
Techniques for Embedding Postfix Languages in Haskell

Chris Okasaki
United States Military Academy∗

West Point, New York

Christopher.Okasaki@usma.edu

Abstract

One popular use for Haskell in recent years has been as a host lan-
guage for domain-specific embedded languages. But how can one
embed a postfix language in Haskell, given that Haskell only sup-
ports prefix and infix syntax? This paper describes several such
embeddings for increasingly complex postfix languages.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming

General Terms

Languages

Keywords

Postfix notation, domain-specific embedded languages, Haskell

1 Introduction

Here is a programming puzzle. Find Haskell definitions forbegin,
push, add, andend such that the RPN-like expressions

begin push 5 push 6 add end

and

begin push 5 push 6 push 7 add add end

evaluate to 11 and 18 respectively.

Besides being a fun exercise, this puzzle also demonstratesthat
Haskell is capable of simulating postfix syntax using only prefix
function application. But how far can we push this? Can we use
these techniques to embed full-blown postfix languages likeForth
or Postscript in Haskell? This paper shows that we can.

∗ The views expressed in this article are those of the author
and do not reflect the official policy or position of the UnitedStates
Military Academy, the Department of the Army, the Department of
Defense, or the U.S. Government.

This paper is authored by an employee of the U.S. Government and is in the public
domain.
Haskell’02,October 3, 2002, Pittsburgh, Pennsylvania, USA.
1-58113-605-6/02/0010

This result further strengthens the position of Haskell as the
host language of choice for domain-specific embedded languages
(DSELs). In recent years, hordes of DSELs have emerged that suc-
cessfully employ Haskell as a host language, in such diverseareas
as animation [4], robotics [11], music composition [6], circuit de-
sign [2], and parsing [7]. However, most of the current DSELsfor
Haskell have been designed from scratch, and the designers have
carefully tailored the syntax of each to be compatible with Haskell.
By showing how to simulate postfix syntax in Haskell, we open the
door to embedding existing postfix DSLs without butchering their
“look and feel”.

Section 2 describes a solution to the puzzle, introducing the basic
techniques for supporting postfix syntax. Sections 3 and 4 introduce
a representation of heterogeneous stacks as nested pairs and adapt
the puzzle solution to use these stacks. Section 5 shows how to ex-
tend the basic postfix language to support procedural abstraction,
control constructs, and imperative features. Section 6 describes
how to define recursive postfix procedures. Section 7 concludes.

Our techniques are presented in the context of Haskell, but many
other functional languages would work as well. Polymorphism and
higher-order functions play crucial roles in our techniques, but lazy
evaluation and type classes do not.

2 A Solution to the Puzzle

Figure 1, on the next page, shows a basic solution to the puzzle,
based on the flattening combinators of Okasaki [10].1 It threads a
stack of type[Int] through the computation, beginning with the
empty stack. Each intermediate command takes the current stack,
performs some action on it, and passes the resulting stack tothe next
command. The key is that each command takes the next command
as an argument.

The types of the four commands are

begin :: ([Int] -> a) -> a
push :: [Int] -> Int -> ([Int] -> a) -> a
add :: [Int] -> ([Int] -> a) -> a
end :: [Int] -> Int

Notice that the type of every command exceptbegin starts with

[Int] -> ...

and the type of every command exceptend finishes with

1Mayer Goldberg invented a similar set of combinators, but
never published them.

105

begin k = k []
push s x k = k (x:s)
add (x:y:s) k = k (y+x : s)
end [x] = x

Figure 1. A solution to the puzzle.

... -> ([Int] -> a) -> a

In other words, every command exceptbegin takes the current
stack as its first argument, and every command exceptend takes
the next command as its last argument. The last action of every
non-terminal command is to pass the current stack to the nextcom-
mand.

The type([Int] -> a) -> a and the treatment of the “next com-
mand” screamscontinuations to anyone familiar with the con-
cept. However, continuations typically represent the restof the
computation, and these continuations represent only the very next
command. Thus, our continuations are actuallypartial continua-
tions [8]. To see how these partial continuations work, it is helpful
to step through the evaluation of a sample expression.

begin push 5 push 6 add end
⇒ push [] 5 push 6 add end
⇒ push [5] 6 add end
⇒ add [6,5] end
⇒ end [11]
⇒ 11

Notice that polymorphism plays a crucial role here. For example,
in the expression

begin push 5 push 6 add end

the secondpush is used at type

[Int] -> Int
-> ([Int] -> ([Int] -> Int) -> Int)
-> ([Int] -> Int) -> Int

and the firstpush is used at type

[Int] -> Int
-> ([Int] -> Int

-> ([Int] -> ([Int] -> Int) -> Int)
-> ([Int] -> Int) -> Int)

-> Int
-> ([Int] -> ([Int] -> Int) -> Int)
-> ([Int] -> Int) -> Int

This combination of polymorphism and continuations to produce
functions that take greater and greater numbers of arguments is rem-
iniscent of the functional unparsers of Danvy [3].

3 Heterogeneous Stacks

Integer lists are a poor representation for the internal stacks of a
postfix language. They suffer from two major deficiencies. First,
we usually want an embedded language to be able to manipulate
more than just integers. Indeed, we would prefer to have access to
the full gamut of Haskell types. Second, we would like the type
checker to catch errors related to the size of the stack, suchas call-
ing add with only a single integer on the stack or ending with two
or more values on the stack.

module Stack where

data Empty = Empty -- the empty stack

push :: a -> s -> (s,a)
pop :: (s,a) -> s
dup :: (s,a) -> ((s,a),a)
exch :: ((s,a),b) -> ((s,b),a) -- swap

add :: ((s,Int),Int) -> (s,Int)
sub :: ((s,Int),Int) -> (s,Int) -- subtract
mul :: ((s,Int),Int) -> (s,Int) -- multiply
eq :: ((s,Int),Int) -> (s,Bool) -- equals
lt :: ((s,Int),Int) -> (s,Bool) -- less than

nil :: s -> (s,[a])
cons :: ((s,a),[a]) -> (s,[a])

only :: (Empty,a) -> a

smap :: (a -> b) -> (s,a) -> (s,b)
smap2 :: (a -> b -> c) -> ((s,a),b) -> (s,c)
Figure 2. Signature for a module of heterogeneous stacks. The
implementations are entirely straightforward given the types.

Taking both of these issues into account, we choose to implement
stacks as nested pairs. For example,

(((Empty,1),True),"hello")

is a stack of size 3, with type

(((Empty,Int),Bool),String)

The Empty value and type constructors are defined in Figure 2,
along with a number of utility functions on stacks that will be used
throughout the rest of the paper. Note that these stacks growto the
right, which is backward from the usual treatment in functional lan-
guages but is consistent with stack diagrams in postfix languages
such as Forth and Postscript.

The types of stacks now encode their exact size and layout. For
example, the type of theonly function from Figure 2

only :: (Empty,a) -> a

now guarantees that it will only be called on stacks containing ex-
actly one element. Most operations, however, do not need to con-
strain the entire stack, merely the top few elements. Such con-
straints are elegantly captured as polymorphic types. For example,
the type ofadd

add :: ((s,Int),Int) -> (s,Int)

guarantees that the top two elements of the input stack and the top
element of the output stack are all integers.

In a real application, we would probably giveadd the more general
type

add :: Num n => ((s,n),n) -> (s,n)

but type classes have no direct bearing on the use of postfix syntax,
so we will eschew these more complex types.

The primary disadvantage of using nested pairs instead of lists is

106

that it becomes more difficult to handle situations in which varying
numbers of items might be on the stack. However, such situations
can usually be resolved by allowing one or more elements of the
stack to themselves be lists. It is just as easy to manipulatelists on
the stack as it is to manipulate integers on the stack. For example,
Figure 2 contains the list operationsnil andcons:

nil :: s -> (s,[a])
cons :: ((s,a),[a]) -> (s,[a])

4 The Postfix Transformation

Given the stack operations in Figure 2, we can express the addition
5+6 as

only (add (push 6 (push 5 Empty)))

Obviously, this expression is not written in postfix notation, but
we can simulate postfix notation by defining the symbol# as left-
associative reverse function application (i.e.,x # f = f x). Then
we can rewrite the above expression as

Empty # push 5 # push 6 # add # only

To abstract away from the details of the stack representation, we
define two helper commandsbegin andend

begin = Empty
end = only

so that we can rewrite the addition as

begin # push 5 # push 6 # add # end

If we want to use postfix notation directly, without the infix# sym-
bols, we can adapt the combinators from Section 2 to use the nested-
pair representation of stacks. However, rather than doing so individ-
ually, we define a few general functions to convert ordinary stack
operations into postfix stack operations, which we will callcom-
mands. The type of a typical postfix command is

type Cmd s s’ = forall a. s -> (s’ -> a) -> a

where the command takes a stack of types and produces a stack of
types’. Theforall indicates that every command is polymorphic
in the result type of thenext command. Theforall construct is
not officially part of Haskell, but it is supported by GHC. We could
get by without it, but many of the types would be messier.

To convert an ordinary stack operation into postfix form, we use the
functionpost:

post :: (s -> s’) -> Cmd s s’
post f s = next (f s)

where

next :: s -> (s -> a) -> a
next s k = k s

Now we can define postfix stack operations such as

add = post Stack.add
dup = post Stack.dup
...

Some operations, such aspush, take an argument directly from the
instruction stream rather than from the stack. We implementsuch

operations in a similar fashion:

type Cmd1 x s s’ =
forall a. s -> x -> (s’ -> a) -> a

post1 :: (x -> s -> s’) -> Cmd1 x s s’
post1 f s x = next (f x s)

push = post1 Stack.push
apply = post1 Stack.smap
...

Thebegin andend operations are simply

begin :: (Empty -> a) -> a
begin = next Empty

end :: (Empty,a) -> a
end = Stack.only

5 Extending the Postfix Language

If you want to use postfix notation for more than simple arithmetic
expressions, you quickly discover that you need more language fea-
tures. We gradually extend our basic postfix language with proce-
dural abstraction, control constructs, and imperative features.

5.1 Procedural Abstraction

We would like to be able to define new commands from old ones
using postfix syntax, as in

incr = begindef push 1 add enddef

wherebegindef andenddef are new commands. We could then
write programs like

begin push 5 incr incr end

But what stack shouldbegindef pass topush in the definition of
incr? We don’t yet have our hands on an appropriate stack—in
fact, there isn’t one such stack sinceincr is called twice. Instead,
we needincr to somehow take the stack on which it will oper-
ate. To make this work, we change all postfix commands to pass
around functions from stacks to stacks instead of plain stacks. This
function is the composition of all the operations from the most re-
centbegin or begindef to the current point. When we hit theend
command, the function is the composition of all the operations in
the entire postfix program, and we run the program by applyingthe
function toEmpty.

We change the types of postfix commands to

type Cmd s s’ = forall s0 a.
(s0 -> s) -> ((s0 -> s’) -> a) -> a

The post function then composes the new function with the old
one rather than applying the function to a stack.

post :: (s -> s’) -> Cmd s s’
post f ss = next (f . ss)

The definitions of the basic postfix commands remain

add = post Stack.add
dup = post Stack.dup
...

107

Cmd1 andpost1 are redefined similarly, and are again used to im-
plementpush.

type Cmd1 x s s’ = forall s0 a.
(s0 -> s) -> x -> ((s0 -> s’) -> a) -> a

post1 :: (x -> s -> s’) -> Cmd1 x s s’
post1 f ss x = next (f x . ss)

push = post1 Stack.push

Thebegin andend commands become

begin :: ((Empty -> Empty) -> a) -> a
begin = next id

end :: (Empty -> (Empty,a)) -> a
end ss = Stack.only (ss Empty)

Revisiting the example reduction sequence from Section 2, we now
get

begin push 5 push 6 add end
⇒ push id 5 push 6 add end
⇒ push (S.push 5 . id) 6 add end
⇒ add (S.push 6 . S.push 5 . id) end
⇒ end (S.add . S.push 6 . S.push 5 . id)
⇒ S.only ((S.add . S.push 6 . S.push 5 . id) Empty)
⇒ . . .

⇒ S.only (Empty,11)
⇒ 11

where theStack module is abbreviated asS.

In this new setup, thebegindef andenddef commands turn out to
be surprisingly simple.

begindef :: ((s -> s) -> a) -> a
begindef = next id

enddef :: (s -> s’) -> Cmd s s’
enddef = post

Thebegindef command is just likebegin, but with a more general
type, and theenddef command turns out to be identical topost!
Now the definition

incr = begindef push 1 add enddef

has the desired typeCmd (s,Int) (s,Int).

5.2 Basic Control Constructs

The next thing we want to add to the embedded language is control
structures. We will describe conditionals in detail, but various fla-
vors of loops can be implemented in the same fashion. Forth and
Postscript take significantly different approaches to control struc-
tures. We will follow the style of Forth, because it leads to more
interesting implementations.

In Forth, a conditional is written

...condition... IF

...then-part... ELSE

...else-part... THEN

The reason theELSE andTHEN keywords are reversed is that the

ELSE is optional, soTHEN marks the end of theIF. In Haskell, we
will avoid this peculiarity by making both branches mandatory and
write

...condition... if_

...then-part... then_

...else-part... else_

For example, the following code would implement the absolute-
value function:

absval =
begindef
dup push 0 lt if_ -- is the # < 0?
push 0 exch sub then_ -- negate the #
else_ -- do nothing

enddef

Notice that, although theelse command is mandatory, the code
part between thethen and theelse may be empty.

To implement control structures in this style, we extend allour com-
mands to pass around a control stack along with the stack-to-stack
function. Most commands ignore the control stack. We redefine the
Cmd type as

type Cmd s s’ = forall s0 c a.
(s0 -> s,c) -> ((s0 -> s’,c) -> a) -> a

Thenpost becomes

post :: (s -> s’) -> Cmd s s’
post f (ss,c) = next (f . ss,c)

while the standard stack commands remain

add = post Stack.add
dup = post Stack.dup
...

Cmd1, post1, andpush are redefined similarly

type Cmd1 x s s’ = forall s0 c a.
(s0 -> s,c) -> x -> ((s0 -> s’,c) -> a) -> a

post1 :: (x -> s -> s’) -> Cmd1 x s s’
post1 f (ss,c) x = next (f x . ss,c)

push = post1 Stack.push

Control operators likeif , then , andelse pass control informa-
tion around on the control stack. In particular,if andthen store
stack-to-stack functions on the control stack, andelse takes these
functions from the control stack and composes them appropriately.
We represent control stacks using the following types:

data BEGIN = BEGIN -- the empty control stack
data IF s0 s c = IF (s0 -> (s,Bool)) c
data IFTHEN s0 s s’ c =

IFTHEN (s0 -> (s,Bool)) (s -> s’) c

Then the control operators are defined as

if_ :: (s0 -> (s,Bool),c) ->
((s -> s,IF s0 s c) -> a) -> a

if_ (ss,c) = next (id, IF ss c)

108

then_ :: (s -> s’,IF s0 s c) ->
((s -> s,IFTHEN s0 s s’ c) -> a) -> a

then_ (ssThen, IF ssIf c) =
next (id,IFTHEN ssIf ssThen c)

else_ :: (s -> s’,IFTHEN s0 s s’ c) ->
((s0 -> s’,c) -> a) -> a

else_ (ssElse, IFTHEN ssIf ssThen c) =
next (ssIfThenElse,c)

where ssIfThenElse s0 = ssTaken s
where (s,cond) = ssIf s0

ssTaken = if cond then ssThen
else ssElse

The remainingbegin/end commands all assume that the control
stack is empty.

begin :: ((Empty -> Empty,BEGIN) -> a) -> a
begin = next (id,BEGIN)

end :: (Empty -> (Empty,a),BEGIN) -> a
end (ss,BEGIN) = Stack.only (ss Empty)

begindef :: ((s -> s,BEGIN) -> a) -> a
begindef = next (id,BEGIN)

enddef :: (s -> s’,BEGIN) -> Cmd s s’
enddef (ss,BEGIN) = post ss

One interesting feature of this design is that syntactic constraints on
conditionals are enforced by the typechecker rather than the parser.
For example, the following malformed expression

begin push True if_ push 5 then_ push 6 then_ end

would generate a type error, not a syntax error.

5.3 Separable Control Constructs

The types ofbegindef and enddef guarantee that user-defined
procedures have no effect on the control stack. In other words, the
multiple parts of a control construct must always appear together.
However, there are times when it is useful to spread the partsof a
control construct across several user-defined procedures.Doing so
allows the user to create customized control constructs.

For example, suppose we want a conditional commandfi that ter-
minates anif right after the then-part, doing nothing if the condi-
tion is false. We could then rewriteabsval as

absval =
begindef
dup push 0 lt if_ -- is the # < 0?
push 0 exch sub fi_ -- negate the #

enddef

Rather than definingfi from scratch, we would like the user to be
able to write

fi_ = begindef then_ else_ enddef

In implementing this, we run into the same problem we encoun-
tered in Section 5.1. Back then, we didn’t have our hands on the
right data stack at the time of thebegindef. Now, we don’t have
our hands on the right control stack. The solution is again topass
around functions from stacks to stacks instead of just stacks, but

module IntState where

newtype M a = M (Int -> (a,Int))

instance Monad M where
return x = M $ \n -> (x,n)
M f >>= k = M $ \n -> let (x,n’) = f n

M g = k x
in g n’

instance Functor M where
fmap f m = m >>= \x -> return (f x)

run :: M a -> a
mread :: M Int
mwrite :: Int -> M ()

run (M f) = fst (f 0)
mread = M $ \n -> (n,n)
mwrite n = M $ _ -> ((),n)

Figure 4. An integer state monad.

now with control stacks instead of data stacks. However, ournew
functions must also pass around the data stack-to-stack functions
developed earlier. Altogether, the type being passed around be-
tween commands now has the form

(s0 -> s1,c0) -> (s2 -> s3,c1)

The details are shown in Figure 3, on the next page. Note that the
definitions of the control stack types (BEGIN, IF, IFTHEN) do not
change.

5.4 Imperative Features

Many postfix languages support imperative features such as assign-
ment or IO. These features are typically implemented in Haskell as
monads, and we will follow this tradition. Any of the previous im-
plementations can be extended with monadic operations simply by
replacing every occurrence of a stack with a monadic computation
producing a stack. For example, theCmd type from Section 5.1

type Cmd s s’ = forall s0 a.
(s0 -> s) -> ((s0 -> s’) -> a) -> a

becomes

type Cmd s s’ = forall s0 a.
(M s0 -> M s) -> ((M s0 -> M s’) -> a) -> a

whereM is the monad in question.

We illustrate by extending the core language of Section 5.1 with
operations that read and write an integer state. The underlying state
monad is shown in Figure 4. Figure 5 shows the changes to the
major postfix commands.

6 Recursion

Now that we can define procedures and conditionals, it is natural
to want to use recursion. But doing so turns out to be suprisingly
difficult, in much the same way that recursion is difficult to combine
with monads [5].

As an example, suppose we wish to write the usual recursive facto-

109

type Cmd s s’ = forall ssc s0 c a. (ssc -> (s0 -> s,c)) -> ((ssc -> (s0 -> s’,c)) -> a) -> a

post :: (s -> s’) -> Cmd s s’
post f sscssc = next (extendSS f sscssc)

extendSS :: (s -> s’) -> (ssc -> (s0 -> s,c)) -> (ssc -> (s0 -> s’,c))
extendSS f sscssc ssc = (f . ss,c)
where (ss,c) = sscssc ssc

add = post Stack.add
dup = post Stack.dup
...

type Cmd1 x s s’ = forall ssc s0 c a. (ssc -> (s0 -> s,c)) -> x -> ((ssc -> (s0 -> s’,c)) -> a) -> a

post1 :: (x -> s -> s’) -> Cmd1 x s s’
post1 f sscssc x = next (extendSS (f x) sscssc)

push = post1 Stack.push
...

begin :: (((Empty -> Empty,BEGIN) -> (Empty -> Empty,BEGIN)) -> a) -> a
begin = next id

end :: ((Empty -> Empty,BEGIN) -> (Empty -> (Empty,answer),BEGIN)) -> answer
end sscssc = Stack.only (ss Empty)
where (ss,BEGIN) = sscssc (id,BEGIN)

begindef :: ((ssc -> ssc) -> a) -> a
begindef = next id

enddef :: (ssc’ -> ssc’’) -> (ssc -> ssc’) -> ((ssc -> ssc’’) -> a) -> a
enddef sscssc sscssc’ = next (sscssc . sscssc’)

if_ :: (ssc -> (s -> (s’,Bool),c)) -> ((ssc -> (s’ -> s’,IF s s’ c)) -> a) -> a
then_ :: (ssc -> (s’ -> s’’,IF s s’ c)) -> ((ssc -> (s’ -> s’,IFTHEN s s’ s’’ c)) -> a) -> a
else_ :: (ssc -> (s’ -> s’’,IFTHEN s s’ s’’ c)) -> ((ssc -> (s -> s’’,c)) -> a) -> a

if_ sscssc = next sscsscIf
where sscsscIf ssc = (id,IF ss c)

where (ss,c) = sscssc ssc

then_ sscssc = next sscsscThen
where sscsscThen ssc = (id,IFTHEN ssIf ssThen c)

where (ssThen,IF ssIf c) = sscssc ssc

else_ sscssc = next sscsscElse
where sscsscElse ssc = (ss,c)

where (ssElse,IFTHEN ssIf ssThen c) = sscssc ssc
ss s = ssTaken s’
where (s’,cond) = ssIf s

ssTaken = if cond then ssThen else ssElse
Figure 3. The details of implementing separable control constructs.

110

type Cmd s s’ = forall s0 a. (M s0 -> M s) -> ((M s0 -> M s’) -> a) -> a

post :: (s -> s’) -> Cmd s s’
post f ss = next (fmap f . ss)

add = post Stack.add
dup = post Stack.dup
...

type Cmd1 x s s’ = forall s0 a. (M s0 -> M s) -> x -> ((M s0 -> M s’) -> a) -> a

post1 :: (x -> s -> s’) -> Cmd1 x s s’
post1 f ss x = next (fmap (f x) . ss)

push = post1 Stack.push
...

begin :: ((M Empty -> M Empty) -> a) -> a
begin = next id

end :: (M Empty -> M (Empty,a)) -> a
end ss = Stack.only (run (ss (return Empty)))

begindef :: ((M s -> M s) -> a) -> a
begindef = next id

enddef :: (M s -> M s’) -> Cmd s s’
enddef ss ss’ = next (ss . ss’)

mread :: Cmd s (s,Int)
mwrite :: Cmd (s,Int) s

-- The code for mread and mwrite in the printed proceedings was incorrect.

-- These are the corrected versions.

mread ss = next $ (\m -> do {s <- m; n <- IntState.mread; return (s,n)}) . ss
mwrite ss = next $ (\m -> do {(s,n) <- m; IntState.mwrite n; return s}) . ss

Figure 5. Implementing monadic postfix commands.

111

rial function. We would like to be able to write

fact = begindef
dup push 0 eq if_
pop push 1 then_
dup push 1 sub fact mul else_

enddef

but this fails to typecheck. In particular, it fails the occurs check
because it needs polymorphic recursion—the innerfact is called
with one more integer on the stack than the outerfact. We can fix
this by adding the type signature

fact :: Cmd (s,Int) (s,Int)

Now the program typechecks, but when we try to use it, we im-
mediately fall into a blackhole. In particular, the outerfact cannot
be evaluated without evaluating the innerfact. A moment’s reflec-
tion reveals that every command is strict in the following command,
so what we need is a way to delay commands that we wish to call
recursively. We add a newcall command for this purpose, and
write

fact = begindef
dup push 0 eq if_
pop push 1 then_
dup push 1 sub call fact mul else_

enddef

Like push, thecall command takes its main argument from the
instruction stream rather than the stack. Assuming we are using the
types from Section 5.2,call is defined as

call :: Cmd1 (Cmd s s’) s s’
call (ss,c) cmd = next (cmd (id,BEGIN) fst . ss,c)

Notice that the expression

cmd (id,BEGIN) fst

converts a command of typeCmd s s’ to a function of types ->
s’. In other words, it is essentially the inverse of thepost function.

Unfortunately, we now trip over limitations in GHC’s treatment of
the foralls hidden insideCmd andCmd1, which forbid this kind
of nesting.2 To get around these limitations, we expand the type of
call to

call :: Cmd1 ((s -> s,BEGIN) ->
((s -> s’,BEGIN) -> (s->s’)) ->
(s -> s’))

s s’

We can finally run

begin push 5 fact end

to get the answer120.

7 Conclusions

Other researchers have considered the relationship between postfix
languages and functional languages. For example, the purely func-
tional language Joy [12] uses postfix syntax and celebrates its ties to

2Never bet against the GHC folks! Shortly after this paper
was written, they released GHC 5.04, which does support nested
foralls.

Forth. Linear Lisp [1] uses ordinary Lisp syntax but is implemented
as a Forth-like stack machine. Koopman and Lee [9] implement
combinator graph reduction using a Forth-inspired threaded inter-
pretive engine. However, this paper is the first to seriouslyconsider
embedding a postfix language in a language like Haskell, building
on our previous work on flattening combinators [10], which allow
arbitrary combinator expressions to be written without parentheses.

We have addressed the major theoretical concerns of such an em-
bedding, but several practical concerns remain. First, thetypes
in these kinds of programs are huge, frequently making type-error
messages unreadable. Second, the combination of huge typesand
functions with dozens of arguments make compilation slow. To-
day’s compilers do not expect such large arities and appear in in-
corporate algorithms that are quadratic (or worse!) in the number
of arguments. For example, the factorial function in Section 6 uses
begindef with 18 arguments and makes GHC noticeably sluggish.
The recursive Fibonacci function

fib :: Cmd (s,Int) (s,Int)
fib = begindef

dup push 2 lt if_
pop push 1 then_
dup push 1 sub call fib
exch push 2 sub call fib add else_

enddef

usesbegindef with 24 arguments, and crashes the compiler after
a long wait.

8 References

[1] Henry G. Baker. Linear logic and permutation stackts—the
Forth shall be first.Computer Architecture News, 22(1):34–
43, March 1994.

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. InACM SIGPLAN Inter-
national Conference on Functional Programming, pages 174–
184, September 1998.

[3] Olivier Danvy. Functional unparsing.Journal of Functional
Programming, 8(6):621–625, November 1998.

[4] Conal Elliott and Paul Hudak. Functional reactive animation.
In ACM SIGPLAN International Conference on Functional
Programming, pages 263–273, June 1997.

[5] Levent Erkök and John Launchbury. Recursive monadic bind-
ings. In ACM SIGPLAN International Conference on Func-
tional Programming, pages 174–185, September 2000.

[6] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong.
Haskore music notation - an algebra of music.Journal of
Functional Programming, 6(3):465–483, May 1996.

[7] Graham Hutton. Higher-order functions for parsing.Journal
of Functional Programming, 2(3):323–343, July 1992.

[8] Gregory F. Johnson. GL—a denotational testbed with contin-
uations and partial continuations as first-class objects. In Sym-
posium on Interpreters and Interpretive Techniques, pages
165–176, June 1987.

[9] Philip Koopman and Peter Lee. A fresh look at combinator
graph reduction. InACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 110–119,
June 1989.

[10] Chris Okasaki. Flattening combinators: Surviving without

112

parentheses.Journal of Functional Programming, 2002. To
appear.

[11] John Peterson, Paul Hudak, and Conal Elliott. Lambda in
motion: Controlling robots with Haskell. InPractical Aspects
of Declarative Languages, pages 91–105, January 1999.

[12] Manfred von Thun. Joy: Forth’s functional cousin. InEuro-
Forth, 2001.

113

