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Abstract

Edison is a library of functional data structures implemented in Haskell. It supports three main families
of abstractions: sequences, collections (e.g., sets and priority queues), and associative collections (e.g.,
finite maps). This paper summarizes the design of Edison, with particular attention to how that design is
influenced by details of Haskell.

1 Introduction

There is a growing recognition that a useful set of libraries is at least as important to the acceptance of a
programming language as the design of the language itself. A library of fundamental data structures such as
queues, sets, and finite maps is particularly important in this regard. However, high-quality examples of such
libraries, such as the STL [14] in C++ or the the collection classes [3] in Smalltalk, are rare. Edison is a library
of efficient data structures suitable for implementation and use in functional programming languages. It is
named after Thomas Alva Edison and for the mnemonic value of EDiSon (Efficient Data Strucutres). The
current version of the library supports Haskell. Future versions of the library will also support Standard ML
and possibly Scheme.

Edison provides several families of abstractions, each with multiple implementations. The main abstractions
currently supported by Edison are

• sequences (e.g., stacks, queues, deques),

• collections (e.g., sets, bags, priority queues where the priority is the element), and

• associative collections (e.g., finite maps, priority queues where the priority and element are distinct).

In this paper, I summarize how each of these abstractions is implemented in Haskell, and I discuss how the
design of the language influenced the design of the library.

Edison is available through the World Wide Web at

http://www.cs.columbia.edu/~cdo/edison

or through the GHC/Hugs CVS repository. In its current state, Edison is mostly a framework. That is, I
provide signatures, but not yet a full range of implementations. I hope that Edison can become a community
effort, and I welcome anybody to submit new implementations of the Edison abstractions.

∗Much of this research was performed in the summer of 1998 at the University of Glasgow, with funds from the Scottish Higher

Education Development Council.



data Maybe2 a b = Just2 a b | Nothing2 deriving (Eq,Show)

data Maybe3 a b c = Just3 a b c | Nothing3 deriving (Eq,SHow)

class Eq a => Hash a where

hash :: a -> Int

-- forall x,y :: a. (x == y) implies (hash x == hash y)

class Hash a => UniqueHash a

-- no new methods, just a stronger invariant

-- forall x,y :: a. (x == y) iff (hash x == hash y)

class UniqueHash a => ReversibleHash a where

unhash :: Int -> a

-- forall x :: a. unhash (hash x) == x

Figure 1: The EdisonPrelude module.

module BreadthFirst where

import EdisonPrelude

import qualified SimpleQueue as Q

data Tree a = Empty | Node a (Tree a) (Tree a)

breadthFirst :: Tree a -> [a]

breadthFirst t = bfs (Q.single t)

where bfs q =

case Q.lview q of

Just2 (Node x l r) q’ -> x : bfs (Q.snoc (Q.snoc q’ l) r)

Just2 Empty q’ -> bfs q’

Nothing2 -> []

Figure 2: Sample program using Edison.

2 General Organization

Each family of abstractions is implemented as a class hierarchy and each data structure is implemented as a
Haskell module. For the operations in each class and module, I have attempted to choose names that are as
standard as possible. This means that operations for different abstractions frequently share the same name
(empty, null, size, etc.). It also means that in many cases I have reused names from the Prelude. Therefore,
Edison modules should nearly always be imported qualified. The one Edison module that is typically imported
unqualified is the EdisonPrelude, shown in Figure 1, which defines a few utility types in the Maybe family used
by every other Edison module, as well as a few classes related to hashing.

When importing Edison modules, I recommend renaming each module using the as keyword. See, for
example, the sample program in Figure 2, where the imported module SimpleQueue has been renamed locally as
Q. This both reduces the overhead of qualified names and makes substituting one module for another as painless
as possible. If I wanted to replace SimpleQueue with a fancier implementation such as HoodMelvilleQueue, I
could do so merely by modifying the import line. Such substitutions are further facilitated by the convention



that related data structures should use the same type name. For example, most implementations of sequences
define a type constructor named Seq.

The sample program in Figure 2 also illustrates another important point about Edison—although each
abstraction is defined in terms of type classes, all the operations on each data structure are also available
directly from the data structure’s module. If we wanted to access methods such as single through the type
class instead, we could change the line

import qualified SimpleQueue as Q

to

import qualified Sequence as Q -- import class

import SimpleQueue (Seq) -- import instance

and then use a type annotation somewhere inside the breadthFirst function to indicate that the intermediate
queues are of type Seq a. Note that, because I am selectively importing only the type constructor Seq from
SimpleQueue, I do not bother importing it qualified.

3 Sequences

The sequence abstraction is usually viewed as a hierarchy of ADTs including lists, queues, deques, catenable
lists, etc. However, such a hierarchy is based on efficiency rather than functionality. For example, a list supports
all the operations that a deque supports, even though some of the operations may be inefficient. Hence, in
Edison, all sequence data structures are defined as instances of the single Sequence class:

class (Functor s, MonadPlus s) => Sequence s

As expressed by the context, all sequences are also instances of Functor, Monad, and MonadPlus. In addition,
all sequences are expected to be instances of Eq and Show, although this is not enforceable in Haskell.1 Figure 3
summarizes all the methods on sequences.

Sequences are currently the most populated abstraction in Edison. There are six basic implementations of
sequences, including ordinary lists, join lists, simple queues [1], banker’s queues [9], random-access stacks [6],
random-access lists [7], Braun trees [4, 8], and binary random-access lists [9], plus two sequence adaptors, which
are representations of sequences parameterized by other representations of sequences. One adds an explicit
size field to an existing implementation of sequences and the other reverses the orientation of an existing
implementation of sequences so that adding an element to the left of the sequence actually adds the element
to the right of the underlying sequence.

4 Collections

The collection abstraction includes sets, bags, and priority queues (heaps). Collections are defined in Edison
as a set of eight classes, organized in the hierarchy shown in Figure 4. These classes make essential use of
multi-parameter type classes, as in [11]. All collections assume at least an equality relation on elements, and
many also assume an ordering relation. The use of multi-parameter type classes allows any particular instance
to assume further properties as necessary (such as hashability).

The hierarchy contains a root class, CollX, together with seven subclasses satisfying one or more of three
orthogonal sub-properties:

• Uniqueness. Each element in the collection is unique (i.e., no two elements in the collection are equal).
These subclasses, indicated by the name Set, represent sets rather than bags.

1Enforcing this condition would require being able to write constraints like ∀a.Eq a => Eq (s a) inside class contexts.



Sequence Methods

Constructors:

empty, single, cons, snoc, append, fromList, copy, tabulate

Destructors:

lview, lhead, ltail, rview, rhead, rtail

Observers:

null, size, toList

Concat and reverse:

concat, reverse, reverseOnto

Maps and folds:

map, concatMap, foldr, foldl, foldr1, foldl1, reducer, reducel, reduce1

Subsequences:

take, drop, splitAt, subseq

Predicate-based operations:

filter, partition, takeWhile, dropWhile, splitWhile

Index-based operations:

inBounds, lookup, lookupM, lookupWithDefault, update, adjust,
mapWithIndex, foldrWithIndex, foldlWithIndex

Zips and unzips:

zip, zip3, zipWith, zipWith3, unzip, unzip3, unzipWith, unzipWith3

Figure 3: Summary of methods for the Sequence class.



Eq a

Ord a

CollX c a

�������

OrdCollX c a

HHHHHHH

SetX c a

�������

HHHHHHH

OrdSetX c a

Coll c a

�������

OrdColl c a

HHHHHHH

Set c a

�������

HHHHHHH

OrdSet c a

CollX OrdCollX SetX OrdSetX

empty,insert deleteMin intersect no methods

union,delete unsafeInsertMin difference

null,size filterLT subset

member,count · · · subsetEq

· · ·

Coll OrdColl Set OrdSet

toSeq minElem insertWith no methods

lookup foldr,foldl unionWith

fold toOrdSeq intersectWith

filter · · · · · ·

· · ·

Figure 4: The collection class hierarchy, with typical methods for each class.



Collection Methods

Constructors:

CollX: empty, single, insert, insertSeq, union, unionSeq, fromSeq
OrdCollX: unsafeInsertMin, unsafeInsertMax, unsafeFromOrdSeq, unsafeAppend
Set: insertWith, insertSeqWith, unionl, unionr, unionWith, unionSeqWith, fromSeqWith

Destructors:

OrdColl: minView, minElem, maxView, maxElem

Deletions:

CollX: delete, deleteAll, deleteSeq
OrdCollX: deleteMin, deleteMax

Observers:

CollX: null, size, member, count
Coll: lookup, lookupM, lookupAll, lookupWithDefault, toSeq
OrdColl: toOrdSeq

Filters and partitions:

OrdCollX: filterLT, filterLE, filterGT, filterGE,
partitionLT GE, partitionLE GT, partitionLT GT

Coll: filter, partition

Set operations:

SetX: intersect, difference, subset, subsetEq
Set: intersectWith

Folds:

Coll: fold, fold1
OrdColl: foldr, foldl, foldr1, foldl1

Figure 5: Summary of methods for the collection classes.

• Ordering. The elements have a total ordering and it is possible to process the elements in non-decreasing
order. These subclasses, indicated by the Ord prefix, typically represent either priority queues (heaps) or
sets/bags implemented as binary search trees.

• Observability. An observable collection is one in which it is possible to view the elements in the collection.
The X suffix indicates lack of observability. This property is discussed in greater detail below.

Figure 5 summarizes all the methods on collections. Note that neither OrdSetX nor OrdSet add any new
methods, which is why there is no explicit dependency between these classes in the hierarchy. These classes
serve as mere abbreviations for the combinations of OrdCollX/SetX and OrdColl/Set, respectively.

As with sequences, the hierarchy of collections is determined by functionality rather than efficiency. For
example, the member function is included in the root class of the hierarchy even though it is inefficient for many
implementations, such as heaps.

Because collections encompass a wide range of abstractions, there is no single name that is suitable for all
collection type constructors. However, most modules implementing collections will define a type constructor
named either Bag, Set, or Heap.

Edison currently supports one implementation of sets (unbalanced binary search trees), four implementations
of heaps (leftist heaps [5], skew heaps [13], splay heaps [9], and lazy pairing heaps [9]), and one heap adaptor



that maintains the minimum element of a heap separate from the rest of the heap. This heap adaptor is
particularly useful in conjunction with splay heaps.

4.1 Observability

Note that the equality relation defined by the Eq class is not necessarily true equality. Very often it is merely an
equivalence relation, where equivalent values may be distinguishable by other means. For example, we might
consider two binary search trees to be equal if they contain the same elements, even if their shapes are different.

Because of this phenomenon, implementations of observable collections (i.e., collections where it is possible
to inspect the elements) are rather constrained. Such an implementation must retain the actual elements
that were inserted. For example, it is not possible in general to represent an observable bag as a finite map
from elements to counts, because even if we know that a given bag contains, say, three elements from some
equivalence class, we do not necessarily know which three.

On the other hand, implementations of non-observable collections have much greater freedom to choose
abstract representations of each equivalence class. For example, representing a bag as a finite map from
elements to counts works fine if we never need to know which representatives from an equivalence class are
actually present. As another example, consider the UniqueHash class defined in the Edison Prelude. If we know
that the hash function yields a unique integer for each equivalence class, then we can represent a collection
of hashable elements simply as a collection of integers. With such a representation, we can still do many
useful things like testing for membership—we just can’t support functions like fold or filter that require the
elements themselves, rather than the hashed values.2

4.2 Unsafe Operations

Ordered collections support a number of operations with names like unsafeInsertMin and unsafeFromOrdSeq.
These are important special cases with preconditions that are too expensive to check at runtime. For example,
unsafeFromOrdSeq converts a sorted sequence of elements into a collection. In contrast to fromSeq, which
converts an unsorted sequence into a collection, unsafeFromOrdSeq can be implemented particularly efficiently
for data structures like binary search trees. The behavior of these operations is undefined if the preconditions are
not satisfied, so the unsafe prefix is intended to remind the programmer that these operations are accompanied
by a proof obligation.

The one place where I have violated this convention is in the Set class, where there is a whole family of
operations with names like insertWith and unionWith. These functions take a combining function that is used
to resolve collisions. For example, when inserting an element into a set that already contains that element,
the combining function is called on the new and old elements to determine which element will remain in the
new set.3 The combining functions typically return one element or the other, but they can also combine the
elements in non-trivial ways. These combining functions are required to satisfy the precondition that, given
two equal elements, they return a third element that is equal to the other two.

5 Associative Collections

The associative-collection abstraction includes finite maps, finite relations, and priority queues where the prior-
ity is distinct from the element. Associative collections are defined in Edison as a set of eight classes, organized
in the hierarchy shown in Figure 6. Notice that this hierarchy mirrors the hierarchy for collections, but with
the addition of Functor as a superclass of every associative collection. Like collections, associative collections
depend heavily on multi-parameter type classes.

2In fact, we can even support fold and filter if the hashing function is reversible, but this is relatively uncommon.
3Such a combining function is useful only when nominally equal elements are distinguishable in other ways—that is, when the

“equality” relation is really an equivalence relation. However, this is extremely common.
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Figure 6: The associative-collection class hierarchy, with typical methods for each class.



The operations on associative collections are similar to the operations on collections. The differences arise
from having a separate key and element, rather than just an element. One significant implication of this
separation is that many of the methods move up in the hierarchy, because elements are always observable
for associative collections even though keys may not be. Figure 7 summarizes all the methods on associative
collections.

Edison currently supports two implementations of finite maps (association lists and Patricia trees [10]).
Because collections and associative collections are so similar, it is tempting to merge them into one class

hierarchy, either by defining collections to be associative collections whose elements are of the unit type or by
defining associative collections to be collections whose elements are pairs of type Association k a, where the
ordering on associations is inherited from the keys only. For example, Peyton Jones [11] follows this latter
approach. Edison rejects both approaches, however, because both carry unacceptable performance penalties.
The former requires extra space for the unnecessary unit values and the latter injects at least one extra level
of indirection into every key access. The implementor is free to define any particular implementation of a
data structure in one of these ways, trading a small performance penalty for reduced development costs, but
it would be wrong for the design of the library to mandate that every implementation of an abstraction pay
these penalties.

6 Testing

Each abstraction in Edison has an associated test suite implemented under QuickCheck [2]. To support both
this testing and any testing of applications built on top of Edison, every Edison data structure is defined to
be an instance of the Arbitrary class. This class is used by QuickCheck to generate random versions of each
data structure, which are then passed to the routines that check the desired invariants, such as

cons x xs == append (single x) xs

The QuickCheck test suite is a relatively new addition to Edison. Compared to the old test suite, I estimate
that the QuickCheck test suite took less that 25% of the effort to develop, and provides much better coverage as
well! I highly recommend using QuickCheck in any application with a relatively well-understood specification.

7 Commentary

There are many places where the design of Haskell has influenced the design of Edison in non-obvious ways. In
addition, there are several places where Edison runs up against limits in the design of Haskell.

7.1 Fixity

Because qualified infix symbols are fairly ugly, Edison avoids infix symbols as much as possible. For example,
the sequence catenation function is named append instead of ++.

7.2 Error handling

Because Haskell has no good way to recover from errors, Edison avoids signalling errors if there is any reasonable
alternative. For many functions, it is easy to avoid an error by returning the Maybe type (or something similar),
but sometimes, as with the head function on lists and the corresponding lhead function on sequences, this
approach is just too painful. For lhead of an empty sequence, there really is no choice but to signal an error,
but other times there is a reasonable alternative. For example, Edison defines both ltail of the empty sequence
and take of a negative argument to return the empty sequence even though the corresponding Prelude functions
would signal errors in both cases.



Associative-Collection Methods

Constructors:

AssocX: empty, single, insert, insertSeq, union, unionSeq, fromSeq
OrdAssocX: unsafeInsertMin, unsafeInsertMax, unsafeFromOrdSeq, unsafeAppend
FiniteMapX: insertWith, insertWithKey, insertSeqWith, insertSeqWithKey,

unionl, unionr, unionWith, unionSeqWith, fromSeqWith, fromSeqWithKey
FiniteMap: unionWithKey, unionSeqWithKey

Destructors:

OrdAssocX: minView, minElem, maxView, maxElem
OrdAssoc: minViewWithKey, minElemWithKey, maxViewWithKey, maxElemWithKey

Deletions:

AssocX: delete, deleteAll, deleteSeq
OrdAssocX: deleteMin, deleteMax

Observers:

AssocX: null, size, member, count, lookup, lookupM, lookupAll, lookupWithDefault, elements
Assoc: toSeq, keys
OrdAssoc: toOrdSeq

Modifiers:

AssocX: adjust, adjustAll

Maps and folds:

AssocX: map, fold, fold1
OrdAssocX: foldr, foldl, foldr1, foldl1
Assoc: mapWithKey, foldWithKey
OrdAssoc: foldrWithKey, foldlWithKey

Filters and partitions:

AssocX: filter, partition
OrdAssocX: filterLT, filterLE, filterGT, filterGE,

partitionLT GE, partitionLE GT, partitionLT GT

Assoc: filterWithKey, partitionWithKey

Set-like operations:

FiniteMapX: intersectWith, difference, subset, subsetEq
FiniteMap: intersectWithKey

Figure 7: Summary of methods for the associative-collection classes.



7.3 Map

It may be surprising that the collection hierarchy does not include a map method. In fact, Edison includes a
utility function

map :: (Coll cin a, CollX cout b) => (a -> b) -> (cin a -> cout b)

map f xs = fold (insert . f) empty xs

but this function is not a method, so there is no hope of substituting something more efficient for a particular
implementation of collections. But how could this operation be implemented more efficiently? For example, it
is tempting to implement map on a binary search tree by the usual map function for trees. However, besides
limiting map to the special case where cin and cout are identical, this implementation is incorrect. There is no
guarantee that f preserves the ordering of elements, so the result would not in general be a valid binary search
tree. Many Edison data structures can and do support a function unsafeMapMonotonic that assumes that f
preserves ordering, leaving this fact as a proof obligation for the user, but this function is not general enough
to deserve to be a method.

7.4 Defaults

Haskell supports default implementations of methods, but Edison makes almost no use of this language feature.
The difficulty is that there is very often more than one implementation that could play this role. For example,
consider the insertSeq method for inserting a sequence of elements into a collection. There are at least two
equally good “default” implementations of this method: the first inserts each element of the sequence into the
collection, and the second converts the sequence into a collection and then unions this new collection with the
old one. Arbitrarily designating one of these implementations as the default would simply lead to performance
bugs in which the implementor forgets to overide the default method, thinking that the other implementation
has been chosen as the default.

The solution in Edison is to provide, for each family of abstractions, a separate module containing all these
myriad default implementations, with names like insertSeqUsingFoldr and insertSeqUsingUnion. Then,
each data structure module contains a set of definitions of the form

insertSeq = insertSeqUsingFoldr

for those methods for which a default implementation is appropriate.

7.5 Limitations on Contexts

Haskell’s restrictions on the form of type contexts occasionally prove too restrictive. For example, the root of
the associative-collection class hierarchy is defined as

class (Eq k, Functor (m k)) => AssocX m k

but the (m k) in the Functor context is not allowed — at least, not in Haskell 98. An unsatisfying workaround
is to simply delete the Functor part of the context and add a map method to AssocX.

Similarly, it would be useful to be able to define collections based on hashing, as in

newtype HashColl c a = H (c Int)

instance (UniqueHash a, CollX c Int) => CollX (HashColl c) a where

single = single . hash

...

but the Int in the CollX c Int context is not allowed.
For further discussion of Haskell’s limitations on contexts, see [12].



8 Final Words

Haskell programmers, indeed functional programmers in general, too often reach for lists when an ADT would
be more appropriate. Without Edison or some similar library, I fear this trend will continue indefinitely.

A library like Edison will only be successful if it is embraced by the community. I welcome community
involvement at every level from design to implementation. I am especially eager for user feedback, and I repeat
my earlier invitation for anybody to submit new implementations of the Edison abstractions.
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