Techniques for Embedding Postfix Languages in Haskell

Chris Okasaki
United States Military Academy*
West Point, New York

Christopher.Okasaki@usma.edu

Abstract

One popular use for Haskell in recent years has been as admest |

guage for domain-specific embedded languages. But how @n on

embed a postfix language in Haskell, given that Haskell onpyt s
ports prefix and infix syntax? This paper describes seved su
embeddings for increasingly complex postfix languages.

Categories and Subject Descriptors

D.1.1 [Programming Techniqueg: Applicative (Functional) Pro-
gramming

General Terms

Languages

Keywords

Postfix notation, domain-specific embedded languages,diask

1 Introduction

Here is a programming puzzle. Find Haskell definitionsdegin,
push, add, andend such that the RPN-like expressions

begin push 5 push 6 add end
and
begin push 5 push 6 push 7 add add end

evaluate to 11 and 18 respectively.

Besides being a fun exercise, this puzzle also demonsttiatts
Haskell is capable of simulating postfix syntax using onlgfixr

function application. But how far can we push this? Can we use

these techniques to embed full-blown postfix languagesHikgh
or Postscript in Haskell? This paper shows that we can.

* The views expressed in this article are those of the author

and do not reflect the official policy or position of the Unitgtates
Military Academy, the Department of the Army, the Departingi
Defense, or the U.S. Government.

This paper is authored by an employee of the U.S. Governnrehtsain the public
domain.

Haskell’02,0ctober 3, 2002, Pittsburgh, Pennsylvania, USA.
1-58113-605-6/02/0010

105

This result further strengthens the position of Haskell s t
host language of choice for domain-specific embedded laagua
(DSELSs). In recent years, hordes of DSELs have emergedubat s
cessfully employ Haskell as a host language, in such divensas
as animation [4], robotics [11], music composition [6],ctiit de-
sign [2], and parsing [7]. However, most of the current DSEirs
Haskell have been designed from scratch, and the desigaees h
carefully tailored the syntax of each to be compatible witiskell.
By showing how to simulate postfix syntax in Haskell, we ofen t
door to embedding existing postfix DSLs without butcheringirt
“look and feel”.

Section 2 describes a solution to the puzzle, introduciegbémsic
techniques for supporting postfix syntax. Sections 3 antrddoce
a representation of heterogeneous stacks as nested paiaslapt
the puzzle solution to use these stacks. Section 5 showsdew t
tend the basic postfix language to support procedural alisina
control constructs, and imperative features. Section @ries

how to define recursive postfix procedures. Section 7 coeslud

Our techniques are presented in the context of Haskell, lautym
other functional languages would work as well. Polymorphand
higher-order functions play crucial roles in our technigjugut lazy
evaluation and type classes do not.

2 A Solution to the Puzzle

Figure 1, on the next page, shows a basic solution to the @uzzI
based on the flattening combinators of Okasaki f10f threads a
stack of type[Int] through the computation, beginning with the
empty stack. Each intermediate command takes the curiaek, st
performs some action on it, and passes the resulting stalo& text
command. The key is that each command takes the next command
as an argument.

The types of the four commands are

begin :: ([Int] -> a) -> a
push [Int] -> Int -> ([Int] -> a) > a
add [Int] > ([Int] -> a) > a
end [Int] -> Int

Notice that the type of every command exceggin starts with
[Int] —> ...

and the type of every command except finishes with

IMayer Goldberg invented a similar set of combinators, but
never published them.

begin k = k []
push s x k = k (x:s)
add (x:y:s) k = k (y+x :
end [x] = x
Figure 1. A solution to the puzzle.

s)

. => ([Int] -> a) > a

In other words, every command excepigin takes the current
stack as its first argument, and every command exegpttakes
the next command as its last argument. The last action ofyever
non-terminal command is to pass the current stack to thecoemt
mand.

The type([Int] -> a) -> aand the treatment of the “next com-
mand” screamgontinuations to anyone familiar with the con-
cept. However, continuations typically represent the césthe
computation, and these continuations represent only thenext
command. Thus, our continuations are actughytial continua-
tions[8]. To see how these partial continuations work, it is hellpf
to step through the evaluation of a sample expression.

begin push 5 push 6 add end
push [] 5 push 6 add end
push [6] 6 add end

add [6,5] end

end [11]

11

L4 ey

Notice that polymorphism plays a crucial role here. For gxam
in the expression

begin push 5 push 6 add end
the secongush is used at type

[Int] -> Int
-> ([Int] -> ([Int] -> Int) -> Int)
-> ([Int] -> Int) -> Int

and the firspush is used at type
[Int] -> Int

-> ([Int] —>
->

Int
([Int] -> ([Int] -> Int) -> Int)

=> ([Int] -> Int) -> Int)
-> Int
-> ([Int] -> ([Int] -> Int) -> Int)
-> ([Int] -> Int) -> Int

This combination of polymorphism and continuations to sl
functions that take greater and greater numbers of argusiser@m-
iniscent of the functional unparsers of Danvy [3].

3 Heterogeneous Stacks

Integer lists are a poor representation for the internalkstaf a
postfix language. They suffer from two major deficienciegstri

we usually want an embedded language to be able to manipulate 544 - :

more than just integers. Indeed, we would prefer to havesace
the full gamut of Haskell types. Second, we would like theetyp
checker to catch errors related to the size of the stack, asiclall-
ing add with only a single integer on the stack or ending with two
or more values on the stack.

106

module Stack where

data Empty = Empty -- the empty stack

push :: a -> s -> (s,a)

pop (s,a) -> s

dup (s,a) > ((s,a),a)

exch ((s,a),b) -> ((s,b),a) -- swap

add ((s,Int),Int) -> (s,Int)

sub ((s,Int),Int) -> (s,Int) -- subtract
mul ((s,Int),Int) -> (s,Int) -- multiply
eq ((s,Int),Int) -> (s,Bool) -- equals
1t ((s,Int),Int) -> (s,Bool) -- less than
nil s > (s,[al)

cons ((s,a),[al) -> (s,[al)

only (Empty,a) -> a

smap (a ->b) -> (s,a) > (s,b)

smap2 :: (a -> b -> ¢c) -> ((s,a),b) -> (s,c)

Figure 2. Signature for a module of heterogeneous stacks. Eh
implementations are entirely straightforward given the types.

Taking both of these issues into account, we choose to imgiem
stacks as nested pairs. For example,

(((Empty,1),True),"hello")
is a stack of size 3, with type
(((Empty,Int),Bool),String)

The Empty value and type constructors are defined in Figure 2,
along with a number of utility functions on stacks that wil bsed
throughout the rest of the paper. Note that these stacks tgrtive
right, which is backward from the usual treatment in funcéiblan-
guages but is consistent with stack diagrams in postfix lagesi
such as Forth and Postscript.

The types of stacks now encode their exact size and layout. Fo
example, the type of thenly function from Figure 2

only :: (Empty,a) -> a

now guarantees that it will only be called on stacks contajrex-
actly one element. Most operations, however, do not needrio c
strain the entire stack, merely the top few elements. Such co
straints are elegantly captured as polymorphic types. ¥amele,
the type ofadd

add :: ((s,Int),Int) -> (s,Int)

guarantees that the top two elements of the input stack antbfh
element of the output stack are all integers.

In a real application, we would probably gieéd the more general
type

Num n => ((s,n),n) -> (s,n)

but type classes have no direct bearing on the use of postitasy
so we will eschew these more complex types.

The primary disadvantage of using nested pairs insteadssf is

that it becomes more difficult to handle situations in whianying
numbers of items might be on the stack. However, such sitosti
can usually be resolved by allowing one or more elementsef th
stack to themselves be lists. It is just as easy to maniplitiseon
the stack as it is to manipulate integers on the stack. Fanpba
Figure 2 contains the list operationsl andcons:

nil :: s -> (s,[al)
cons :: ((s,a),[a]) -> (s,[al)

4 The Postfix Transformation

Given the stack operations in Figure 2, we can express theaudd
5+6as

only (add (push 6 (push 5 Empty)))

Obviously, this expression is not written in postfix notatidut
we can simulate postfix notation by defining the symbals left-
associative reverse function application (ixe# £ = £ x). Then
we can rewrite the above expression as

Empty # push 5 # push 6 # add # only

To abstract away from the details of the stack representatie
define two helper commandegin andend

begin = Empty
end = only

so that we can rewrite the addition as
begin # push 5 # push 6 # add # end

If we want to use postfix notation directly, without the infixsym-
bols, we can adapt the combinators from Section 2 to use 8tedie
pair representation of stacks. However, rather than dangdivid-
ually, we define a few general functions to convert ordindagls
operations into postfix stack operations, which we will caiin-
mands. The type of a typical postfix command is

type Cmd s s’ = forall a. s -> (s’ -> a) -> a

where the command takes a stack of typend produces a stack of
types’. Theforall indicates that every command is polymorphic
in the result type of th@ext command. Theforall construct is
not officially part of Haskell, but it is supported by GHC. Wauid
get by without it, but many of the types would be messier.

To convert an ordinary stack operation into postfix form, e the
functionpost:

post :: (s -> s’) > Cmd s s’
post £ s = next (f s)

where
next :: s -> (s -> a) > a

next s k =k s
Now we can define postfix stack operations such as

add =
dup

post Stack.add
post Stack.dup

Some operations, such gssh, take an argument directly from the
instruction stream rather than from the stack. We implensenh

107

operations in a similar fashion:

type Cmdl x s s’ =

forall a. s -=> x -> (s’ -> a) > a
postl :: (x => s -> s’) -> Cmdl x s s’
postl £ s x = next (f x s)

push = postl Stack.push
apply = postl Stack.smap

Thebegin andend operations are simply

begin :: (Empty -> a) -> a
begin = next Empty
end :: (Empty,a) -> a

end = Stack.only

5 Extending the Postfix Language

If you want to use postfix notation for more than simple arigio
expressions, you quickly discover that you need more laggfea-
tures. We gradually extend our basic postfix language witicgr
dural abstraction, control constructs, and imperativeuies.

5.1 Procedural Abstraction

We would like to be able to define new commands from old ones
using postfix syntax, as in

incr = begindef push 1 add enddef

wherebegindef andenddef are new commands. We could then
write programs like

begin push 5 incr incr end

But what stack shouldegindef pass topush in the definition of
incr? We don't yet have our hands on an appropriate stack—in
fact, there isn’t one such stack sintecr is called twice. Instead,
we needincr to somehow take the stack on which it will oper-
ate. To make this work, we change all postfix commands to pass
around functions from stacks to stacks instead of plairkstathis
function is the composition of all the operations from thestne-
centbegin or begindef to the current point. When we hit tkad
command, the function is the composition of all the operstim

the entire postfix program, and we run the program by applifieg
function toEmpty.

We change the types of postfix commands to

type Cmd s s’ = forall sO a.
(sO => s) -> ((s0 -> s’) -> a) -> a

The post function then composes the new function with the old
one rather than applying the function to a stack.

(s => s’) -> Cmd s s’
next (f . ss)

post ::
post f ss =

The definitions of the basic postfix commands remain

add
dup

post Stack.add
post Stack.dup

Cmd1 andpost1 are redefined similarly, and are again used to im-
plementpush.

type Cmdl x s s’ = forall sO a.
(sO => s8) > x => ((sO -> 8’) > a) > a

postl :: (x -> s -> 8’) -> Cmdl x s s’
postl f ss x = next (f x . ss)

push = postl Stack.push
Thebegin andend commands become

begin :: ((Empty -> Empty) -> a) -> a
begin = next id

end :: (Empty -> (Empty,a)) -> a
end ss = Stack.only (ss Empty)

Revisiting the example reduction sequence from Sectiorehaw
get

begin push 5 push 6 add end

= push id 5 push 6 add end

= push (S.push 5 . id) 6 add end

= add (S.push 6 . S.push 5 . id) end

= end (S.add . S.push 6 . S.push 5 . id)

= S.only ((S.add . S.push 6 . S.push 5 . id) Empty)
= S.only (Empty,11)

= 11

where thestack module is abbreviated &s

In this new setup, theegindef andenddef commands turn out to
be surprisingly simple.

begindef :: ((s -> s) -> a) -> a
begindef = next id

enddef :: (s -> s’) -> Cmd s s’
enddef = post

Thebegindef command is just likegin, but with a more general
type, and theenddef command turns out to be identical post!
Now the definition

incr = begindef push 1 add enddef

has the desired typénd (s,Int) (s,Int).

5.2 Basic Control Constructs

The next thing we want to add to the embedded language isatontr
structures. We will describe conditionals in detail, butizas fla-
vors of loops can be implemented in the same fashion. Fodh an
Postscript take significantly different approaches to orgtruc-
tures. We will follow the style of Forth, because it leads toren
interesting implementations.

In Forth, a conditional is written

...condition... IF
...then-part... ELSE
...else-part... THEN

The reason th&LSE and THEN keywords are reversed is that the

108

ELSE is optional, scTHEN marks the end of th&F. In Haskell, we
will avoid this peculiarity by making both branches mandgtand
write

...condition... if_
...then-part... then_
...else-part... else_

For example, the following code would implement the absslut
value function:

absval =
begindef
dup push 0 1t if_ -- is the # < 07
push O exch sub then_ -- negate the #
else_ -- do nothing
enddef

Notice that, although thelse_ command is mandatory, the code
part between thehen_ and theelse_ may be empty.

To implement control structures in this style, we extendaticom-
mands to pass around a control stack along with the staskatde
function. Most commands ignore the control stack. We reddfip
Cmd type as

type Cmd s s’ = forall sO c a.
(s0 -> s,c) > ((s0 -> 8’,c) -> a) -> a

Thenpost becomes

post :: (s -> s’) -> Cmd s s’
post £ (ss,c) = next (f . ss,c)

while the standard stack commands remain

add = post Stack.add
dup = post Stack.dup

Cmd1, post1, andpush are redefined similarly

type Cmdl x s s’ = forall sO c a.
(s0 -> s,c) > x => ((s0 -> 8’,c) -> a) -> a

postl :: (x -> s -> 8’) -> Cmdl x s s’
postl f (ss,c) x = next (f x . ss,c)

push = postl Stack.push

Control operators likef_, then_, andelse_ pass control informa-
tion around on the control stack. In particulaf, andthen_ store
stack-to-stack functions on the control stack, ahde_ takes these
functions from the control stack and composes them aptsbyi
We represent control stacks using the following types:

data BEGIN = BEGIN -- the empty control stack
data IF sO s ¢ = IF (sO -> (s,Bool)) c
data IFTHEN sO s s’ ¢ =

IFTHEN (s0 -> (s,Bool)) (s -> s’) ¢

Then the control operators are defined as
if_ :: (sO -> (s,Bool),c) ->

((s -=> s,IF s0 s c) -> a) > a
if_ (ss,c) = next (id, IF ss c)

then_ :: (s -> s8’,IF 80 s ¢c) —>
((s => s,IFTHEN sO0 s s’ ¢c) -> a) -> a
then_ (ssThen, IF ssIf c) =

next (id,IFTHEN ssIf ssThen c)

(s -> s’,IFTHEN sO s s’ c) ->
((s0 -> 8’,c) > a) -> a
else_ (ssElse, IFTHEN ssIf ssThen c) =

next (ssIfThenElse,c)
where ssIfThenElse sO =
where (s,cond) =
ssTaken =

else_ ::

ssTaken s

ssIf sO

if cond then ssThen
else ssElse

The remainingbegin/end commands all assume that the control

stack is empty.
begin :: ((Empty -> Empty,BEGIN) -> a) -> a
begin = next (id,BEGIN)
end :: (Empty -> (Empty,a),BEGIN) -> a

end (ss,BEGIN) = Stack.only (ss Empty)

begindef :: ((s -> s,BEGIN) -> a) -> a
begindef = next (id,BEGIN)
enddef :: (s -> s’,BEGIN) -> Cmd s s’

enddef (ss,BEGIN) = post ss

One interesting feature of this design is that syntactistraimts on
conditionals are enforced by the typechecker rather thapainser.
For example, the following malformed expression

begin push True if_ push 5 then_ push 6 then_ end

would generate a type error, not a syntax error.

5.3 Separable Control Constructs

The types ofbegindef andenddef guarantee that user-defined
procedures have no effect on the control stack. In other sydha
multiple parts of a control construct must always appeaettogy.
However, there are times when it is useful to spread the péis
control construct across several user-defined procedD@gag so
allows the user to create customized control constructs.

For example, suppose we want a conditional comntandhat ter-
minates anif_ right after the then-part, doing nothing if the condi-
tion is false. We could then rewritébsval as

absval =
begindef
dup push 0 1t if_
push O exch sub fi_
enddef

-- is the # < 07
-- negate the #

Rather than definingi_ from scratch, we would like the user to be
able to write
fi_ = begindef then_ else_ enddef

In implementing this, we run into the same problem we encoun-
tered in Section 5.1. Back then, we didn’t have our hands en th
right data stack at the time of thegindef. Now, we don't have
our hands on the right control stack. The solution is agaipates
around functions from stacks to stacks instead of just stalolt

109

module IntState where
newtype M a = M (Int -> (a,Int))

instance Monad M where
return x = M $ \n -> (x,n)
Mf>»=k=M$\n->1let (x,n’) =fn
Mg=kx
in g n’

instance Functor M where

fmap f m = m >>= \x -> return (f x)
run it Ma->a
mread :: M Int
mwrite :: Int -> M ()
run (M f) = fst (f 0)
mread = M $ \n -> (n,n)
mwrite n = M $ _ -> (O,n)

Figure 4. An integer state monad.

now with control stacks instead of data stacks. Howevernew
functions must also pass around the data stack-to-stacitidas
developed earlier. Altogether, the type being passed drdngn
tween commands now has the form

(sO -> s1,c0) -> (s2 -> s3,cl)

The details are shown in Figure 3, on the next page. Note higat t
definitions of the control stack typeBEGIN, IF, IFTHEN) do not
change.

5.4 Imperative Features

Many postfix languages support imperative features suchsigre
ment or 10. These features are typically implemented in Ekhsis
monads, and we will follow this tradition. Any of the previoim-
plementations can be extended with monadic operationdsioyp
replacing every occurrence of a stack with a monadic contiputa
producing a stack. For example, thed type from Section 5.1

type Cmd s s’ = forall sO a.
(sO => s) -> ((s0 -> 8’) -> a) -> a

becomes

type Cmd s s’ = forall sO a.
MsO->Ms) > (MsO->Ms’) ->a) ->a

whereM is the monad in question.

We illustrate by extending the core language of Section 5th w
operations that read and write an integer state. The unidgriyate

monad is shown in Figure 4. Figure 5 shows the changes to the

major postfix commands.

6 Recursion

Now that we can define procedures and conditionals, it israktu
to want to use recursion. But doing so turns out to be supligin
difficult, in much the same way that recursion is difficult totbine
with monads [5].

As an example, suppose we wish to write the usual recursite-fa

type Cmd s s’ = forall ssc sO c a. (ssc -> (s0 -> s,c)) -> ((ssc -> (sO -> s’,c)) > a) -> a

post :: (s -> s’) -> Cmd s s’
post f sscssc = next (extendSS f sscssc)

extendSS :: (s > s’) -> (ssc -> (s0 -> s,c)) —> (ssc -> (s0 -> s’,c))
extendSS f sscssc ssc = (f . ss,c)
where (ss,c) = sscssc ssc

add = post Stack.add

dup = post Stack.dup
type Cmdl x s s’ = forall ssc sO c a. (ssc -> (sO -> s,c)) -> x -> ((ssc -> (sO -> s’,¢c)) -> a) -> a
postl :: (x -> s -> s’) -> Cmdl x s s’

postl f sscssc x = next (extendSS (f x) sscssc)

push = postl Stack.push

begin :: (((Empty -> Empty,BEGIN) -> (Empty -> Empty,BEGIN)) -> a) -> a
begin = next id

end :: ((Empty -> Empty,BEGIN) -> (Empty -> (Empty,answer),BEGIN)) -> answer
end sscssc = Stack.only (ss Empty)

where (ss,BEGIN) = sscssc (id,BEGIN)

begindef :: ((ssc -> ssc) -> a) > a
begindef = next id

enddef :: (ssc’ -> ssc’’) -> (ssc -> ssc’) -> ((ssc -> ssc’’) -> a) -> a

enddef sscssc sscssc’ = next (sscssc . sscssc’)

if_ :: (ssc > (s -> (s’,Bool),c)) -> ((ssc -> (s’ -> s’,IF s s’ c)) -> a) —> a

then_ :: (ssc -> (8’ -> s8’’,IF s 8’ ¢)) -> ((ssc -> (8’ -> s’ ,IFTHEN s s’ s’’ ¢c)) -> a) -> a
else_ :: (ssc -=> (s’ -> s’?,IFTHEN s s’ s’’ ¢c)) -> ((ssc -> (s -> s’’,c)) -> a) -> a

if_ sscssc = next sscsscIlIf
where sscsscIf ssc = (id,IF ss c)
where (ss,c) = sscssc ssc

then_ sscssc = next sscsscThen
where sscsscThen ssc = (id,IFTHEN ssIf ssThen c)
where (ssThen,IF ssIf c) = sscssc ssc

else_ sscssc = next sscsscElse
where sscsscElse ssc = (ss,c)
where (ssElse,IFTHEN ssIf ssThen c) = sscssc ssc
ss s = ssTaken s’
where (s’,cond) = ssIf s
ssTaken = if cond then ssThen else ssElse
Figure 3. The details of implementing separable control costructs.

110

type Cmd s s’ = forall sO a. (M sO ->Ms) -> ((MsO ->Ms’) ->a) ->a

post :: (s -> s’) -> Cmd s s’
post f ss = next (fmap f . ss)

add
dup

post Stack.add
post Stack.dup

type Cmdl x s s’ = forall sO a. (M sO ->Ms) ->x -> ((MsO->Ms’) ->a) ->a

postl :: (x -> s -> s’) -> Cmdl x s 8’
postl f ss x = next (fmap (f x) . ss)

push = postl Stack.push
begin :: ((M Empty -> M Empty) -> a) -> a
begin = next id

end :: (M Empty -> M (Empty,a)) -> a
end ss = Stack.only (run (ss (return Empty)))

begindef :: (M s -> M s) -> a) > a
begindef = next id

enddef :: (M s -=> M s’) -> Cmd s s’

enddef ss ss’ = next (ss . ss’)
mread :: Cmd s (s,Int)
mwrite :: Cmd (s,Int) s

-- The code for mread and mwrite in the printed proceedings was incorrect.

-- These are the corrected wversions.

mread ss = next $§ (\m -> do {s <- m; n <- IntState.mread; return (s,n)}) . ss
mwrite ss = next $ (\m -> do {(s,n) <- m; IntState.mwrite n; return s}) . ss

Figure 5. Implementing monadic postfix commands.

111

rial function. We would like to be able to write

fact = begindef
dup push 0 eq if_
pop push 1 then_
dup push 1 sub fact mul else_
enddef

but this fails to typecheck. In particular, it fails the ocswcheck
because it needs polymorphic recursion—the infart is called
with one more integer on the stack than the oditert. We can fix
this by adding the type signature

fact :: Cmd (s,Int) (s,Int)

Now the program typechecks, but when we try to use it, we im-
mediately fall into a blackhole. In particular, the outerct cannot
be evaluated without evaluating the indext. A moment’s reflec-
tion reveals that every command is strict in the followingoand,

so what we need is a way to delay commands that we wish to call

recursively. We add a newall command for this purpose, and
write

fact = begindef
dup push 0 eq if_
pop push 1 then_
dup push 1 sub call fact mul else_
enddef

Like push, the call command takes its main argument from the
instruction stream rather than the stack. Assuming we ang tise
types from Section 5.2al1 is defined as

call :: Cmdl (Cmd s s’) s s’

call (ss,c) cmd = next (cmd (id,BEGIN) fst . ss,c)

Notice that the expression
cmd (id,BEGIN) fst

converts a command of tymmd s s’ to a function of types ->
s’. In other words, it is essentially the inverse of fhat function.

Unfortunately, we now trip over limitations in GHC's treagnt of

the foralls hidden inside&md andCmd1, which forbid this kind

of nesting? To get around these limitations, we expand the type of
callto

call :: Cmdl ((s -> s,BEGIN) ->

((s -> s’,BEGIN) -> (s->s’)) ->
(s => 8%))
s s’

We can finally run
begin push 5 fact end

to get the answet20.

7 Conclusions

Other researchers have considered the relationship betpaestfix
languages and functional languages. For example, theypfured-
tional language Joy [12] uses postfix syntax and celebreséss to

2Never bet against the GHC folks! Shortly after this paper
was written, they released GHC 5.04, which does supporedest
foralls.

112

Forth. Linear Lisp [1] uses ordinary Lisp syntax but is impknted

as a Forth-like stack machine. Koopman and Lee [9] implement
combinator graph reduction using a Forth-inspired thrdadeer-
pretive engine. However, this paper is the first to serioushsider
embedding a postfix language in a language like Haskelldimgjl

on our previous work on flattening combinators [10], whicloal
arbitrary combinator expressions to be written withouepéneses.

We have addressed the major theoretical concerns of suctnan e
bedding, but several practical concerns remain. First,types

in these kinds of programs are huge, frequently making gmper
messages unreadable. Second, the combination of hugeagdes
functions with dozens of arguments make compilation slow- T
day’s compilers do not expect such large arities and appeir i
corporate algorithms that are quadratic (or worse!) in thelper

of arguments. For example, the factorial function in SecBases
begindef with 18 arguments and makes GHC noticeably sluggish.
The recursive Fibonacci function

fib :: Cmd (s,Int) (s,Int)
fib = begindef
dup push 2 1t if_
pop push 1 then_
dup push 1 sub call fib
exch push 2 sub call fib add else_
enddef

usesbegindef with 24 arguments, and crashes the compiler after
a long wait.

8 References

[1] Henry G. Baker. Linear logic and permutation stacktse-th
Forth shall be first.Computer Architecture News, 22(1):34—
43, March 1994.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnarn. Sing
Lava: Hardware design in Haskell. &CM S GPLAN Inter-
national Conference on Functional Programming, pages 174—
184, September 1998.

[3] Olivier Danvy. Functional unparsinglournal of Functional
Programming, 8(6):621-625, November 1998.

[4] Conal Elliott and Paul Hudak. Functional reactive arfiio@
In ACM SIGPLAN International Conference on Functional
Programming, pages 263—-273, June 1997.

(2]

[5] Levent Erkdk and John Launchbury. Recursive monadidbi
ings. INACM S GPLAN International Conference on Func-

tional Programming, pages 174-185, September 2000.

Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong.
Haskore music notation - an algebra of musidournal of
Functional Programming, 6(3):465—-483, May 1996.

[7] Graham Hutton. Higher-order functions for parsirigurnal
of Functional Programming, 2(3):323—-343, July 1992.

[8] Gregory F. Johnson. GL—a denotational testbed withioent
uations and partial continuations as first-class objentSyr
posium on Interpreters and Interpretive Techniques, pages
165-176, June 1987.

Philip Koopman and Peter Lee. A fresh look at combinator
graph reduction. IACM S GPLAN Conference on Program-
ming Language Design and Implementation, pages 110-119,
June 1989.

[10] Chris Okasaki.

[6]

9]

Flattening combinators: Surviving hvaitit

parenthesesJournal of Functional Programming, 2002. To
appear.

[11] John Peterson, Paul Hudak, and Conal Elliott. Lambda in
motion: Controlling robots with Haskell. IBractical Aspects
of Declarative Languages, pages 91-105, January 1999.

[12] Manfred von Thun. Joy: Forth’s functional cousin. Haro-
Forth, 2001.

113

