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Abstract

Threads can easily be implemented using first-class continuations,
but the straightforward approaches for doing so lead to space leaks,
especially in a language with exceptions like Standard ML. We show
how these space leaks arise, and give a new implementation for threads
that is safe-for-space.

1 Introduction

The ability to provide simple implementations of lightweight, concurrent
threads is often cited as one of the great attractions of first-class continua-
tions. We show that this task is not nearly as simple as previously thought,
at least if one is concerned about space safety.

Programming with threads is common in domains such as networking,
operating systems, and user interfaces. Threads are not strictly necessary
for such applications, but designing these systems with threads leads to
an overall system structure that is much easier to understand and modify.
Principles for programming with threads can be found in any undergradu-
ate textbook on operating-system design. An excellent source for advice is
Nelson’s book on Modula-3 [10].

This research was sponsored in part by the Advanced Research Projects Agency ITO
under the title “The Fox Project: Advanced Languages for Systems Software,” DARPA
Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.
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signature COROUTINE = sig
exception NoReadyThread

val fork : (unit -> unit) -> unit
val yield: unit -> unit
val exit : unit -> ’a

end

Figure 1: An interface for a simple threads package.

As is well-known, threads can be implemented elegantly in a language
with first-class continuations, such as Scheme [13, 7] or Standard ML ex-
tended with callcc [3, 11]. However, naive implementations are likely to
suffer from two potential space leaks, one involving continuations and one
involving exceptions. The space leak involving continuations can easily be
optimized away by a good compiler, but the space leak involving exceptions
cannot. In this paper, we describe the contortions necessary to implement
safe-for-space threads in Standard ML [9], using first-class continuations as
provided by the Standard ML of New Jersey system (SML/NJ) [1].

We begin by developing a simple threads package, and then point out
and fix some bizarre behavior that can be caused by exceptions. Next, we
describe the two potential space leaks, and show how they can be avoided
with a clever use of callcc. We then sketch some of the difficulties in
achieving a comparable implementation using other control operators, such
as Felleisen’s control/prompt [5], Danvy and Filinski’s shift/reset [4], or
Gunter, Rémy, and Riecke’s set/cupto [6]. Finally, we draw some conclu-
sions.

2 A Simple Threads Package

We begin by considering the simple threads interface shown in Figure 1.
Three operations are specified in the signature COROUTINE: fork, yield,
and exit. The fork procedure takes a function f as an argument and then
evaluates the expression £ () in a newly created thread. The new process
is called the “child” process, whereas the process that called fork is the
“parent” process. There is also a notion of a “main” thread, which is the
one thread that was not created by a call to fork. The main thread is the
only thread whose return value is significant; its result is the result of the
entire program.
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Concurrency amongst threads is obtained by having individual threads
voluntarily suspend themselves, thereby giving other threads a chance to
execute. In this sense, our threads are cooperative coroutines rather than
parallel or pre-emptable (time-sliced) processes.! A thread calls yield to
place itself on a queue of “ready” processes and activate the next thread. The
ready processes are typically executed in first-in-first-out order, although it
is considered bad programming style to depend on this ordering.

The exit procedure terminates the current thread and activates the next
ready thread. Unlike yield, a call to exit never returns. Instead, it either
transfers control directly to a waiting thread or raises the NoReadyThread
exception if there are no other threads remaining in the queue. A child
thread implicitly exits if the expression it is evaluating returns.

There are some subtleties involving what should happen when the main
thread returns. Should it implicitly wait for all the other threads to also fin-
ish? From the point of view of the implementor, the simplest approach is to
make all the other threads silently disappear when the main thread returns.
This is the approach we will describe. There are also questions about what
should happen if the main thread calls exit rather than returning, or even
if it should be allowed to do so. We shall return to this matter in Section 4.

3 A First Implementation

We use first-class continuations as provided by SML/NJ [1], with the built-in
type ’a cont and primitive operators callcc and throw.

Following the by-now standard approach, first advocated by Wand [13],
we represent a thread as a continuation.

type thread = unit cont

A sleeping thread is activated by throwing to its continuation.

The queue of ready processes is then easily implemented as a queue of
continuations. Using the standard structure Queue (an implementation of
imperative queues provided by the SML/NJ library), we have the following
definition of the ready queue:

!Extending the system for pre-emption is a straightforward exercise, given suit-
able primitives for interrupting programs at regular intervals. To see how this is
done in SML/NJ, the interested reader can consult the source code for ML-Threads
or CML, which are both part of the SML/NJ standard distribution, available from
ftp.research.att.com. The space-safety considerations discussed in this paper are ap-
plicable to both coroutining and pre-emptable threads.
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val readyQueue : thread Queue.queue = Queue.mkQueue ()

A couple of auxiliary functions turn out to be useful. The first one, called
dispatch, activates the next thread on the ready queue. If no threads are
waiting on the ready queue, the NoReadyThread exception is raised.

exception NoReadyThread

fun dispatch () =
let val t = Queue.dequeue readyQueue
handle Queue.Dequeue => raise NoReadyThread
in throw t () end

The second auxiliary function is simply a shorthand for enqueuing a
continuation on the ready queue:

fun enqueue t = Queue.enqueue (readyQueue, t)

With these helper functions in hand, we can now make simple definitions
of the main thread routines. The first is fork:

fun fork f =
callcc (fn parent =>
(enqueue parent;
f O;
exit O))

To start a new process, we first capture the continuation of the parent
process and enqueue it. We then activate the child function £f. The return
value of f is irrelevant, so when and if f returns, we end this thread by
calling exit. Note that there are several other ways to schedule the parent
and child threads during a fork. For instance, the following code enqueues
the child process and continues with the parent.

fun fork’ f =
let val child =
callcc (fn return =>
(callcc (fn child => throw return child);
f O;
exit ))
in enqueue child end

Alternatively, we could enqueue both threads and then call dispatch to run
the next thread on the ready queue.
For yield, we have the following definition:
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fun yield () =
callcc (fn parent =>
(enqueue parent;
dispatch ()))

We first capture and enqueue the current continuation, and then call dispatch
to run the next thread.
Finally, we have exit, which immediately starts the next thread.

fun exit () = dispatch ()

Note that exit does not capture the current continuation before calling
dispatch. Therefore, the current thread is lost.

This implementation is essentially similar to Wand’s implementation
of threads in Scheme [13]. Existing implementations of threads in Stan-
dard ML, such as ML-Threads [3] and CML [11, 12], differ mainly in their
treatment of exceptions, as discussed in the following section.

4 The Problem With Exceptions

Although appealingly simple, the above implementation exhibits bizarre be-
havior in the presence of exceptions. The key question is: when a thread
raises an exception that is not caught within that thread, where does that
exception go? This is not always obvious when callcc is involved, but
keep in mind that the exception handler stack is part of the context that is
captured by callcc and restored by throw.

Armed with this knowledge, we can easily see that yield has no effect
on the exception handlers of a particular process — the same handlers are
active after the yield as before the yield.

fun yield () =
callcc (fn parent =>
(enqueue parent;
dispatch ()))

The current handlers are captured by the callcc. Later, when this process
reaches the head of the ready queue, the handlers are restored by the throw
in dispatch.

By the same reasoning, fork has no effect on the exception handlers of
the parent process. However, note that although callcc saves the current
handlers, it does not change them. Thus, inspecting the code for fork
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fun fork f =
callcc (fn parent =>
(enqueue parent;
£ O;
exit 0))

we see that f is executed in an exception context inherited from its parent
process. So, an exception that escapes a child thread may be caught within
its parent thread. For example, the following program will print Surprise!?

let fun child O = (1 div 0; (Q))

fun parent () = fork child handle Div => print "Surprise!"
in

fork parent;

end

At first this may seem reasonable, but with only a small change we begin to
see why this behavior is undesirable.

let fun child () = (1 div 0; ()
fun parent () = (fork child handle Div => ();
x = Ix + 1)
in
fork parent;

end

Now, when child raises the Div exception, parent catches the exception
and increments x. But note that the parent thread is still in the ready queue.
When it eventually reaches the head of the ready queue and is dispatched,
it will increment x a second time!

In the above example, the exception prematurely woke a sleeping process.
With another slight change, the exception can actually resurrect a process
that has already exited.

2Tn each of the following examples, we rely on the fact that fork suspends the parent
thread and immediately executes the child thread. Similar examples can be devised for
different scheduling policies.

3-6



let fun child () = (yield (O; 1 div 0; ())
fun parent () = (fork child handle Div => ();
x = Ix +1)
in
fork parent;

end

In this example, the child thread voluntarily yields control and the parent
thread executes to completion. Later, when the child thread resumes, it
raises an exception that resurrects and re-executes the parent process

The situation becomes even worse given only a slightly different im-
plementation strategy for threads. For example, threads are sometimes
represented as functions of type unit -> unit rather than continuations.
Then, the function passed to fork can be transferred directly to the ready
queue (possibly with some minor modifications involving exception han-
dlers). Later, when a thread is suspended, its continuation is coerced into a
function by partially applying throw. In this representation, a child thread
may be executed not in the exception context of its parent, but rather in the
exception context of whatever thread happens to be active when the child
thread first reaches the head of the ready queue. Then, any exceptions that
escape the child thread are caught, not by its parent, but rather by this
unrelated thread.

Returning to our implementation of threads as continuations, we take a
first step towards solving these kinds of problems by guaranteeing that no
exception escapes its thread. We accomplish this by installing around each
new thread a universal handler that will catch any errant exceptions.

fun fork f =
callcc (fn parent =>
(enqueue parent;
f () handle _ => print "Uncaught exception.";

exit O))

However, this is not quite enough. What if exit itself was the culprit?
In other words, what if £ raised the NoReadyThread exception by calling
exit when the ready queue was empty (i.e., when all other threads had
already exited)? The handler installed by fork will catch the exception,
but the exception will be immediately re-raised by the subsequent exit.
This exception will be caught either by an internal handler of f’s parent,
resurrecting f’s parent from the dead, or by the handler wrapped around f’s
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parent by fork. In the latter case, the exception will again be immediately
re-raised by the subsequent exit. In this fashion, the NoReadyThread ex-
ception can propagate through each of f’s ancestors all the way out to the
main thread.

This problem can only arise if a child thread calls exit after the main
thread has already exited. However, since the result of the main thread is
the result of the entire program, it is reasonable to forbid the main thread
from calling exit. This is easily accomplished by keeping track of whether
the current thread is the main thread or a child thread, and raising a new
exception MainThreadCantExit if the main thread attempts to call exit.
With this approach, there will always be at least one thread in the ready
queue whenever we are executing a child thread — namely, the main thread.
Therefore, dispatch can never fail and there is no longer any need for the
NoReadyThread exception.

Recall that when the main thread returns (as opposed to exiting), any
sleeping threads silently disappear. Therefore, if we forbid the main thread
from exiting, then we should also provide a way for the main thread to
find out when it is safe for it to return (i.e., when all the other threads
have exited). It is not difficult to provide a primitive to allow the main
thread to sleep until the other threads have all exited. For the details of
this primitive, as well as the changes necessary to prevent the main thread
from calling exit, see the full implementation in Appendix A.

5 Space-Safety of the Threads Package

The term “space-safety” refers informally to the notion that the implementa-
tion of some feature or mechanism will not, through normal use, leak heap
or stack storage. This notion is almost always informal because it often
depends on the intricate details of a particular implementation and what
constitutes “normal use.” Still, there are common practices in areas such
as automatic garbage collection that allow one to make useful conclusions
about the space-safety of mechanisms such as threads.

Neither of the threads implementations presented so far is safe-for-space.
Both suffer from two kinds of potential space leaks. In the first kind of leak, a
child thread unnecessarily retains its parent’s continuation. This potential
leak is not too worrisome because it is likely to be optimized away by a
good compiler. The second kind of leak, however, is more serious. In this
leak, a child thread unnecessarily retains its parent’s exception handlers.
Unfortunately, this second leak is unlikely to be optimized away without
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enormous advances in compiler technology.

The fact that these implementations leak storage is surprising, because
implementations like these (e.g., ML-Threads [3] and CML [11, 12]) have
been in use for many years. We can only speculate that the kinds of idioms
for which these space leaks prove problematic have not arisen until now, or
that these leaks have been hidden by other, more obvious leaks.

First, consider why a child thread might retain its parent’s continuation.
In the fork function,

fun fork f =
callcc (fn parent =>
(enqueue parent;
£ O;
exit ()))

the code sequence £ (); exit () comprises the child thread. We know that
exit never returns, but the compiler may not realize this fact. Therefore,
the system may hang on to exit’s continuation, which is just parent, in
case exit ever returns. Even if the parent thread exits, it cannot be garbage
collected until the child thread releases this pointer. In fact, the system may
retain the parent thread’s memory until not only the child thread, but all
of the child thread’s descendants, have exited.

Fortunately, it is reasonable to hope that a good compiler would recog-
nize that exit ends in a call to throw, and therefore never returns. In that
case, the system can release these extraneous pointers to the parent contin-
uations and avoid the space leak. Strangely, SML/NJ? does not appear to
optimize throws in this fashion.

However, the picture is not so rosy when we turn to the second space
leak, in which a child thread retains its parent’s exception handlers. Recall
the cascade of exceptions that arose in the previous section when exit raised
the NoReadyThread exception. The system must allow for such a cascade,
and thus must retain each of the handlers in this chain. Once we forbid the
main thread from calling exit, we can prove that exit will never raise an
exception within a child thread, and hence that such a cascade will never
occur. But, it is unreasonable to expect the compiler or run-time system to
be able to prove this fact. Therefore, exception handlers for a given thread
cannot be garbage collected until all of its descendants have exited. This
problem is particularly severe for our second implementation of threads, in
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which we install a universal handler around each thread, but it can arise even
in the first implementation if a thread installs its own exception handlers.

Because a thread may retain context from each of its ancestors, these
space leaks are most noticeable when there are deeply nested threads. For
example, imagine a server architecture in which each request is processed
in its own thread. When a thread receives a request, it immediately forks
off a new thread to wait for the next request. In this architecture, the dth
request is processed in a thread of depth d. Obviously, such a server cannot
afford a space leak that grows with each new thread. Exactly this kind of
architecture appears in the Fox Project’s FoxNet system [2].

6 Safe-for-Space Threads

In both implementations so far, problems arise because a child thread hangs
on to some of its parent’s context. We can avoid these problems by arranging
that every thread is executed in a top-level context rather than in its parent’s
context. We do this by using first-class continuations to capture a “thread-
activating” context at the top level.

val threadActivator : (unit -> unit) cont =
callcc (fn return =>
let val f = callcc (fn fc => throw return fc)
in
f () handle _ => print "Uncaught exception.";
exit O
end)

Then, fork can start each new thread in this context.

fun fork f =
callcc (fn parent =>
(enqueue parent;
throw threadActivator f))

Now each child thread may retain some of the top-level context, but none of
its parent’s context. More importantly, all children retain the same top-level
context, so the size of the retained context does not grow with every new
thread.

This is enough to avoid the space leak, but in fact we can do slightly
better with only a small change. Each child thread now creates its own
exception handler. Since these exception handlers are all the same, we would
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prefer for all children to share the same handler. This can be accomplished
by capturing the thread-activating context inside the exception handler that
checks for uncaught exceptions.

val threadActivator : (unit -> unit) cont =
callcc (fn return =>
(let val f = callcc (fn fc => throw return fc)
in £ () end
handle _ => print "Uncaught exception.";
exit O))

Now each child retains no more extra context than is already captured by
threadActivator. This includes the handler inside threadActivator and
any other handlers that were active when threadActivator was created. If
we are careful, this should only be the default handler that catches uncaught
exceptions at the top level. In addition, if the compiler is not smart enough
to realize that exit can never return, threadActivator may accidentally
retain exit’s continuation, return, which could be very large. We hope
that this reference will be optimized away, but if not, we can sometimes
provide hints to the compiler that this continuation can be deallocated. For
example, we can add a superfluous raise after the exit to make it perfectly
clear that the child thread will never return.

val threadActivator : (unit -> unit) cont =
callcc (fn return =>
(let val f = callcc (fn fc => throw return fc)

in £ () end
handle _ => print "Uncaught exception.";
exit ();

raise SomeException))

This raise will never be executed, but is just enough to convince current
versions of SML/NJ to release the unnecessary continuation. Of course, we
would not recommend such an ugly hack in general, but it may be appro-
priate for library code that is expected to be as efficient as possible.

7 Other Control Operators

Researchers have studied many control operators besides callcc and throw.
In this section, we briefly summarize some of the difficulties one encounters
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when trying to implement safe-for-space threads using a few of these alter-
native control operators.

First, we consider Felleisen’s control/prompt [5] and Danvy and Fil-
inski’s shift/reset [4]. These seem like natural choices for implementing
safe-for-space threads since they essentially allow one to run a thread in a
top-level context, much like the threadActivator continuation does. How-
ever, if the user also has access to these operators, then it becomes difficult
to give any reasonable implementation of threads, much less one that is
safe-for-space. The problem is that a prompt set by the user might mask a
prompt set by the threads package, or vice versa.

Gunter, Rémy, and Riecke’s set/cupto [6] solve this problem by allow-
ing one to name prompts. Then, we can prevent the user from interfering
with our prompt simply by hiding its name. In fact, Gunter, Rémy, and
Riecke present as an example an implementation of threads similar in spirit
to those described in this paper. Unfortunately, their implementation of
threads suffers from several space leaks. One leak stems from the use of
exception handlers. Fixing this leak is complicated by the fact that their
implementation of set/cupto is buggy with respect to exceptions. Still,
assuming a correct implementation of set/cupto, it should be possible to
avoid this leak with careful programming. A second, more serious leak in-
volves the stack of control points maintained by the control operators. Every
time a thread yields and resumes, it pushes an extra control point on the
stack, so that a thread that has yielded and resumed n times has a control
stack of at least depth n. It is unclear whether this leak is inherent in any
implementation of these control operators, or an artifact of the particular
implementation of set/cupto presented in [6].

Finally, Reppy has proposed variants of callcc and throw, called capture
and escape, that do not save and restore the exception handler stack [12,
page 136]. On the surface, these operators sound like they might help pre-
vent the retention of unnecessary exception handlers. In fact, however, just
the opposite is true. Suppose that we replace callcc and throw in our
threads package with capture and escape, and consider the following pro-
gram fragment:

(fork (fn () => exit ()); raise E) handle E => ...

First, we install the E handler, and then fork the child thread, which installs
a new universal handler. The child thread then exits, and the parent thread
resumes, with both handlers still active. Thus, when we raise E, it will be
caught by the universal handler of the now defunct thread. Not only can this
lead to faster space leaks by retaining too many exception handlers, it also
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causes the kinds of bizarre behavior about which we complained in Section 4,
only worse. Now, a thread’s exceptions may be caught by another thread
even when we specifically attempt to handle the exception in the current
thread.

8 Conclusions

This work was motivated by a space leak discovered in the FoxNet HTTP
server [2]. We have experimentally observed such leaks for many different
implementations of threads, but these leaks are difficult to quantify because
of the lack of adequate profiling tools. However, the example of the FoxNet
HTTP server, which is expected to run for months at a time, shows that
even slow leaks can be intolerable. We have also modeled these space leaks
in a semantics combining both exceptions and first-class continuations.

Threads are an important structuring tool for real-world systems, and
the ability to implement light-weight threads is often cited as one of the
major benefits of first-class continuations. However, as we have shown,
implementations of threads that are both safe-for-space and predictable in
the presence of exceptions can be quite subtle and somewhat complicated.
This suggests, possibly, that threads ought to be a primitive notion in the
language, instead of constructed out of continuations. But until functional
languages such as Standard ML incorporate threads as primitive features,
we can build on the techniques shown in this paper to build threads that
are fast and behave well even in long-running programs.
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Final Implementation

signature COROUTINE =

sig
exception MainThreadCantExit
exception ChildThreadCantSync

val fork : (unit -> unit) -> unit
val yield: unit -> unit
val exit : unit -> ’a

val sync : unit -> unit
(* sync () yields until all other threads have completed *)
end

structure Coroutine : COROUTINE =
struct
exception MainThreadCantExit
exception ChildThreadCantSync

SMLofNJ.callcc
SMLofNJ.throw

val callcc
val throw

datatype threadType = Main | Child
type thread = unit cont * threadType

val readyQueue : thread Queue.queue = Queue.mkQueue ()
val syncCont : thread option ref = ref NONE
val currentThreadType = ref Main

fun enqueue thread = Queue.enqueue (readyQueue, thread)

fun dispatch () =
let val (t,typ)
Queue.dequeue readyQueue
handle Queue.Dequeue =>
(* syncCont cannot be NONE *)
case !syncCont of SOME main => main

in
currentThreadType := typ;
throw t ()

end
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fun exit O =
case !currentThreadType of
Main => raise MainThreadCantExit
| Child => dispatch ()

fun sync () =
case !currentThreadType of
Main => callcc (fn t =>
(syncCont := SOME (t, Main);
dispatch ()))
| Child => raise ChildThreadCantSync

fun yield O =
callcc (fn parent =>
(enqueue (parent, !currentThreadType);
dispatch )))

val threadActivator : (unit -> unit) cont =
callcc (fn return =>
(let val f = callcc (fn fc => throw return fc)

in £ () end
handle _ => print "Uncaught exception.";
exit ();

(x raise dummy exception as hint to compiler *)
raise MainThreadCantExit))

fun fork f =
callcc (fn parent =>
(enqueue (parent, !currentThreadType);
currentThreadType := Child;
throw threadActivator f))
end
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