0, S.empty, 0)fun isEmpty (Queue (f , lenf, r, lenr)) = (lenf = 0)fun queue (f , lenf, r, lenr) =if lenr� lenf then Queue (f , lenf, r, lenr)else Queue (S.++ (f , S.reverse r), lenf+lenr, S.empty, 0)fun snoc (Queue (f , lenf, r, lenr), x) = queue (f , lenf, S.cons (x, r), lenr+1)fun head (Queue (f , lenf, r, lenr)) =if lenf > 0 then S.head f else raise EMPTYfun tail (Queue (f , lenf, r, lenr)) =if lenf > 0 then queue (S.tail f , lenf�1, r, lenr) else raise EMPTYend Fig. 4. E�cient persistent queues.Exercise 3. Verify that this implementation of queues takes only O(n) time toexecute your sequence of operations from Exercise 2. 3To understand how this implementation deals e�ciently with persistence,consider the following example. Let q0 be some queue whose front and rearstreams are both of length m, and let qi = tail qi�1, for 0 < i � m+1. The queueis rotated during the �rst tail operation, and the reverse suspension created bythe rotation is forced during the last tail operation. This reversal takes m steps,and its cost is amortized over the sequence q1 : : : qm. (For now, we are concernedonly with the cost of the reverse | we ignore the cost of the append.)Now, choose some branch point k, and repeat the calculation from qk to qm+1.(Note that qk is used persistently.) Do this d times. How often is the reverseexecuted? It depends on the whether the branch point k is before or after therotation. Suppose k is after the rotation. In fact, suppose k = m so that each ofthe repeated branches is a single tail. Each of these branches forces the reversesuspension, but they each force the same suspension, which has already beenforced and memoized. Hence, the reverse is executed only once. Memoizationis crucial here | without memoization the reverse would be re-executed each7

time, for a total cost of m(d + 1) steps, with only m + 1 + d operations overwhich to amortize this cost. For large d, this would result in an O(m) amortizedcost per operation, but memoization gives us an amortized cost of only O(1) peroperation.It is possible to re-execute the reverse however. Simply take k = 0 (i.e., makethe branch point just before the rotation). Then the �rst tail of each branchrepeats the rotation and creates a new reverse suspension. This new suspensionis forced in the last tail of each branch, executing the reverse. Because theseare di�erent suspensions, memoization does not help at all. The total cost of allthe reversals is m � d, but now we have (m + 1)(d+ 1) operations over which toamortize this cost, yielding an amortized cost of O(1) per operation. The key isthat we duplicate work only when we also duplicate the sequence of operationsover which to amortize the cost of that work.This informal argument suggests that these queues require only O(1) amor-tized time per operation even when used persistently. We can formalize this proofusing a debit argument. For every suspension, we allocate enough debits to coverthe cost of forcing the suspension. Then, we discharge O(1) debits with everyoperation. We prove that we never force a suspension before we have dischargedall of its debits.Proof. Let di be the number of debits on the ith node of the front stream andlet Di = Pij=0 di be the cumulative number of debits on all nodes up to andincluding the ith node. We maintain the following debit invariant:Di � min(2i; jf j � jrj)The 2i term guarantees that all debits on the �rst node of the front stream havebeen discharged (since d0 = D0 � 2 � 0 = 0), so this node may be forced atwill (for instance, by a head operation). The jf j � jrj term guarantees that alldebits in the entire queue have been discharged whenever the streams are ofequal length (i.e., just before the next rotation).Now, every snoc operation that does not cause a rotation simply adds a newelement to the rear stream, increasing jrj by one and decreasing jf j � jrj byone. This will cause the invariant to be violated at any node for which Di waspreviously equal to jf j�jrj. We can restore the invariant by discharging the �rstdebit in the queue, which decreases every subsequent cumulative debit total byone. Similarly, every tail operation that does not cause a rotation simply removesan element from the front stream. This decreases jf j by one (and hence jf j � jrjby one), but, more importantly, it decreases the index i of every remaining nodeby one, which in turn decreases 2i by two. Discharging the �rst two debits inthe queue restores the invariant.Finally, consider a snoc or tail that causes a rotation. Just before the rotation,we are guaranteed that all debits in the queue have been discharged, so, afterthe rotation, the only debits are those generated by the rotation itself. If jf j = mand jrj = m + 1 at the time of the rotation, then there will be m debits for theappend and m + 1 debits for the reverse. The append function is incremental(i.e., does only one step at a time and delays the rest) so we place one debit on8

each of the �rst m nodes. On the other hand, the reverse function is monolithic(i.e., once begun, it runs to completion) so we place m + 1 debits on node m,the �rst node of the reversed stream. Thus, the debits are distributed such thatdi = 8<:1 if i < mm+ 1 if i = m0 if i > m and Di = � i+ 1 if i < m2m+ 1 if i � mThis distribution violates the invariant at both node 0 and node m, but dis-charging the debit on the �rst node restores the invariant. 2This proof uses a debit argument in the style of [22, 24] instead of a traditionalcredit argument [27]. Debit arguments are more suitable for analyzing persistentdata structures because, although a single credit cannot be spent more than once,it does no harm to discharge the same debit more than once. Debit argumentsallow you to reason about the running time of each thread individually, withoutworrying about inter-thread dependencies. The intuition is that di�erent threadsamortize the cost of lazy operations either over separate sequences (as when k =0 in the earlier discussion), or over overlapping sequences (as when 1 � k � m inthe earlier discussion). In the case of separate sequences, each debit is dischargedonly once, but in the case of overlapping sequences, each debit may be dischargedmore than once. The key is that whenever we force a suspension, we know thatall of its debits have been discharged at least once. Memoization guaranteesthat work is not duplicated in separate threads unless it has also been paid forseparately in the two threads.Exercise 4 (Output-restricted Deques). Extend the queues in Figure 4 witha cons operation that adds an element to the front of a queue instead of the rear.(A data structure that allows elements to be inserted at both the front and therear, but removed only from the front, is called an output-restricted deque). Howdoes this new operation interact with the balance invariant? With the debitinvariant? 3Exercise 5 (Min-Queues). A min-list is a list data structure that additionallysupports a �ndMin operation that returns the minimumelement in the list. (Thisdi�ers from a priority queue in that there is no deleteMin operation.) Min-listscan be implemented by maintaining a secondary list of rightward minima. Inother words, a min-list containing the elements x1 � � �xn would consist of the list[x1; : : : ; xn] and a secondary list [y1; : : : ; yn], where yi = Minnj=ixj. Note that,for i < n, yi = Minnj=ixj= min(xi;Minnj=i+1xj)= min(xi; yi+1)Therefore, cons can be implemented asfun cons (x, ([], [])) = ([x],[x])j cons (x, (xs, ys)) = (x :: xs, min (x, hd ys) :: ys)9

(a) Use these ideas to implement min-streams, in the style of Figure 1. Youmay assume that the elements are integers. Be careful to make the ++(append) and reverse operations as lazy as possible.(b) Use min-streams to implement min-queues, in the style of Figure 4. Eachoperation should take only O(1) amortized time. 3Exercise 6 (Deques). A double-ended queue (also called a deque) supports in-sertion and removal of elements at both ends. We can adapt the implementationof queues in Figure 4 to support deques by making it symmetric. Currently,there are two sources of asymmetry. First, the balance invariant prevents therear stream from getting too long with respect to the front stream. For deques,we should instead prevent either stream from getting too long with respect to theother. In particular, for some constant c > 1, we should maintain the followinginvariant: jf j � cjrj+ 1 ^ jrj � cjf j+ 1(The \+1" in each of these constraints allows for deques of size 1.) Second,rotations move all the elements in the queue to the front stream, but for deques,rotations should instead divide the elements equally between the front and rearstreams.(a) Use these ideas to implement deques, in the style of Figure 4. Be carefulto make rotations as lazy as possible. You may need to extend the streamslibrary with a few extra operations.(b) Use a debit argument to prove that your deques require only O(1) amor-tized time per operation. 3Exercise 7 (Worst-case Queues [23]). To get queues that run in O(1) worst-case time instead of O(1) amortized time, we systematically schedule the execu-tion of each suspension. We arrange that each suspension takes only O(1) timeto execute, and force one suspension per snoc or tail operation.(a) Write a rotation function that is entirely incremental by doing one stepof the reverse for every step of the append. You may need to extend thestreams library with a few extra operations.(b) Add a new �eld of type � Stream to each queue that points to the �rststream node that has not yet been forced. Rewrite the pseudo-constructorqueue to force the node and advance the pointer to the next node.(c) Show that the new stream �eld always has length jf j�jrj. Take advantageof this fact to eliminate the two length �elds from the representation. 32.3 Eliminating Unnecessary OverheadsThe above implementation of queues is asymptotically optimal | you can't askfor better bounds than O(1) time per operation. However, in practice, it tendsto be fairly slow. There are at least two reasons for this. First, lazy evaluation is10

slower than strict evaluation, because of the need to create and memoize suspen-sions. Compilers for lazy languages recognize this fact and use strictness analysisto turn lazy evaluation into strict evaluation whenever possible. However, whenlazy evaluation serves an algorithmic purpose, as it does here, it will never beeliminated by strictness analysis. But even if we need lazy evaluation, maybe wedon't need so much of it.Second, this implementation uses appends in a rather ine�cient way. Theappend operation takes time proportional to the size of the left list (or stream).Hence, for maximum e�ciency, it should always be called in right-associativecontexts. For example, on lists, executing (xs @ (ys@ zs)) takes time proportionalto jxsj + jysj, whereas executing ((xs @ ys) @ zs) takes time proportional to2jxsj + jysj. If we take a snapshot of the front stream at any given moment, italways has the form(� � �((f ++ reverse r1) ++ reverse r2) ++ � � �) ++ reverse rkIn general, using appends in left-associative contexts like this results in poten-tially quadratic behavior. Fortunately, in this case, the latter streams are muchlonger than the earlier streams, so the total number of append steps is still lin-ear. But even if this use of append does not threaten the asymptotic bounds ofour implementation, it does signi�cantly increase the constant factor.Exercise 8. This exercise is to determine the overhead associated with the in-e�cient use of appends.(a) Calculate the number of append steps executed while building and thenconsuming a queue of size n (i.e., n calls to snoc followed by n calls totail).(b) Repeat this calculation assuming that rotations are performed, not whenjrj = jf j+ 1, but when jrj = cjf j+ 1, for some constant c. 3To make our implementation faster in practice, we will address both of theseissues. First, we will replace streams with a combination of ordinary lists anda short stream of suspended lists. This drastically reduces the number of sus-pensions from one per element to two per suspended list. This would not helpif we still touched a suspension every operation, but we will also arrange totouch suspensions only occasionally. Second, we will use appends only on shortstreams.Recall that the front stream of a queue has the form(� � �((f ++ reverse r1) ++ reverse r2) ++ � � �) ++ reverse rkWriting the rear stream as r, we can decompose the queue into three parts: f ,r, and the collection m = freverse r1; : : : ; reverse rkg. Previously, f , r, and eachreverse ri was a stream, but now we can represent f and r as ordinary lists andeach reverse ri as a suspended list. This eliminates the vast majority of suspen-sions, and avoids almost all of the overheads associated with lazy evaluation.But how should we represent the collection m? As we will see, this collection is11

accessed in FIFO order, so it is tempting to represent it as a queue. However,this collection will always be small, so it will be simpler|and just as e�cient|torepresent it as a stream. In doing so, we reintroduce some lazy evaluation, butthe overheads of this will be negligible. The new representation is thusdatatype � Queue =Queue of � list � � list susp S.Stream � int � � list � intThe second integer tracks the length of r, and the �rst integer tracks the com-bined lengths of f and all the suspended lists in m.The old balance invariant served two purposes. It kept r from getting too longand it kept f from becoming empty. In this new representation we deal with thesetwo issues separately. First, we guarantee that f is never empty unless the entirequeue is empty. If f is empty and m is non-empty, then we remove the �rstsuspended list from m, force it, and install the result as the new f . Second, weguarantee that jrj � jf j +Ps2m jsj. When r becomes too long, we add $rev rto the end of m. These two invariants are enforced by the pseudo-constructorqueue, which in turn calls a second pseudo-constructor queue'.fun queue ([], m, lenfm, r, lenr) =if S.isEmpty m then Queue (r, S.empty, lenr, [], 0) (� jrj � 1 �)else queue' (force (S.head m), S.tail m, lenfm, r, lenr)j queue q = queue' qand queue' (q as (f , m, lenfm, r, lenr)) =if lenr � lenfm then Queue qelse Queue (f , msnoc (m, $rev r), lenfm+lenr, [], 0)In the second line of queue, we install r directly as the new f without reversingit. We are justi�ed in doing this because we know that r contains at most asingle element, so rev r = r.The msnoc operation called by queue' is simply snoc on streams, de�ned byfun msnoc (m, s) = S.++ (m, S.cons (s, S.empty))Although in general it is quite slow to implement snoc in terms of append, inthis case, we know that m is always short, so the ine�ciency is tolerable.Now, we can de�ne the major operations on queues as follows:fun snoc (Queue (f , m, lenfm, r, lenr), x) = queue (f , m, lenfm, x :: r, lenr+1)fun head (Queue ([], , , ,)) = raise EMPTYj head (Queue (x :: f , m, lenfm, r, lenr)) = xfun tail (Queue ([], , , ,)) = raise EMPTYj tail (Queue (x :: f , m, lenfm, r, lenr)) = queue (f , m, lenfm�1, r, lenr)The complete code for this implementation is shown in Figure 5.Exercise 9. Prove that for any queue of size n � 1, jmj � blog2 nc. 3Exercise 10. Repeat Exercise 8 for this new implementation. 312

structure Queue2 : QUEUE =structdatatype � Queue =Queue of � list � � list susp S.Stream � int � � list � intexception EMPTYval empty = Queue ([], S.empty, 0, [], 0)fun isEmpty (Queue (f , m, lenfm, r, lenr)) = null ffun msnoc (m, s) = S.++ (m, S.cons (s, S.empty))fun queue ([], m, lenfm, r, lenr) =if S.isEmpty m then Queue (r, S.empty, lenr, [], 0) (� jrj � 1 �)else queue' (force (S.head m), S.tail m, lenfm, r, lenr)j queue q = queue' qand queue' (q as (f , m, lenfm, r, lenr)) =if lenr � lenfm then Queue qelse Queue (f , msnoc (m, $rev r), lenfm+lenr, [], 0)fun snoc (Queue (f , m, lenfm, r, lenr), x) = queue (f , m, lenfm, x :: r, lenr+1)fun head (Queue ([], , , ,)) = raise EMPTYj head (Queue (x :: f , m, lenfm, r, lenr)) = xfun tail (Queue ([], , , ,)) = raise EMPTYj tail (Queue (x :: f , m, lenfm, r, lenr)) = queue (f , m, lenfm�1, r, lenr)end Fig. 5. A faster implementation of queues.Exercise 11. Use a debit argument to show that this implementation takes onlyO(1) amortized time per operation. (Hint: Keep track of the debits on streamnodes and the debits on suspended lists separately. Allow at most one debit perstream node, and require that all suspended lists except the last be fully paido�.) 32.4 Bibliographic NotesHood and Melville [11] and Gries [9, pages 250{251] �rst proposed the imple-mentation of queues in Figure 3. Burton [3] proposed a similar implementation,but without the restriction that the �rst list be non-empty whenever the queueis non-empty. (Burton combines head and tail into a single operation, so he doesnot need this restriction to support head e�ciently.) Hoogerwoord [12] later pro-posed a similar implementation of deques.Hood and Melville [11] also gave a rather complicated implementation ofqueues supporting all operations in O(1) worst-case time. Hood [10] and Chuangand Goldberg [5] later extended this implementation to handle the double-endedcase. Okasaki [23] showed how to use lazy evaluation to simplify these imple-mentations, while still retaining the worst-case bounds (see Exercise 7). Theimplementation in Figure 4 is a simpli�cation of this approach, �rst appearingin [24] 13

Kaplan and Tarjan [16] proposed yet another implementation of constant-time functional deques, based on an entirely di�erent technique known as recur-sive slowdown.3 Catenable ListsAppending lists is an extremely common operation, at least conceptually. Unfor-tunately, appending lists can be slow. For instance, we discussed in the previoussection how left-associative appends can result in quadratic behavior. To preventthis, programmers often transform their programs to remove as many appendsas possible (for instance, by using accumulating parameters). But what if it werepossible to design a list data structure that supported append (also known ascatenation or concatenation) in constant time, without sacri�cing the existingconstant-time operations? Such a data structure is called a catenable list. Inparticular, we want a implementation of catenable lists that supports every op-eration in Figure 6 in constant time. Note that cons has been eliminated in favorof a unit operation that creates a singleton list, because cons (x, xs) can be sim-ulated by unit x ++ xs. Similarly, snoc (xs, x) can be simulated by xs ++ unit x.Since this data structure supports insertions at either end, but removals onlyfrom the front, it might more accurately be called a catenable output-restricteddeque.signature CATENABLE =sigtype � Cat (� catenable lists �)exception EMPTYval empty : � Catval isEmpty : � Cat ! boolval unit : � ! � Cat (� create a singleton list �)val ++ : � Cat � � Cat ! � Cat (� in�x append �)val head : � Cat ! � (� raises EMPTY if list is empty �)val tail : � Cat ! � Cat (� raises EMPTY if list is empty �)end Fig. 6. Signature for catenable lists.We �rst consider a simple solution that makes append fast, at the cost ofslowing down head and tail. We then transform the data structure to recovere�cient head and tail operations. 14

3.1 A Partial SolutionThe simplest way to make append fast is to make it a constructor, as in thefollowing datatype:datatype � Cat = Empty j Unit of � j App of � Cat � � CatThis is the type of binary leaf trees, with elements stored at the leaves from leftto right.Now, unit and ++ simply call the appropriate constructors. The head oper-ation might be written naively asfun head Empty = raise EMPTYj head (Unit x) = xj head (App (s, t)) = head sHowever, a moment's reection reveals that the third clause of head is incorrect.For example, head (App (Empty,Unit x)) raises an exception instead of returningx. One way to �x this problem is to handle the exception.j head (App (s, t)) = head s handle EMPTY) head tA better solution is to insist that all trees be well-formed by disallowing occur-rences of Empty beneath App nodes. We enforce this by having ++ check forEmpty (++ can be viewed as a pseudo-constructor for App).fun Empty ++ s = sj s ++ Empty = sj s ++ t = App (s, t)Even though the naive version of head is now correct, it is ine�cient. In particularit takes time proportional to the length of the left spine (i.e., the path from theroot to the leftmost leaf), which could be as much as O(n). For now, we acceptthis ine�ciency.For tail, there are four cases. We have little choice in three of these cases.fun tail Empty = raise EMPTYj tail (Unit x) = Emptyj tail (App (Unit x, s)) = sHowever, for the fourth case, tail (App (App (s, t), u)), we have at least twochoices:j tail (App (App (s, t), u)) = App (tail (App (s, t)), u)or j tail (App (App (s, t), u)) = tail (App (s, App (t, u)))15

The �rst choice deletes the leftmost leaf while leaving the rest of the tree intact.The second choice dynamically applies the associative rule along the left spine,converting a tree with a long left spine into a tree with a long right spine. Bothversions take the same amount of time, but the second choice drastically reducesthe cost of subsequent operations. In fact, successive tail operations using the�rst choice will frequently take quadratic time, but successive tail operationsusing the second choice will take only linear time (see Exercise 12). Hence, wewill use the second version. The complete code for this implementation appearsin Figure 7.structure Cat0 : CATENABLE =structdatatype � Cat = Empty j Unit of � j App of � Cat � � Catexception EMPTYval empty = Emptyfun isEmpty Empty = true j isEmpty = falsefun unit x = Unit xfun Empty ++ s = sj s ++ Empty = sj s ++ t = App (s, t)fun head Empty = raise EMPTYj head (Unit x) = xj head (App (s, t)) = head sfun tail Empty = raise EMPTYj tail (Unit x) = Emptyj tail (App (Unit x, s)) = sj tail (App (App (s, t), u)) = tail (App (s, App (t, u)))end Fig. 7. Catenable lists as binary leaf trees.Exercise 12. Prove that executing n successive tail operations on any catenablelist of size n takes only O(n) time. (Hint: Consider the number of bad nodes,where a bad node is any left child or any descendent of a left child.) 3Exercise 13. Rather than relying on the programmer to refrain from buildingApp nodes containing Empty, we could build this requirement into the type.datatype � Tree = Unit of � j App of � Tree � � Treedatatype � Cat = Empty j NonEmpty of � Tree(a) Modify the implementation in Figure 7 to support this new type.(b) Discuss the advantages and disadvantages of each approach. 316

3.2 Persistent Catenable ListsEven if the above data structure is e�cient in some circumstances, it is clearlynot e�cient when used persistently. For example, consider building a tree with along left spine and then repeatedly taking the head or tail of that tree. We nextcombine lazy evaluation with a clever representation of left spines to obtain animplementation that requires only O(1) amortized time per operation.Consider how the left spine is treated by the various list operations. Theappend operation adds a new node at the top of the left spine, and the headand tail operations access the leaf at the bottom of the left spine. But these arejust the operations supported by queues! The left spine view of a binary leaf treeis thus a tree in which every left spine from the binary leaf tree is representedrecursively as an element (the leaf at the bottom of the spine) together witha queue of left spine views corresponding to the right children of nodes in thespine. Figure 8 shows a binary leaf tree and its corresponding left spine view.�����

r1 JJr2 @@

��r3 AAr4JJr5ZZZ��r6 @@

r7 JJr8 =) r��� 1r2 r3��r4 AAr5ZZZr6r7r8Fig. 8. A binary leaf tree and its left spine view.If q is a structure implementing queues, then the datatype of left spine viewscan be writtendatatype � Cat = Empty j Cat of � � � Cat Q.QueueThis type can independently be viewed as a type of multiway tree with elementsstored at every node and ordered in left-to-right preorder. Again, we insist thatall trees be well-formed (i.e., that Empty never appears in the child queue of aCat node).Now, simply translating the operations unit, ++, and head from binary leaftrees to left spine views, we getfun unit x = Cat (x, Q.empty)fun Empty ++ s = sj s ++ Empty = sj (Cat (x, q)) ++ s = Cat (x, Q.snoc (q, s))fun head Empty = raise EMPTYj head (Cat (x, q)) = x 17

The third clause of ++ links the two trees by making the second tree the lastchild of the �rst tree.The translation of the tail function is a little trickier. Given a tree Cat (x, q),where q is non-empty, it discards x and links the elements of q from right to left.fun tail Empty = raise EMPTYj tail (Cat (x, q)) = if Q.isEmpty q then Empty else linkAll qwhere linkAll is de�ned asfun linkAll q = if Q.size q = 1 then Q.head qelse Q.head q ++ linkAll (Q.tail q)This code assumes that queues support a constant-time size operator, but itcould easily be rewritten to use Q.isEmpty. This code can also be viewed asan instance of the standard foldr1 schema. If q provides a foldr1 function, thenlinkAll can be rewrittenfun linkAll q = Q.foldr1 (op ++) qFigure 9 illustrates the overall e�ect of tail operation.s s s s��� ��� ��� ���BBB BBB BBB BBBs����� ��� AAAQQQQQt0 t1 t2 t3xa b c d tail=) @@@@@@@@@s s s s��� ��� ��� ���BBB BBB BBB BBBt0 t1 t2 t3a b c dFig. 9. Illustration of the tail operation on left spine views.The unit and head operations clearly take O(1) worst-case time. If we use oneof the constant-amortized-time queues from the previous section, then ++ takesO(1) amortized time. However, tail takes O(jqj) time, which could be as largeas O(n). To reduce this to O(1) amortized time, we need to make one furtherchange | we execute linkAll lazily. We alter the datatype so that each tree in achild queue is suspended.datatype � Cat = Empty j Cat of � � � Cat susp Q.QueueThen, linkAll is writtenfun linkAll q = if Q.size q = 1 then force (Q.head q)else link (force (Q.head q), $linkAll (Q.tail q))18

where link is like ++ but expects its second argument to be suspended.fun link (Cat (x, q), d) = Cat (x, Q.snoc (q, d))To make the types work out, ++ must be rewritten to suspend its second argu-ment.fun Empty ++ s = sj s ++ Empty = sj s ++ t = link (s, $t)The complete code for this implementation appears in Figure 10. It is writtenas a functor that is parameterized over the particular implementation of queues.functor Cat1 (structure Q : QUEUE) : CATENABLE =structdatatype � Cat = Empty j Cat of � � � Cat susp Q.Queueexception EMPTYval empty = Emptyfun isEmpty Empty = true j isEmpty = falsefun link (Cat (x, q), d) = Cat (x, Q.snoc (q, d))fun linkAll q = if Q.size q = 1 then force (Q.head q)else link (force (Q.head q), $linkAll (Q.tail q))fun unit x = Cat (x, Q.empty)fun Empty ++ s = sj s ++ Empty = sj s ++ t = link (s, $t)fun head Empty = raise EMPTYj head (Cat (x, q)) = xfun tail Empty = raise EMPTYj tail (Cat (x, q)) = if Q.isEmpty q then Empty else linkAll qend Fig. 10. Catenable lists using lazy left spine views.Exercise 14. Implement cons and snoc directly for this implementation insteadof in terms of unit and ++. 3We now prove that ++ and tail take only O(1) amortized time using a debitargument. Each performs only O(1) work aside from forcing suspensions, so wemust show that discharging O(1) debits per ++ and tail su�ces to discharge alldebits before their associated suspensions are forced.19

Proof. Let dt(i) be the number of debits on the ith node of tree t and let Dt(i) =Pij=0 dt(i) be the cumulative number of debits on all nodes up to and includingthe ith node of t. Finally, let Dt be the total number debits on all nodes in t(i.e., Dt = Dt(jtj � 1)). We maintain two invariants on debits.First, we require that the number of debits on any node be bounded by thedegree of the node (i.e., dt(i) � degreet(i)). Since the sum of degrees of all nodesin a non-empty tree is one less than the size of the tree, this implies that thetotal number of debits in a tree is bounded by the size of the tree (i.e.,Dt < jtj).We will maintain this invariant by incrementing the number of debits on a nodeonly when we also increment its degree.Second, we insist that the Dt(i) be bounded by some linear function on i.The particular linear function we choose isDt(i) � i+ deptht(i)where deptht(i) is the length of the path in t from the root to node i. Thisinvariant is called the left-linear debit invariant. Note that the left-linear debitinvariant guarantees that dt(0) = Dt(0) � 0+0 = 0, so all debits on a node mustbe discharged by the time it reaches the root. (Recall that the root is not evensuspended!) The only time we actually force a suspension is when the suspendednode is to become the new root.We �rst show that ++ maintains both invariants by discharging only a singledebit. The only debit created by append is for the trivial suspension of its secondargument. Since we are not increasing the degree of this node, we immediatelydischarge the new debit. Now, assume that t1 and t2 are non-empty and lett = t1++t2. Let n = jt1j. Note that the index, depth, and cumulative debits ofeach node in t1 are una�ected by the append, so for i < nDt(i) = Dt1(i)� i+ deptht1(i)= i+ deptht(i)The nodes in t2 increase in index by n, increase in depth by one, and accumulatethe total debits of t1, so for i � nDt(n+ i) = Dt1 +Dt2 (i)< n +Dt2(i)� n + i + deptht2(i)= n + i + deptht(n + i) � 1< (n + i) + deptht(n+ i)Thus, we do not need to discharge any further debits to maintain the left-lineardebit invariant.Finally, we show that tailmaintains both invariants by discharging three deb-its. Let t0 = tail t. After discarding the root of t, we link the children t0 : : : tm�1from right to left. Let t0j be the partial result of linking tj : : : tm�1. Then t0 = t00.Since every link except the outermost is suspended, we assign a single debit tothe root of each tj , 0 < j < m � 1. Note that the degree of each of these nodes20

increases by one. We also assign a debit to the root of t0m�1 because the last callto linkAll is suspended even though it does not call link. Since the degree of thisnode does not change, we immediately discharge this �nal debit.Now, suppose the ith node of t appears in tj. We know that Dt(i) < i +deptht(i), but consider how each of these quantities changes with the tail. idecreases by one because the �rst element is discarded. The depth of each nodein tj increases by j � 1 (see Figure 9) while the cumulative debits of each nodein tj increases by j. Thus,D0t(i � 1) = Dt(i) + j� i + deptht(i) + j= i + (depth0t(i � 1)� (j � 1)) + j= (i � 1) + depth0t(i � 1) + 2Discharging the �rst two debits restores the invariant, for a total of three debits.2Exercise 15. This exercise explores conversion functions from lists to catenablelists.(a) Write a function makeCat : � list ! � Cat that runs in O(1) amortizedtime.(b) Write a function atten : � list list! �Cat that runs inO(1+E) amortizedtime, where E is the number of empty lists in the original list. 33.3 Bibliographic NotesHughes [13, 14] has investigated several implementations of catenable lists, in-cluding ones similar to Figure 7. However, he does not support e�cient head andtail operations; rather, he supplies a single operation for converting a catenablelist to an ordinary list. This is comparable to requiring that all of the appendsprecede all the heads and tails.Kaplan and Tarjan [16] gave the �rst functional implementation of catenablelists to support all operations in O(1) worst-case time, based on the techniqueof recursive slowdown. Shortly thereafter, Okasaki [22] developed the implemen-tation in Figure 10. This implementation is much simpler than Kaplan and Tar-jan's approach, but supports all operations in O(1) amortized time, rather thanworst-case time.4 HeapsFor queues and catenable lists, the usual imperative implementations do nottranslate well to a functional setting. For heaps (priority queues), however, manystandard imperative solutions translate quite nicely. In Section 4.1, we considerone such example | leftist heaps [6, 18]. In Section 4.2, though, we consider asecond example | pairing heaps [8] | that is more problematical.21

Figure 11 gives a minimal signature for mergeable heaps. Note that theseheaps are not polymorphic; rather, the type of elements is �xed, as is the orderingrelation on those elements. Not all heap data structures support an e�cientmerge operation, but we will consider only those that do. Heap data structurestypically also support an insert operation, but, as we did for catenable lists, wehave eliminated this operation in favor of a unit operation since insert (x, h) canbe simulated by merge (unit x, h).signature ORDERED =sigtype T (� type of ordered elements �)val leq : T � T ! bool (� total ordering relation �)endsignature HEAP =sigstructure Elem : ORDEREDtype Heapexception EMPTYval empty : Heapval isEmpty : Heap ! boolval unit : Elem.T ! Heap (� create a singleton heap �)val merge : Heap � Heap ! Heapval �ndMin : Heap ! Elem.T (� raises EMPTY if heap is empty �)val deleteMin : Heap ! Heap (� raises EMPTY if heap is empty �)end Fig. 11. Signature for heaps (priority queues).4.1 Leftist HeapsA heap-ordered tree is one in which the root of each subtree contains the min-imum element in that subtree. Thus, the root of a heap-ordered tree is alwaysthe overall minimum element in the tree.De�ne the r-height of a binary tree to be the length of its right spine (i.e., thelength of the rightmost path to an empty node). Leftist heaps are heap-orderedbinary trees that satisfy the leftist property: the r-height of any left child is � ther-height of its right sibling. Note that the right spine of a leftist heap is alwaysthe shortest path from the root to an empty node.Exercise 16. Prove that the r-height of a leftist heap of size n > 0 is� log2 n+1.322

Leftist heaps are represented by the following type:datatype Heap = Empty j Node of int � Elem.T � Heap � Heapwhere the integer records the length of the right spine.The unit, �ndMin, and deleteMin operations on leftist heaps are trivial.fun unit x = Node (1, x, Empty, Empty)fun �ndMin Empty = raise EMPTYj �ndMin (Node (r, x, a, b)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Node (r, x, a, b)) = merge (a, b)To merge two leftist heaps, you merge their right spines in the same waythat you would merge two ordered lists. Then you swap children of nodes alongthe merge path as necessary to restore the leftist property. This swapping isperformed by the pseudo-constructor node.fun node (x, a, Empty) = Node (1, x, a, Empty)j node (x, Empty, b) = Node (1, x, b, Empty)j node (x, a as Node (ra, , ,), b as Node (rb, , ,)) =if ra � rb then Node (ra+1, x, b, a) else Node (rb+1, x, a, b)Finally, merge may be implemented asfun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (, x, a1, a2), b as Node (, y, b1, b2)) =if Elem.leq (x, y) then node (x, a1, merge (a2, b))else node (y, b1, merge (b2, a))The complete code for leftist heaps appears in Figure 12.Because the right spine of a leftist heap has logarithmic height, and mergetraverses the right spines of its two arguments, merge takes O(logn) worst-casetime. deleteMin calls merge, so it also takes O(logn) worst-case time. unit and�ndMin run in O(1) time.Exercise 17. Implement insert directly instead of via unit and merge. 3Exercise 18. Implement a function makeHeap : Elem.T list ! Heap that pro-duces a leftist heap from an unordered list of elements in O(n) time. (Note thatthe naive approach of folding insert across the list takes O(n logn) time.) 3Exercise 19 (Weight-biased Leftist Heaps [4]). Weight-biased leftist heapsare an alternative to leftist heaps that replace the leftist property with the weight-biased leftist property: the size of any left child is � the size of its right sibling.(a) Prove that the right spine of a weight-biased leftist heap of size n > 0 haslength � log2 n+ 1. 23

functor Leftist (structure E : ORDERED) : HEAP =structstructure Elem = Edatatype Heap = Empty j Node of int � Elem.T � Heap � Heapexception EMPTYval empty = Emptyfun isEmpty Empty = true j isEmpty = falsefun node (x, a, Empty) = Node (1, x, a, Empty)j node (x, Empty, b) = Node (1, x, b, Empty)j node (x, a as Node (ra, , ,), b as Node (rb, , ,)) =if ra � rb then Node (ra+1, x, b, a) else Node (rb+1, x, a, b)fun unit x = Node (1, x, Empty, Empty)fun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (, x, a1, a2), b as Node (, y, b1, b2)) =if Elem.leq (x, y) then node (x, a1, merge (a2, b))else node (y, b1, merge (b2, a))fun �ndMin Empty = raise EMPTYj �ndMin (Node (r, x, a, b)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Node (r, x, a, b)) = merge (a, b)end Fig. 12. Leftist heaps.(b) Modify the implementation in Figure 12 to obtain weight-biased leftistheaps.(c) Currently, merge operates in two passes: a top-down pass consisting ofcalls to merge, and a bottom-up pass consisting of calls to the pseudo-constructor node. Modify merge for weight-biased leftist heaps to operatein a single, top-down pass.(d) What advantages would the top-down version of merge have in a lazyenvironment? In a concurrent environment?4.2 Pairing HeapsPairing heaps are heap-ordered multiway trees, as de�ned by the followingdatatype:datatype Heap = Empty j Node of Elem.T � Heap listWe insist that all pairing heaps be well-formed (i.e., that Empty never occur ina child list of Node).The unit and �ndMin operations are trivial.24

fun unit x = Node (x, [])fun �ndMin Empty = raise EMPTYj �ndMin (Node (x, cs)) = xThe merge operation makes the node with the larger root the leftmost child ofthe node with the smaller root.fun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (x, cs), b as Node (y, ds)) =if Elem.leq (x, y) then Node (x, b :: cs) else Node (y, a :: ds)Pairing heaps get their name from the deleteMin operation. deleteMin discardsthe root and then merges the children in two passes. The �rst pass mergeschildren in pairs from left to right (i.e., the �rst child with the second, the thirdwith the fourth, and so on). The second pass merges the remaining trees fromright to left. This can be coded concisely asfun mergeAll [] = Emptyj mergeAll [a] = aj mergeAll (a :: b :: rest) = merge (merge (a, b), mergeAll rest)Then, deleteMin is simplyfun deleteMin Empty = raise EMPTYj deleteMin (Node (x, cs)) = mergeAll csThe complete code for this implementation is given in Figure 13.In practice, pairing heaps are among the fastest of all imperative priorityqueues [15, 19, 21]. Since pairing heaps are also among the simplest of priorityqueues, they are the data structure of choice for many applications. Surprisingly,however, tight bounds for pairing heaps are not known. Clearly, unit, �ndMin,and merge run in O(1) worst-case time, but deleteMin might take as much asO(n) worst-case time. It has been conjectured [8] that the amortized runningtime of merge and deleteMin are O(1) and O(logn) respectively, but, even iftrue of an imperative implementation, this amortized bound is clearly false inthe presence of persistence.Suppose we call deleteMin on some pairing heap h = Node (x, cs). The resultis simply mergeAll cs. Now, suppose we merge h with two other pairing heapsa and b, where the root of h is less than the roots of a and b. The result ish' = Node (x, b :: a :: cs). If we now call deleteMin on h', we will duplicate thework of mergeAll cs.To cope with persistence, we must prevent this duplicated work. We onceagain turn to lazy evaluation. Instead of a Heap list, we instead represent thechildren of a node as a Heap susp. This suspension is equal to $mergeAll cs.Since mergeAll operates on pairs of children, we extend the suspension with twochildren at once. Therefore, each node will contain an extra Heap �eld that willcontain any partnerless child. If there are no partnerless children (i.e., if the25

functor Pairing0 (structure E : ORDERED) : HEAP =structstructure Elem = Edatatype Heap = Empty j Node of Elem.T � Heap listexception EMPTYval empty = Emptyfun isEmpty Empty = true j isEmpty = falsefun unit x = Node (x, [])fun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (x, cs), b as Node (y, ds)) =if Elem.leq (x, y) then Node (x, b :: cs) else Node (y, a :: ds)fun mergeAll [] = Emptyj mergeAll [a] = aj mergeAll (a :: b :: rest) = merge (merge (a, b), mergeAll rest)fun �ndMin Empty = raise EMPTYj �ndMin (Node (x, cs)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Node (x, cs)) = mergeAll csend Fig. 13. Pairing heaps.number of children is even), then this extra �eld will be empty. Since this �eldis in use only when the number of children is odd, call this the odd �eld. Thenew datatype is thusdatatype Heap = Empty j Node of Elem.T � Heap � Heap suspAs usual, the unit and �ndMin operations trivial.fun unit x = Node (x, Empty, $Empty)fun �ndMin Empty = raise EMPTYj �ndMin (Node (x, a, m)) = xPreviously, the merge operation was simple and the deleteMin operation wascomplex. Now, the situation is reversed | all the complexity of mergeAll hasbeen shifted to merge, which must set up the appropriate suspensions. deleteMinis simplyfun deleteMin Empty = raise EMPTYj deleteMin (Node (x, a, m)) = merge (a, force m)We de�ne merge in two steps. The �rst step checks for empty arguments andotherwise compares the two arguments to see which has the smaller root.26

fun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (x, ,), b as Node (y, ,)) =if Elem.leq (x, y) then link (a, b) else link (b, a)The second step, embodied in the link helper function, adds a new child to anode. If the odd �eld is empty, then this child is placed in the odd �eld.fun link (Node (x, Empty, m), a) = Node (x, a, m)Otherwise, the new child is paired with the child in the odd �eld, and bothare added to the suspension. In other words, we extend the suspension m =$mergeAll cs to $mergeAll (a :: b :: cs). Observe that$mergeAll (a :: b :: cs) = $merge (merge (a, b), mergeAll cs)= $merge (merge (a, b), force ($mergeAll cs))= $merge (merge (a, b), force m)so the second clause of link may be writtenfun link (Node (x, b, m), a) =Node (x, Empty, $merge (merge (a, b), force m)The complete code for this implementation is given in Figure 14.Although it now deals gracefully with persistence, this implementation ofpairing heaps is relatively slow in practice, because of overheads associated withlazy evaluation. Still, in an entirely lazy language, such as Haskell, where all datastructures will pay these overheads regardless of whether they actually gain anybene�t from lazy evaluation, this implementation should be competitive.Exercise 20. Design an experiment to test whether the implementation in Fig-ure 14 really does support merge in O(1) amortized time and deleteMin inO(logn) amortized time for non-single-threaded sequences of operations. 34.3 Bibliographic NotesLeftist heaps were invented by Crane [6], and �rst presented in their current formby Knuth [18, pages 150{152]. N�u~nez, Palao, and Pe~na developed a functionalimplementation of leftist heaps similar to that in Figure 12.Fredman, Sedgewick, Sleator, and Tarjan introduced pairing heaps in [8], andconjectured that insert and merge run in O(1) amortized time, while deleteMinruns in O(logn) amortized time. Stasko and Vitter [26] proved that the boundson insert and deleteMin did in fact hold for a variant of pairing heaps, but theydid not consider the merge operation. Several studies have shown that pairingheaps are among the fastest implementations of priority queues in practice [15,19, 21].Many other implementations of priority queues can be adapted very eas-ily to a functional setting. For example, King [17] and Okasaki [24] have de-scribed functional implementations of binomial queues. Brodal and Okasaki [2]27

functor Pairing1 (structure E : ORDERED) : HEAP =structstructure Elem = Edatatype Heap = Empty j Node of Elem.T � Heap � Heap suspexception EMPTYval empty = Emptyfun isEmpty Empty = true j isEmpty = falsefun unit x = Node (x, Empty, $Empty)fun merge (a, Empty) = aj merge (Empty, b) = bj merge (a as Node (x, ,), b as Node (y, ,) =if Elem.leq (x, y) then link (a, b) else link (b, a)and link (Node (x, Empty, m), a) = Node (x, a, m)j link (Node (x, b, m), a) =Node (x, Empty, $merge (merge (a, b), force m))fun �ndMin Empty = raise EMPTYj �ndMin (Node (x, a, m)) = xfun deleteMin Empty = raise EMPTYj deleteMin (Node (x, a, m)) = merge (a, force m)end Fig. 14. Persistent pairing heaps.have modi�ed binomial queues to obtain an e�cient functional implementationthat supports �ndMin, insert, and merge in O(1) worst-case time, and deleteMinin O(logn) worst-case time.5 Closing RemarksWe have presented e�cient functional implementations of three common abstrac-tions: FIFO queues, catenable lists, and mergeable heaps. Besides being usefulin practice, particularly for applications requiring persistence, these implemen-tations illustrate many of the techniques of functional data structure design.Some imperative data structures can easily be adapted to functional lan-guages, but most cannot. We have seen one example (leftist heaps) of a datastructure that is essentially the same in ML as in C, and another (pairing heaps)that can easily be translated into a functional language, but that then needssome non-trivial modi�cations to handle persistence e�ciently. The remainingtwo data structures (FIFO queues and catenable lists) must be redesigned fromscratch | the usual imperative solutions are completely unsuitable for functionalimplementations.Functional data structures are not of interest only to functional programmers.Functional languages provide a convenient framework for designing persistent28

data structures. If desired, these data structures can then be implemented inimperative languages. In fact, for some problems, such as catenable lists [16, 22],the best known persistent solutions were designed in exactly this way.References1. Stephen Adams. E�cient sets|a balancing act. Journal of Functional Program-ming, 3(4):553{561, October 1993.2. Gerth St�lting Brodal and Chris Okasaki. Optimal purely functional priorityqueues. Journal of Functional Programming, 6(6), December 1996. To appear.3. F. Warren Burton. An e�cient functional implementation of FIFO queues. Infor-mation Processing Letters, 14(5):205{206, July 1982.4. Seonghun Cho and Sartaj Sahni. Weight biased leftist trees and modi�ed skip lists.In International Computing and Combinatorics Conference, page ??, June 1996.5. Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead Tur-ing machines, and purely functional programming. In Conference on FunctionalProgramming Languages and Computer Architecture, pages 289{298, June 1993.6. Clark Allan Crane. Linear lists and priority queues as balanced binary trees. PhDthesis, Computer Science Department, Stanford University, February 1972. Avail-able as STAN-CS-72-259.7. James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and Robert E. Tarjan.Making data structures persistent. Journal of Computer and System Sciences,38(1):86{124, February 1989.8. Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator, and Robert E. Tar-jan. The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111{129, 1986.9. David Gries. The Science of Programming. Texts and Monographs in ComputerScience. Springer-Verlag, New York, 1981.10. Robert Hood. The E�cient Implementation of Very-High-Level Programming Lan-guage Constructs. PhD thesis, Department of Computer Science, Cornell Univer-sity, August 1982. (Cornell TR 82-503).11. Robert Hood and Robert Melville. Real-time queue operations in pure Lisp. In-formation Processing Letters, 13(2):50{53, November 1981.12. Rob R. Hoogerwoord. A symmetric set of e�cient list operations. Journal ofFunctional Programming, 2(4):505{513, October 1992.13. John Hughes. A novel representation of lists and its application to the function\reverse". Information Processing Letters, 22(3):141{144, March 1986.14. John Hughes. The design of a pretty-printing library. In First International SpringSchool on Advanced Functional Programming Techniques, volume 519 of LNCS,pages 53{96. Springer-Verlag, May 1995.15. Douglas W. Jones. An empirical comparison of priority-queue and event-set im-plementations. Communications of the ACM, 29(4):300{311, April 1986.16. Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recursiveslow-down. In ACM Symposium on Theory of Computing, pages 93{102, May 1995.17. David J. King. Functional binomial queues. In Glasgow Workshop on FunctionalProgramming, pages 141{150, September 1994.18. Donald E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Pro-gramming. Addison-Wesley, 1973. 29

19. Andrew M. Liao. Three priority queue applications revisited. Algorithmica,7(4):415{427, 1992.20. Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.The MIT Press, Cambridge, Massachusetts, 1990.21. Bernard M. E. Moret and Henry D. Shapiro. An empirical analysis of algorithmsfor constructing a minimum spanning tree. In Workshop on Algorithms and DataStructures, volume 519 of LNCS, pages 400{411. Springer-Verlag, August 1991.22. Chris Okasaki. Amortization, lazy evaluation, and persistence: Lists with catena-tion via lazy linking. In IEEE Symposium on Foundations of Computer Science,pages 646{654, October 1995.23. Chris Okasaki. Simple and e�cient purely functional queues and deques. Journalof Functional Programming, 5(4):583{592, October 1995.24. Chris Okasaki. The role of lazy evaluation in amortized data structures. InACM SIGPLAN International Conference on Functional Programming, pages 62{72, May 1996.25. David A. Schmidt. Detecting global variables in denotational speci�cations. ACMTransactions on Programming Languages and Systems, 7(2):299{310, April 1985.26. John T. Stasko and Je�rey S. Vitter. Pairing heaps: experiments and analysis.Communications of the ACM, 30(3):234{249, March 1987.27. Robert E. Tarjan. Amortized computational complexity. SIAM Journal on Alge-braic and Discrete Methods, 6(2):306{318, April 1985.

This article was processed using the LaTEX macro package with LLNCS style30

