
Amortization, Lazy Evaluation, and Persistence:

Lists with Catenation via Lazy Linking∗

Chris Okasaki
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
(e-mail: cokasaki@cs.cmu.edu)

Abstract

Amortization has been underutilized in the design of
persistent data structures, largely because traditional
accounting schemes break down in a persistent setting.
Such schemes depend on saving “credits” for future
use, but a persistent data structure may have mul-
tiple “futures”, each competing for the same credits.
We describe how lazy evaluation can often remedy this
problem, yielding persistent data structures with good
amortized efficiency. In fact, such data structures can
be implemented purely functionally in any functional
language supporting lazy evaluation. As an example
of this technique, we present a purely functional (and
therefore persistent) implementation of lists that si-
multaneously support catenation and all other usual
list primitives in constant amortized time. This data
structure is much simpler than the only existing data
structure with comparable bounds, the recently discov-
ered catenable lists of Kaplan and Tarjan, which sup-
port all operations in constant worst-case time.

1 Introduction

Over the past fifteen years, amortization has be-
come a powerful tool in the design and analysis of
data structures. Data structures with good amortized
bounds are often simpler and faster than data struc-
tures with equivalent worst-case bounds. These data
structures typically achieve their bounds by balancing
the cost of a few expensive operations with a large
number of cheap operations. Unfortunately, such de-
signs frequently break down in a persistent setting,

∗This research was sponsored by the Defense Advanced
Research Projects Agency, CSTO, under the title “The Fox
Project: Advanced Development of Systems Software”, ARPA
Order No. 8313, issued by ESD/AVS under Contract No.
F19628-91-C-0168.

where the expensive operations may be repeated arbi-
trarily often.

To solve this problem, we must guarantee that if
x is a version of a persistent data structure on which
some operation f is expensive, then the first applica-
tion of f to x may be expensive, but repeated applica-
tions will not be. We achieve this with lazy evaluation.
Portions of x — those portions that make the oper-
ation “expensive” — will be evaluated lazily, that is,
only on demand. Furthermore, once evaluation takes
place, those portions are updated with the resulting
values in a process known as memoization[14]. Subse-
quent operations on x will have immediate access to
the memoized values, without duplicating the previous
work.

We first review the basic concepts of lazy evalua-
tion, amortization, and persistence. We next discuss
why the traditional approach to amortization breaks
down in a persistent setting. Then we outline our
approach to amortization, which can often avoid such
problems through judicious use of lazy evaluation. We
illustrate our technique by presenting an implementa-
tion of persistent catenable lists that support cate-
nation and all other usual list primitives (push, pop,
first) in constant amortized time. Achieving constant
time bounds for such a data structure has been an
open problem for many years, solved only recently by
Kaplan and Tarjan [12], who support all operations
in constant worst-case time. However, our solution is
much simpler than theirs.

2 Lazy Evaluation

Lazy evaluation is an evaluation strategy employed
by many purely functional programming languages.
This strategy has two essential properties. First, the
execution of a given computation is delayed until its

result is needed. Second, the first time a delayed com-
putation is executed, its resulting value is cached so
that the next time it is needed, it can be looked up
rather than recomputed. This caching is known as
memoization [14].

Both of these ideas have a long history in data
structure design, although not always in combination.
For instance, delaying the execution of potentially ex-
pensive computations (often deletions) is used to good
effect in hash tables [23], priority queues [20, 7], and
search trees [4]. Memoization, on the other hand, is
the basic principle of such techniques as dynamic pro-
gramming [1] and path compression [10, 22].

In addition to delaying expensive computations,
lazy evaluation provides a convenient framework for
partitioning expensive computations into more man-
ageable fragments. For instance, a function that gen-
erates a list of values might compute only the first,
and delay the rest. When needed, the second value
can be computed, and the rest again delayed. Pro-
ceeding in this fashion, the entire list can be computed
one element at a time. Such incremental computations
will play an important role in the design of persistent
amortized data structures.

3 Traditional Amortization

Amortization has become an established tool in the
design and analysis of data structures. The basic in-
sight behind amortization is that one often cares more
about the total cost of a sequence of operations than
the cost of any individual operation. Thus, rather
than the worst-case cost of an individual operation, a
more appropriate metric is often the amortized cost
of each operation, which is obtained by averaging the
total cost of a (worst-case) sequence over all the op-
erations in the sequence. Such a metric allows certain
individual operations to be more expensive than the
stated cost, provided they are balanced by sufficiently
many operations that are cheaper than the stated cost.

Tarjan [21] describes two methods for analyzing
amortized costs, known as the banker’s view and the
physicist’s view. We will concentrate on the former.
In the banker’s view of amortization, we allocate a cer-
tain number of credits to each operation. A credit is an
imaginary device that can “pay” for one unit of cost,
where cost may be an estimate of running time, space
consumption, or any other measure of interest. If the
credits allocated to a particular operation are greater
than the actual cost of that operation, then the excess
credits carry over to help pay for future operations.
If the credits are less than the actual cost, then the

deficit is made up by credits remaining from previ-
ous operations. Proving amortized bounds consists of
showing that, beginning with zero credits, the balance
of credits never becomes negative. In some analyses,
the balance is allowed to be negative at intermediate
stages provided it can be proven that the balance will
be non-negative by the end of the sequence.

4 Persistence

A persistent data structure is one that supports up-
dates and queries to any previous version of the data
structure, not just the most recent. Driscoll, Sarnak,
Sleator, and Tarjan [4] describe several general tech-
niques for making ordinary linked data structures per-
sistent. However, these techniques do not apply when
operations such as catenation can combine multiple
versions of a data structure. In purely functional pro-
gramming, where side-effects are disallowed, all data
structures are inherently persistent.1 Hence, we will
focus on purely functional data structures, and not
concern ourselves with special machinery for persis-
tence.

A persistent data structure differs from an ordinary
data structure in that it may have multiple “futures”.
A particular version x of a data structure may be up-
dated to yield a new version y, and the same version
x may later be updated again to yield another new
version z. Both y and z (and their respective futures)
may be considered futures of x. In general, a particu-
lar version may have arbitrarily many futures.

It is this property of persistent data structures
that causes traditional amortization schemes to break
down. Such schemes depend on saving credits for fu-
ture use. However, a given credit may only be spent
once. This is incompatible with the multiple futures
of persistent data structures, where competing futures
may need the same credit.

Note that amortization is sometimes introduced
when extending a fundamentally worst-case data
structure with the persistence machinery of Driscoll,
Sarnak, Sleator and Tarjan [4]. This is not the sort of
amortization we are speaking of. Rather, we are con-
cerned with whether the underlying data structure is
itself amortized.

1For these purposes, memoization is not considered a side-
effect since, in the absence of other side-effects, it cannot change
the meaning of a program, only the efficiency.

647

5 Amortization with Lazy Evaluation

We next describe how to use lazy evaluation in the
design of amortized data structures whose bounds hold
even in a persistent setting. This approach is based
on the following key observation: although a single
credit cannot be spent by more than one future, it does
no harm for multiple futures to each pay off the same
debit. Thus, our emphasis will be on discharging past
debits rather than accumulating credits.

But what exactly is a debit? In our framework,
a debit corresponds to a delayed computation involv-
ing a single credit’s worth of work. More expensive
delayed computations may be assigned multiple deb-
its. Every operation is allocated a certain number
of credits that are used to discharge existing debits.
If there are no existing debits, the excess credits are
wasted — they are not accumulated. Proving amor-
tized bounds in this framework consists of demonstrat-
ing that, given a certain credit allocation, every debit
will be discharged by the time its delayed computa-
tion is needed. Note that discharging a debit does not
mean executing the delayed computation; it is merely
an accounting scheme to pay for the delayed compu-
tations. To extend the financial analogy, a delayed
computation is like a layaway plan. To purchase an
“item” — the result of the computation — you first
reserve the item by delaying the computation. You
then make regular payments by discharging the asso-
ciated debits, and are eligible to receive the item only
when it is completely paid for. (However, even after it
is completely paid for, you do not necessarily execute
the delayed computation unless its result is needed.)
Thus, there are three important moments in the life
cycle of a delayed computation: when it is created,
when it is paid for, and when it is executed. The
proof obligation is to show that the second moment
precedes the third.

This scheme can be used whenever it is possible
to predict in advance what the expensive operations
will be. In that case, you delay each expensive oper-
ation prior to the point where its result will actually
be needed. Subsequent operations discharge the deb-
its associated with the delayed computation, and you
eventually reach the point where the result is needed.
Provided all of the debits have been discharged, you
may now execute the delayed computation. Memo-
ization allows the result of this delayed computation
to be shared among all futures that need it, prevent-
ing duplicated work. Note that both aspects of lazy
evaluation are important here; memoization effects the
sharing, but the delay allows the sharing to propagate
back to past versions and forward from those past ver-

sions to alternate futures. Without the delay, memo-
ization would only propagate to futures of the current
version, so it would be possible to duplicate expensive
computations by returning to a version just a few op-
erations earlier, and repeating the operations that led
to the expensive computation.

Memoization is the only way in which separate fu-
tures interact. If one future executes a delayed com-
putation that is later needed by a second future, then
that second future may simply look up the memoized
value and avoid recomputing it. As far as the ac-
counting scheme is concerned, separate futures inter-
act only by making the discharging of certain debits
redundant. It is a strange but pleasant fact that, in
this framework, the worst case occurs when there is
only a single future, in which case all memoization is
wasted. Hence, in the analysis, we can ignore the pos-
sibility (and complications!) of multiple futures and
need only show that any individual future will itself
discharge all debits relevant to that future.

At first glance, the need to predict expensive oper-
ations in advance seems to drastically limit the appli-
cability of this technique. However, incremental func-
tions can often ease this restriction by breaking large
computations into manageable chunks, each of which
can be paid for separately. Thus, instead of needing to
predict a large computation far enough in advance to
be able to pay for the entire computation between the
time that it is delayed and the time that it is executed,
one must only be able to predict the large computa-
tion far enough in advance to be able to pay for the
first chunk and then pay for each successive chunk as
needed. If the chunks are small enough, as will be the
case with catenable lists, the computation need not be
set up in advance at all!

The sole previous example of this technique is the
purely functional queues and deques of Okasaki [17].
Those data structures go further and actually elimi-
nate the amortization by regarding the discharging of
debits as a literal activity and appropriately schedul-
ing the premature evaluation of lazy computations.
Obtaining worst-case data structures in this manner
should be possible whenever such a schedule can be
maintained in no more time than the desired opera-
tions themselves. Raman [18] discusses other methods
for eliminating amortization.

6 Lists with Catenation

To illustrate our technique, we next present an ex-
tended example: persistent lists that support cate-
nation and all other usual list primitives in constant

648

amortized time. In the normal linked representation
of lists, catenation requires time linear in the size of
the first list. While it is not difficult to design alter-
native representations of lists that support constant
time catenation (see, for example, [11]), such alterna-
tive representations seem almost inevitably to sacri-
fice constant time behavior in one or more of the other
usual list primitives. Balanced trees can easily support
all list operations, including catenation, in logarithmic
time [16]. Driscoll, Sleator, and Tarjan [5] and Buchs-
baum and Tarjan [3] investigated rather complicated
sublogarithmic implementations. Kaplan and Tar-
jan [12] finally achieved constant worst-case bounds
for this problem, but their solution is still fairly com-
plicated. Our data structure is much simpler, but is ef-
ficient in the amortized, rather than worst-case, sense.

A catenable list is one that supports the following
operations:

• makelist(x): Create a new list containing the ele-
ment x.

• first(L): Extract the first element of list L.

• pop(L): Return a new list containing all the ele-
ments of L except the first.

• catenate(L1, L2): Construct a new list containing
the elements of L1 followed by the elements of L2.

The familiar push and inject operations, which add el-
ements to the front and rear of a list, are subsumed by
makelist and catenate since they can be simulated by
catenate(makelist(x), L) and catenate(L,makelist(x)).
Since a catenable list supports insertion at both ends,
but removal only from the front, it is more properly
regarded as a (catenable) output-restricted deque.

We represent catenable lists as n-ary trees contain-
ing at most one element in each node. Nodes contain-
ing an element are called occupied, nodes without an
element are called vacant. Vacant nodes are required
to have at least two children; such nodes represent de-
layed computations arising during pop’s. The order
of elements within the list is determined by the left-
to-right preorder traversal of the tree, ignoring vacant
nodes. Hence, the first element of the list is contained
in the first occupied node along the leftmost path from
the root. See Figure 1 for a sample tree.

The two fundamental operations on trees are link
and force. The former is the primitive for catenating
trees, while the latter restructures trees to guarantee
that the root is occupied. These operations are mu-
tually recursive. Given two non-empty trees T1 and
T2, link(T1, T2) first forces T1 and then adds T2 as the

s

s

s s

s s s s

s

s

s

s

s

s s s

s

s s s

�
�
�
�
�

�
�
�
�

�
�
��

�
�
��

C
C
CC

S
S

SS
T

T
T

T
@

@
@

@
@

�
�
�
�

�
�
��

A
A
AA

T
T

T
T

�
�
��

A
A

AA

–

–

a

–

b c d e

f

g

h

i

j

k l m

–

n o p

Figure 1: A tree representing the list [a . . . p]. Vacant
nodes are indicated by dashes (–).

�
��

�
��

�
��

s

s

s

s

�
��

�
��

�
��

�
��

B
BB

B
BB

B
BB

B
BB

T1

T2

T3

T4

x

–

–

–

force
=⇒

s

�
��

B
BB s s s

�
��

�
��

�
��

B
BB

B
BB

B
BB

@
@@

HHHHH

PPPPPPPP
T1

T2 T3 T4

x

– – –

Figure 2: Illustration of force. The leftmost path of
vacant nodes is compressed to raise the first element
to the root.

rightmost child of T1. The children of a given node
are stored in a queue, from left to right, using the
purely functional constant-time queues of Hood and
Melville [9] or Okasaki [17]. Thus, link(T1, T2) merely
adds T2 to the end of the child queue of T1.

If the root of T is occupied, then force(T) does noth-
ing. Otherwise, the root of T is a vacant node with
children T1 . . . Tm. If m = 2, then force(T) links T1

and T2. If m > 2, then force(T) creates a new va-
cant node with children T2 . . . Tm and links T1 with
the new node. In either case, we memoize the result
by overwriting the original vacant node with the new
tree. Since force may call link, and vice versa, a sin-
gle call to force may result in a cascade of changes:
if the leftmost path from the root begins with several
vacant nodes, then forcing the root will force each of
those nodes. Figure 2 illustrates this process. Forcing
is closely related to a form of path compression known
as path reversal [22, 8], augmented with memoization
at each intermediate stage to support persistence effi-
ciently.

649

The purpose of vacant nodes is to implement lazy
linking. A vacant node with children T1 . . . Tm repre-
sents the delayed computation of

link(T1, link(T2, . . . , link(Tm−1, Tm) . . .))

This computation is executed by forcing the vacant
node. Note, however, that lazy linking is performed in-
crementally since forcing a vacant node executes only
the outermost link, delaying the remaining computa-
tion of link(T2, . . . , link(Tm−1, Tm) . . .) within another
vacant node.

We can now describe the list operations: makelist
simply creates a new occupied node with no children;
first forces the root and returns its contents; pop forces
and discards the root, lazily linking its children by col-
lecting them under a new vacant node; and, finally,
catenate verifies that both lists are non-empty and
links the two trees. Psuedocode for each of these op-
erations is given in Figure 3.

Although we have not described these operations in
a purely functional manner (particularly force), they
are all straightforward to implement in any functional
language supporting lazy evaluation. Source code
written in Standard ML [15] is available through the
World Wide Web from

http://foxnet.cs.cmu.edu/

people/cokasaki/catenation.html

6.1 Analysis

By inspection of Figure 3, every operation clearly
runs in constant worst-case time, excluding the time
spent forcing vacant nodes. We next show that allo-
cating three credits per pop suffices to pay for each lazy
link (i.e., discharge each associated debit) before it is
executed, establishing the constant amortized bound.

For reasoning about these algorithms, it is often
more convenient to think in terms of reference trees
than the actual trees generated by the algorithms.
The reference tree corresponding to a given actual
tree is that same tree as it would appear if every
lazy link were executed (i.e., if every vacant node were
forced). Thus, in a reference tree, every node is occu-
pied. Figure 4 illustrates the effects of the pop opera-
tion in terms of reference trees. The value of reference
trees is that they are unchanged by force; that is, if
T ′ = force(T), then both T and T ′ have the same ref-
erence tree. In particular, when we speak of the depth
of a given node, we shall be concerned with its depth
in the reference tree corresponding to its actual tree
(a fixed quantity), rather than its actual depth (which
may increase or decrease with every force).

s s s s

�
��

�
��

�
��

�
��

B
BB

B
BB

B
BB

B
BB

s

�
�

�
��

�
�
�

A
A
A

Q
Q
Q
QQ

T1 T2 T3 T4

x

a b c d
pop
=⇒

@
@@

@
@@

@
@@

s

s

s

s

�
��

�
��

�
��

�
��

B
BB

B
BB

B
BB

B
BB

T1

T2

T3

T4

a

b

c

d

Figure 4: Illustration of pop in terms of reference trees.

Recall that the pop operation on a tree with root x
and children T1 . . . Tm effectively deletes x and lazily
links T1 . . . Tm in the following pattern:

link(T1, link(T2, . . . , link(Tm−1, Tm) . . .))

To account for these m− 1 links, we assign a total of
m− 1 debits to the nodes that will become the roots
of each partial result. Specifically, the ith debit is
charged to the first occupied node of Ti. In addition,
every pop operation discharges the first three debits in
the tree (that is, those three debits whose nodes are
earliest in preorder). No other list operation either
creates or discharges debits.

Let dT (i) be the number of (undischarged) debits
on the ith occupied node of tree T , and let DT (i) =∑i

j=1
dT (j). DT (i) is called the cumulative debt of

node i and reflects all the debits that must be dis-
charged before the ith element can be accessed. In
addition, let DT be the total debt of all nodes in T . To
show that the force’s at the beginning of each pop, first,
and catenate require only constant amortized time, we
must prove that DT (1) = 0 (i.e., that all the lazy
links involving the first occupied node have been paid
for). To allow for a series of pop’s, each of which may
discharge only a constant number of debits, we also
require that DT (i) be linear in i. We satsify both of
these requirements by maintaining the following in-
variant, called the left-linear debt invariant:

DT (i) < i+ depthT (i)

where depthT (i) is the depth of the ith node in the
reference tree corresponding to T . The intuition for
this invariant is that we only manipulate the tree at
or near the root; nodes deep in the tree are somehow
carried along for free with their shallower ancestors.
Thus, we wish to reward greater depth by allowing
those nodes a greater cumulative debt.

650

function link(T1,T2) = /* make T2 last child of T1 */
force(T1);
let x = contents(T1);
let q = children(T1);
let q′ = Q.inject(T2,q);
return new node with contents x and children q′.

function force(T) = /* guarantee root is occupied */
if T is occupied then return;
let q = children(T);
let T1 = Q.first(q);
let q′ = Q.pop(q);
if Q.size(q) = 2 then

let T2 = Q.first(q′);
else /* Q.size(q) > 2 */

let T2 = new vacant node with children q′;
T := link(T1,T2); /* execute delayed link and memoize result */
return.

function makelist(x) =
return new node with contents x and no children.

function first(T) =
if T is empty then error;
force(T);
return contents(T).

function pop(T) =
if T is empty then error;
force(T);
let q = children(T);
if Q.size(q) = 0 then return empty list;
elsif Q.size(q) = 1 then return Q.first(q);
else return new vacant node with children q. /* set up lazy links */

function catenate(T1,T2) =
if T1 is empty then return T2;
elsif T2 is empty then return T1;
else return link(T1,T2).

Figure 3: Psuedocode for catenable lists. The functions Q.inject, Q.first, Q.pop, and Q.size operate on queues
rather than catenable lists.

651

In proving that catenate preserves the left-linear
debt invariant, we will also require that every non-
empty tree and subtree produced by the above list
operations satisfies the total debt invariant:

DT < |T |

where |T | denotes the number of occupied nodes in T .

Theorem 1 catenate and pop maintain both the left-
linear debt invariant and the total debt invariant.

Proof: (catenate) Assume T1 and T2 are non-empty,
and let T = catenate(T1, T2). Let n = |T1|. Note
that the index, depth, and cumulative debt of nodes
from T1 are unaffected by the catenation, so DT (i) =
DT1

(i) satisfies the left-linear debt invariant for i ≤ n.
However, nodes in T2 accumulate the total debt of T1

and increase in depth by one. Thus,

DT (n+ i) = DT1
+DT2

(i)
< n+DT2

(i)
< n+ i+ depthT2

(i)
< (n+ i) + depthT (n+ i)

Finally, DT = DT1
+DT2

< |T1|+ |T2| = |T |.

(pop) Let T ′ = pop(T). After discarding the root of
T , we combine the subtrees T1 . . . Tm, each of which
initially satisfies the total debt invariant. The subtrees
of T ′ (including T ′ itself) that are not subtrees of T
are each of the form

T ′

j = link(Tj , . . . , link(Tm−1, Tm) . . .)

(where, of course, the links are delayed). For instance,
in Figure 4, these are the subtrees rooted at a, b, and
c. Each such subtree is assigned m − j new debits.
However, each Tk contains ≤ |Tk| − 1 debits. Thus,

DT ′

j
= m− j +DTj

+ · · ·+DTm

≤ m− j + (|Tj| − 1) + · · ·+ (|Tm| − 1)
= |T ′

j| − 1
< |T ′

j|

Finally, we show that pop preserves the left-linear
debt invariant to within three debits. Suppose the
ith node of T appears in Tj. We know that DT (i) <
i + depthT (i), but consider how each of these three
quantities changes with the pop. i decreases by 1 since
the root of T is discarded. The depth of each node in
Tj increases by j − 2 (see Figure 4) while the cumula-
tive debt of each node in Tj increases by j (except for
nodes in Tm, whose cumulative debts only increase by

m− 1). Thus,

DT ′(i− 1) = DT (i) + j

< i+ depthT (i) + j

= i+ (depthT ′(i − 1)− (j − 2)) + j

= (i − 1) + depthT ′(i− 1) + 3

Using the three credits allocated to pop to discharge
the first three debits in the tree restores the invariant.
2

Theorem 1 establishes the constant amortized
bounds of pop, catenate, and first. Shewchuk [19] has
developed an alternative proof based on the potential
method of Sleator [21], using a potential function of
twice the number of critical nodes, where a critical
node is a vacant leftmost child of a vacant leftmost
child.

If desired, catenate and first (but not pop) can be
made to run in constant worst-case time by calling
force at the end of every pop, rather than at the begin-
ning of every operation. This guarantees that no root
is ever vacant. Alternatively, catenate can be made to
run in constant worst-case time by executing its single
link lazily, that is, by creating a new vacant node with
its two arguments as children.

6.2 Related Work

Driscoll, Sleator, and Tarjan [5] first studied the
problem of catenation for persistent lists. They rep-
resent catenable lists as n-ary trees with the elements
at the leaves. To keep the leftmost leaves near the
root, they use a restructuring operation known as pull
that removes the first grandchild of the root and reat-
taches it directly to the root. Unfortunately, catena-
tion breaks all useful invariants based on this restruc-
turing heuristic, so they are forced to develop quite a
bit of machinery to support catenation. The result-
ing data structure supports catenation in O(log log k)
worst-case time, where k is the number of list opera-
tions (note that k may be much smaller than n), and
all other operations in constant worst-case time.

Buchsbaum and Tarjan [3] use data-structural boot-
strapping to recursively decompose catenable deques
of size n into catenable deques of size O(log n). They
use the pull operation of Driscoll, Sleator, and Tar-
jan to keep the tree balanced (of depth O(log n)), and
then use the smaller deques to represent the leftmost
and rightmost paths of each subtree. This yields a
data structure that supports deletion of the first or
last element in O(log∗ k) worst-case time, and all other
operations in constant worst-case time.

Finally, Kaplan and Tarjan [12] recently discovered
an implementation of catenable lists based on the prin-

652

ciple of recursive slow-down. A catenable list is repre-
sented recursively as two (non-catenable) deques, to-
gether with a catenable list whose elements include
other catenable lists and (non-catenable) deques. One
deque represents the prefix of the list, the other the
suffix. The inner catenable list represents the middle
of the outer list. Since this representation is recursive,
the representation of the inner list itself contains an
inner list and so on. Operations on the outer list may
affect the inner lists, but recursive slow-down prevents
cascades of changes. This data structure supports all
operations in constant worst-case time.

In contrast, our data structure supports all oper-
ations in constant amortized time. The worst-case
bounds of Kaplan and Tarjan may be preferable in
some circumstances, such as real-time or parallel pro-
gramming, but if amortized bounds are acceptable,
then the simplicity of our data structure should be
appealing. The next challenge is to implement caten-
able deques supporting all operations in constant time.
Kaplan and Tarjan have successfully extended their
solution for lists to catenable deques [12], and our ap-
proach seems likely to yield a solution as well.

7 Conclusion

We have presented a framework for designing per-
sistent (in fact, purely functional) data structures with
good amortized efficiency. The key feature of our tech-
nique is the use of lazy evaluation to share the results
of expensive computations across multiple “futures”.
Amortization has been largely ignored in the design
of persistent data structures, perhaps because the role
of lazy evaluation was previously unappreciated. Our
technique should apply to any data structure for which
it is possible to predict an expensive computation far
enough in advance to set up the computation lazily
and then pay for it by the time it is needed. Incre-
mental functions play an important role in this pro-
cess, since they allow large computations to be de-
composed into smaller fragments, each of which can
be “purchased” separately.

As an example of our technique, we have described
an implementation of purely functional catenable lists
that support catenation and all other list primitives
in constant amortized time. There are many poten-
tial applications of this data structure, including the
implementation of full functional jumps [6] and sup-
port for the Bird-Meertens formalism [2, 13], in which
append (catenate) is often given preference over cons
(push). Other data structures that can be made per-

sistent using our technique include queues and de-
ques [17] and priority queues.

Acknowledgements

Thanks to Bob Tarjan for pointing out the con-
nection to path reversal. Thanks also to Jonathan
Shewchuk, Sasha Wood, and Mark Leone for their
comments and suggestions on an earlier draft of this
paper.

References

[1] Richard Bellman. Dynamic Programming.
Princeton University Press, 1957.

[2] Richard S. Bird. An introduction to the theory
of lists. In M. Broy, editor, Logic of Program-
ming and Calculi of Discrete Design, pages 5–42.
Springer-Verlag, 1987.

[3] Adam L. Buchsbaum and Robert E. Tarjan.
Confluently persistent deques via data structural
bootstrapping. In Proceedings of the Fourth An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 155–164, 1993.

[4] James R. Driscoll, Neil Sarnak, Daniel D. K.
Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and
System Sciences, 38(1):86–124, February 1989.

[5] James R. Driscoll, Daniel D. K. Sleator, and
Robert E. Tarjan. Fully persistent lists with
catenation. Journal of the ACM, 41(5):943–959,
September 1994.

[6] Matthias Felleisen, Mitchell Wand, Daniel P.
Friedman, and Bruce F. Duba. Abstract contin-
uations: a mathematical semantics for handling
full functional jumps. In Proceedings of the 1988
ACM Conference on Lisp and Functional Pro-
gramming, pages 52–62, 1988.

[7] Michael L. Fredman and Robert E. Tarjan. Fi-
bonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM,
34(3):596–615, July 1987.

[8] David Ginat, Daniel D. K. Sleator, and Robert E.
Tarjan. A tight amortized bound for path re-
versal. Information Processing Letters, 39(1):3–5,
April 1989.

653

[9] Robert Hood and Robert Melville. Real-time
queue operations in pure Lisp. Information Pro-
cessing Letters, 13(2):50–53, November 1981.

[10] John E. Hopcroft and Jeffrey D. Ullman. Set
merging algorithms. SIAM Journal on Comput-
ing, 2(4):294–303, December 1973.

[11] R. John Muir Hughes. A novel representation of
lists and its application to the function “reverse”.
Information Processing Letters, 22(3):141–144,
March 1986.

[12] Haim Kaplan and Robert E. Tarjan. Persistent
lists with catenation via recursive slow-down. In
Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing, pages 93–102, 1995.

[13] Lambert Meertens. Algorithmics — towards pro-
gramming as a mathematical activity. In Proceed-
ings of the CWI Symposium on Mathematics and
Computer Science, pages 289–334, 1986.

[14] Donald Michie. “Memo” functions and machine
learning. Nature, 218:19–22, April 1968.

[15] Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. The MIT Press,
Cambridge, Massachusetts, 1990.

[16] Eugene W. Myers. Efficient applicative data

types. In Conference Record of the Eleventh An-
nual ACM Symposium on Principles of Program-
ming Languages, pages 66–75, 1984.

[17] Chris Okasaki. Simple and efficient purely func-
tional queues and deques. Journal of Functional
Programming, October 1995. To appear.

[18] Rajeev Raman. Eliminating Amortization:
On Data Structures with Guaranteed Response
Times. PhD thesis, Department of Computer Sci-
ences, University of Rochester, 1992.

[19] Jonathan R. Shewchuk. Private communication,
April 1995.

[20] Daniel D. K. Sleator and Robert E. Tarjan. Self-
adjusting heaps. SIAM Journal on Computing,
15(1):52–69, February 1986.

[21] Robert E. Tarjan. Amortized computational com-
plexity. SIAM Journal on Algebraic and Discrete
Methods, 6(2):306–318, April 1985.

[22] Robert E. Tarjan and Jan van Leeuwen. Worst-
case analysis of set union algorithms. Journal of
the ACM, 31(2):245–281, April 1984.

[23] Christopher Van Wyk and Jeffrey Scott Vitter.
The complexity of hashing with lazy deletion. Al-
gorithmica, 1(1):17–29, 1986.

654

