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Abstract

Traditional techniques for designing and analyzing amor-
tized data structures in an imperative setting are of limited
use in a functional setting because they apply only to single-
threaded data structures, yet functional data structures can
be non-single-threaded. In earlier work, we showed how
lazy evaluation supports functional amortized data struc-
tures and described a technique (the banker’s method) for
analyzing such data structures. In this paper, we present a
new analysis technique (the physicist’s method) and show
how one can sometimes derive a worst-case data structure
from an amortized data structure by appropriately schedul-
ing the premature execution of delayed components. We use
these techniques to develop new implementations of FIFO
queues and binomial queues.

1 Introduction

Functional programmers have long debated the relative mer-
its of strict versus lazy evaluation. Although lazy evaluation
has many benefits [11], strict evaluation is clearly superior in
at least one area: ease of reasoning about asymptotic com-
plexity. Because of the unpredictable nature of lazy eval-
uation, it is notoriously difficult to reason about the com-
plexity of algorithms in such a language. However, there
are some algorithms based on lazy evaluation that cannot
be programmed in (pure) strict languages without an in-
crease in asymptotic complexity. We explore one class of
such algorithms — amortized data structures — and de-
scribe techniques for reasoning about their complexity.

Several researchers have developed theoretical frameworks
for analyzing the time complexity of lazy programs [1, 19, 20,
25]. However, these frameworks are not yet mature enough
to be useful in practice. One difficulty is that these frame-
works are, in some ways, too general. In each of these sys-
tems, the cost of a program is calculated with respect to
some context, which is a description of the demand on the
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result of the program. However, this approach is often in-
appropriate for a methodology of program development in
which data structures are designed as abstract data types
whose behavior, including time complexity, is specified in
isolation. Instead, we develop ad hoc, but pragmatically
useful, techniques for reasoning about the time complexity
of lazy amortized data structures without regard to the con-
texts in which the data structures will be used.

A data structure is called persistent [5] if, after an up-
date, the old version of the data structure is still accessi-
ble. A data structure that is not persistent is called ephem-
eral. In functional programming terminology, an ephemeral
data structure is one that must be single-threaded [21] and
a persistent data structure is one that may be non-single-
threaded. Aside from the obvious distinction regarding as-
signments, persistence is the fundamental difference between
functional and imperative data structures. Functional data
structures are automatically persistent, whereas imperative
data structures are almost always ephemeral. Traditional
techniques for designing and analyzing amortized data struc-
tures were developed for imperative data structures and ap-
ply only in the ephemeral case. Functional (and therefore
persistent) amortized data structures require different tech-
niques.

In [16], we showed how lazy evaluation can be used to
support persistent amortized data structures, and described
the banker’s method, a technique for analyzing the time
complexity of such data structures. In this paper, we be-
gin by reviewing these previous results in a functional set-
ting. Then, we describe the physicist’s method, an alter-
native technique for analyzing functional amortized data
structures. The physicist’s method is less powerful than
the banker’s method, but is usually much simpler. Next,
we show how one can sometimes derive a worst-case data
structure from an amortized data structure by appropriately
scheduling the premature execution of delayed components.
This technique requires both strict and lazy evaluation. Fi-
nally, after a brief discussion of related work, we conclude
with advice on designing amortized data structures.

To illustrate our techniques, we introduce several new
implementations of common data structures. In Section 3,
we describe an extremely simple FIFO queue requiring O(1)
amortized time per operation. In Section 4, we show that
binomial queues implemented with lazy evaluation support
insertion in only O(1) amortized time. Finally, in Section 5,
we adapt this implementation of binomial queues to support
insertion in O(1) worst-case time.

We present some source code in Haskell [10], and some in



Standard ML [15]. Since Standard ML is strict, we extend
the language with the following primitives for lazy evalua-
tion:

type ’a susp
val delay : (unit -> ’a) -> ’a susp
val force : ’a susp -> ’a

These primitives are actually supported by several imple-
mentations of Standard ML.1

For clarity, we present only the relevant fragments of
the source code for some data structures. The complete
implementations are included in Appendix A.

2 Amortization and Lazy Evaluation

Amortization is a method of accounting for the cost of se-
quences of operations [23]. The amortized cost of an indi-
vidual operation is obtained by averaging the total cost of a
worst-case sequence over all the operations in the sequence.
Given a bound on the amortized cost of an individual oper-
ation, one can calculate a bound for the cost of a sequence
of operations by simply multiplying by the length of the se-
quence. Cost can be measured in time, space, or any other
resource of interest, but in this paper we will restrict our
attention to running time as the sole measure of cost.

In an amortized data structure, certain operations are
allowed to be more expensive than the desired bound, pro-
vided they are balanced by a sufficient number of inexpen-
sive operations. Persistent data structures are problematic
in this regard, since they allow expensive operations to be
repeated arbitrarily often. To obtain meaningful amortized
bounds for persistent data structures, we must ensure that
if x is some instance of a data structure on which some oper-
ation f is more expensive than the desired bound, then the
first application of f to x may be expensive, but subsequent
applications will not be. This is impossible under both call-
by-value and call-by-name since each application of f to x
will take exactly the same amount of time. Of the three
major evaluation orders, only call-by-need (i.e., lazy eval-
uation) supports the desired behavior. If x contains some
delayed component that is demanded by f , then the first
application of f to x will force the (potentially expensive)
evaluation of that component and memoize the result. Sub-
sequent applications may then access the memoized result
directly.

Tarjan [23] describes two techniques for analyzing ephem-
eral amortized data structures: the banker’s method and
the physicist’s method. Both of these techniques account
for future expensive operations by prepaying. Whenever
the amortized cost of an operation is greater than the ac-
tual cost, the excess is saved to pay for future operations.
Whenever the amortized cost is less than the actual cost, the
deficit is made up from earlier savings. The two techniques
differ in how they keep track of these savings.

In the banker’s method, the savings are represented as
credits that are associated with individual locations in the
data structure. These credits are used to pay for future
accesses to these locations. In the physicist’s method, the
savings are represented as potential that is associated with
the data structure as a whole. Inexpensive operations in-
crease this potential and expensive operations decrease it.

1It is possible to implement these primitives in Standard ML us-
ing references and assignments, but not with the same degree of
polymorphism.

Unfortunately, neither of these techniques is appropri-
ate for analyzing persistent data structures. An ephemeral
(single-threaded) data structure has only a single future, but
a persistent (non-single-threaded) data structure may have
many futures, one for each thread. Then, the whole idea
of saving credits (or potential) for future use breaks down
because each of those futures may need the same credits. To
cope with persistent data structures, we base our analyses on
debt, rather than savings, where debt accounts for the cost
of delayed computations. The intuition is that, although
savings cannot be spent more than once, it does no harm to
pay off a debt more than once (in the same way that it does
no harm to demand a memoized value more than once). By
allowing debt to be paid off multiple times, we avoid the
Gordian knot of analyzing interthread dependencies. If we
can show that every individual thread pays off its own debt,
then surely the first thread to force a delayed computation
will pay off the relevant debt. Subsequent threads demand-
ing the same result may unnecessarily pay off the same debt,
but this does no harm.

3 The Banker’s Method

We adapt the banker’s method to account for lazy evalua-
tion and persistence by replacing credits with debits. Each
debit represents a constant amount of delayed work. When
we initially delay a given computation, we create a num-
ber of debits proportional to its eventual actual cost and
associate each debit with a location in the data structure.
The choice of location for each debit depends on the nature
of the computation. If the computation is monolithic (i.e.,
once begun, it runs to completion), then all debits are usu-
ally assigned to the root of the result. On the other hand,
if the computation is incremental (i.e., decomposable into
fragments that may be executed independently), then the
debits may be distributed among the roots of the partial
results.

Each operation is allowed to discharge a number of debits
proportional to its amortized cost. The order in which deb-
its should be discharged depends on how the data structure
will be accessed; debits on nodes likely to be accessed soon
should be discharged first. To prove an amortized bound,
we must show that, whenever we access a location (possi-
bly triggering the execution of a delayed computation), all
debits associated with that location have already been dis-
charged (and hence the delayed computation has been paid
for).

Incremental functions play an important role in the bank-
er’s method because they allow debits to be dispersed to
different locations in a data structure. Then, each location
can be accessed as soon as its debits are discharged, without
waiting for the debits at other locations to be discharged.
In practice, this means that the initial partial results of an
incremental computation can be paid for very quickly, and
that subsequent partial results may be paid for as they are
needed. Monolithic functions, on the other hand, are much
less flexible. The programmer must anticipate when the re-
sult of an expensive monolithic computation will be needed,
and set up the computation far enough in advance to be able
to discharge all its debits by the time its result is needed.

The banker’s method was first adapted to a persistent
setting in [16].
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Example: Amortized FIFO Queues

As an example of the banker’s method, we next give an im-
plementation of persistent FIFO queues that supports all
standard operations in O(1) amortized time. This imple-
mentation is similar to, but simpler than, that presented in
[17]. We represent a queue as a pair of lists 〈f, r〉, where
f is the front segment of the queue, and r is the rear seg-
ment of the queue in reverse order. Elements are enqueued
at the head of r and dequeued from the head of f . We ex-
plicitly maintain the lengths of f and r, and guarantee that
|f | ≥ |r| by rotating the queue whenever |r| = |f | + 1. A
rotation transfers elements from r to f by replacing 〈f, r〉
with 〈f++reverse r, [ ]〉. Figure 1 gives Haskell source code
for this implementation.

Rotations are the only non-trivial computations in this
implementation. We account for the cost of rotations using
the banker’s method. Every rotation creates |f | + |r| =
2|f | + 1 debits — |f | debits for the append and |r| debits
for the reverse. Since the append function is incremental,
we disperse the first |f | debits across the first |f | elements
of the resulting queue. However, since the reverse function
is monolithic, we assign all the remaining debits to the first
element of the reversed list (i.e., the (|f | + 1)-st element of
the resulting queue). We discharge debits at the rate of one
debit per enqueue and two debits per dequeue. To prove the
amortized bounds, we must show that the first element of
the queue never has any undischarged debits.

Let di be the number of debits on element i, and let

Di =
∑i

j=0
di. We maintain the following invariant:

Di ≤ min(2i, |f | − |r|)

The 2i term guarantees that all debits on the first element
have been discharged (i.e., D0 = d0 = 0), and the |f | − |r|
term guarantees that all debits in the entire queue have been
discharged whenever the lists are of equal length (i.e., just
before the next rotation).

Now, every enqueue that does not cause a rotation sim-
ply adds a new element to the rear list, increasing |r| by one
and decreasing |f | − |r| by one. Discharging a single debit
restores the invariant. Every dequeue that does not cause
a rotation simply removes an element from the front list.
This decreases |f | by one (and hence |f | − |r| by one), but,
more importantly, it decreases i by one for every remaining
element, which in turn decreases 2i by two. Discharging the
first two debits in the queue restores the invariant.

Finally, we consider an enqueue or dequeue that causes
a rotation. Immediately prior to the operation, we know
that |f | = |r|, so Di = 0. Hence, after the rotation, the
only debits are those generated by the rotation itself. These
debits are distributed such that

di =

{

1 if i < m
m+ 1 if i = m
0 if i > m

and Di =

{

i+ 1 if i < m
2m+ 1 if i ≥ m

where m is the length of f at the beginning of the rotation.
This debit distribution violates the invariant at both loca-
tion 0 and location m, but discharging the debit on the first
element restores the invariant.

4 The Physicist’s Method

Like the banker’s method, the physicist’s method can also
be adapted to support persistent amortized data structures

based on lazy evaluation. In the traditional physicist’s meth-
od, one describes a function Φ that maps each data struc-
ture to a potential representing a lower bound on the total
savings generated by the sequence of operations that cre-
ated the data structure. The amortized cost of an operation
is defined to be the actual cost of the operation plus the
change in potential. To work with debt instead of savings,
we replace Φ with a function Ψ that maps each data struc-
ture to a potential representing an upper bound on the total
unpaid debt of the delayed computations within that data
structure. Note that Ψ is used only in the analysis of a data
structure; it does not actually appear in the program text.
In this framework, the amortized cost of an operation is de-
fined to be the actual cost of the computations delayed by
the operation minus the change in potential. More formally,
if ĉp and cp are the amortized and actual cost, respectively,
of some operation p, and x and x′ are the versions of the
data structure before and after the operation, respectively,
then

ĉp = cp − (Ψ(x′)−Ψ(x))

To prove amortized bounds in this framework, we must show
that the entire debt of a data structure has been paid off
before we force any part of the data structure. Because we
only know the total debt of the data structure as a whole,
and not the debt of individual locations, we cannot access
certain locations early, as we can with the banker’s method.
However, when applicable, the physicist’s method tends to
yield much simpler proofs than the banker’s method.

Example: Amortized Binomial Queues

Binomial queues are an elegant form of priority queue in-
vented by Vuillemin [24]. Inserting an element into a bino-
mial queue requires O(log n) worst-case time, but it is well
known that imperative (i.e., ephemeral) binomial queues
support insertion in O(1) amortized time [13]. We now
show, using the physicist’s method, that persistent bino-
mial queues implemented with lazy evaluation also support
insertion in O(1) amortized time.

A binomial queue is a forest of heap-ordered trees. The
structure of this forest is governed by the binary represen-
tation of the size of the queue; if the ith digit is one, then
the forest contains a tree of size 2i. Two trees of size 2i can
be combined to form a tree of size 2i+1 in constant time by
the link operation. To insert an element into the queue, we
create a new singleton tree and repeatedly link trees of equal
size until all sizes are unique. This process is analogous to
adding one to a binary number. See [14] for more details
about binomial queues.

Figure 2 gives a fragment of a Haskell implementation of
binomial queues. In this implementation, we use a sparse
representation of binomial queues, meaning we do not ex-
plicitly represent the zeros in the binary representation of
the size of the queue. This requires that we tag each tree
with its size. Note that insert is monolithic because add-
Unique does not return until it has performed all the neces-
sary links. In Section 5, we will also consider a non-sparse
representation of binomial queues for which insert is incre-
mental.

To analyze the current data structure using the physi-
cist’s method, we first define the potential function to be
Ψ(q) = Z(|q|), where Z(n) is the number of zeros in the
(minimum length) binary representation of n. Next, we
show that the amortized cost of inserting an element into
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data Queue a = Queue Int [a] Int [a]
-- Invariants: each queue has the form Queue lenf f lenr r
-- where lenf = |f | ∧ lenr = |r| ∧ lenf ≥ lenr

empty :: Queue a
empty = Queue 0 [] 0 []

isEmpty :: Queue a -> Bool
isEmpty (Queue lenf f lenr r) = (lenf == 0) -- since lenf ≥ lenr, lenf = 0 implies lenr = 0

enqueue :: a -> Queue a -> Queue a
enqueue x (Queue lenf f lenr r) = makeq lenf f (lenr+1) (x:r)

dequeue :: Queue a -> (a, Queue a)
dequeue (Queue (lenf+1) (x:f) lenr r) = (x, makeq lenf f lenr r)

-- auxiliary pseudo-constructor: guarantees lenf ≥ lenr
makeq :: Int -> [a] -> Int -> [a] -> Queue a
makeq lenf f lenr r | lenr <= lenf = Queue lenf f lenr r

| lenr == lenf+1 = Queue (lenf+lenr) (f ++ reverse r) 0 []

Figure 1. A Haskell implementation of amortized FIFO queues.

data Tree a = Node a [Tree a] -- children in decreasing order of size

type BinQueue a = [(Int,Tree a)] -- trees in increasing order of size

insert :: Ord a => a -> BinQueue a -> BinQueue a
insert x q = addUnique (1, Node x []) q

-- auxiliary functions

-- add a new tree and link until all sizes are unique
addUnique :: Ord a => (Int,Tree a) -> BinQueue a -> BinQueue a
addUnique (n,t) [] = [(n,t)]
addUnique (n,t) ((n’,t’) : q) | n < n’ = (n,t) : (n’,t’) : q

| n == n’ = addUnique (n+n’, link t t’) q

-- make the tree with the larger root a child of the tree with the smaller root
link :: Ord a => Tree a -> Tree a -> Tree a
link (Node x c) (Node y d) | x <= y = Node x (Node y d : c)

| y < x = Node y (Node x c : d)

Figure 2. A fragment of a Haskell implementation of amortized binomial queues.
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a binomial queue of size n is two. Suppose that the lowest
m digits in the binary representation of n are ones. Then,
inserting the element will eventually generate a total ofm+1
calls to addUnique. Now, consider the change in potential.
The lowest m digits have changed from ones to zeros and
the next digit has changed from zero to one, so the change
in potential is m−1. The amortized cost of insertion is thus
(m+ 1)− (m− 1) = 2.

The remaining operations supported by binomial queues
— finding the minimum element, deleting the minimum ele-
ment, and merging two queues — all have an actual cost of
O(log n). Before these operations can inspect the data struc-
ture, they must first pay off the outstanding debt. However,
the outstanding debt is bounded by Z(n) = O(log n), so
the total amortized cost of these operations is still O(log n).
Source code for these operations appears in Appendix A.

5 Eliminating Amortization

Amortized and worst-case data structures differ mainly in
when the computations charged to a given operation oc-
cur. In a worst-case data structure, all the computations
charged to an operation occur during the operation. In an
amortized data structure, some of the computations charged
to an operation may actually occur during later operations.
From this, we see that virtually all nominally worst-case
data structures become amortized when implemented in an
entirely lazy language because many computations are un-
necessarily delayed. To describe true worst-case data struc-
tures, we therefore need a strict language. If we want to
describe both amortized and worst-case data structures, we
need a language that supports both lazy and strict eval-
uation. Given such a language, we can also consider an
intriguing hybrid approach: worst-case data structures that
use lazy evaluation internally. Such data structures can be
obtained from amortized data structures by appropriately
scheduling the premature execution of delayed components.
The trick is to regard paying off debt as a literal activity,
and to execute each delayed computation as it is paid for.

In a worst-case data structure, we no longer have the free-
dom for certain operations to be more expensive than the
desired bound. Incremental functions assume a vital role by
decomposing expensive computations into fragments, each
of which can be executed within the allotted time. Often a
given fragment will depend on a fragment of an earlier com-
putation. The difficult part of proving a worst-case bound in
this framework is guaranteeing that executions of fragments
will never cascade. This is done by showing that, when-
ever a given fragment is executed, all fragments on which it
depends have already been executed and memoized.

Implementing a worst-case data structure in this frame-
work requires extending the amortized data structure with
an extra component, called the schedule, that imposes an or-
der on the delayed computations within the data structure.
Every operation, in addition to whatever manipulations it
performs on the data structure itself, executes the first few
jobs in the schedule. The exact number of jobs executed
is governed by the (previously) amortized cost of the oper-
ation. For this technique to apply, maintaining the sched-
ule cannot require more time than the desired worst-case
bounds.

A special case of this general technique was first used to
implement worst-case FIFO queues in [17].

Example: Worst-Case Binomial Queues

We now return to the example of binomial queues, and mod-
ify the earlier implementation to support insertions in O(1)
worst-case time. Recall that, in our earlier implementation,
insert was monolithic. We first make insert incremental by
changing the data structure to represent explicitly the zeros
in the binary representation of the size of the queue. Then,
every call to addUnique can return a partial result. The final
call to addUnique returns a stream whose first element is a
One. All the intermediate calls to addUnique return streams
beginning with a Zero. This implementation appears in Fig-
ure 3. In addition to modifying the representation, we have
also changed the source language from Haskell to Standard
ML (extended with primitives for lazy evaluation). Other
than the choice of language, this implementation of binomial
queues is very similar to that of King [14]. Note that this
change in representation does not affect the amortized anal-
ysis from the previous section. In particular, the amortized
analysis also holds for King’s implementation.

Now, we extend binomial queues with a schedule of de-
layed computations. The only delayed computations in this
implementation are calls to addUnique. Thus, the schedule
will be a list of unevaluated calls to addUnique.

type Schedule = Digit Stream list

To execute a job, we force the first element in this list. If the
result is a One, then this is the last fragment of a computa-
tion. Otherwise, the tail of the result is another unevaluated
call to addUnique, so we put it back in the schedule. We ex-
ecute two jobs by calling execute twice.

fun execute [] = []
| execute (job :: schedule) =

case force job of
Cons (One t, _) => schedule

| Cons (Zero, job’) => job’ :: schedule

val execute2 = execute o execute

Finally, we update insert to maintain the schedule. Since
the amortized cost of insert is two, we execute two jobs per
insertion.

type BinQueue = Digit Stream * Schedule

fun insert x (q, schedule) =
let val q’ = addUnique (Node (x,[])) q
in (q’, execute2 (q’ :: schedule)) end

This completes the changes necessary to convert the amor-
tized bounds to worst-case bounds. The remaining oper-
ations on binomial queues all ignore the schedule and re-
turn entirely evaluated queues. Source code for these op-
erations appears in Appendix A. The previous amortized
analysis guarantees that any binomial queue contains at
most O(log n) unevaluated computations, but the overhead
of evaluating these during the normal execution of the re-
maining operations is absorbed without increasing the al-
ready O(log n) worst-case cost of these operations.

We must next show that, whenever execute forces a job
of the form addUnique t q, q has already been evaluated and
memoized. Define the range of a call to addUnique to be the
partial result of that call together with the partial results of
all its recursive calls. Note that every range consists of a
(possibly empty) sequence of Zero’s followed by a One. We
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datatype ’a StreamNode = Nil | Cons of ’a * ’a Stream
withtype ’a Stream = ’a StreamNode susp

type Elem = ... (* elements may be any ordered type *)

datatype Tree = Node of Elem * Tree list (* children in decreasing order of size *)
datatype Digit = Zero | One of Tree
type BinQueue = Digit Stream (* digits/trees in increasing order of size *)

fun addUnique t q = (* add one to low-order digit, link/carry if already a one *)
delay (fn () => case force q of

Nil => Cons (One t, emptyStream)
| Cons (Zero, q) => Cons (One t, q)
| Cons (One t’, q) => Cons (Zero, addUnique (link t t’) q))

fun insert x q = addUnique (Node (x,[])) q

Figure 3. An alternative Standard ML implementation of amortized binomial queues.

say that two ranges overlap if any of their partial results
have the same index within the stream of digits. Note that
all unevaluated computations in a binomial queue are in the
range of some job on the schedule. Thus, we can show that,
for any job addUnique t q, q has already been evaluated and
memoized by proving that no two jobs in the same schedule
ever have overlapping ranges.

In fact, we prove a slightly stronger result. Define a com-
pleted zero to be a Zero whose cell in the stream has already
been evaluated and memoized. Then, every valid binomial
queue contains at least two completed zeros prior to the
first range in the schedule, and at least one completed zero
between every two adjacent ranges in the schedule. Proof:
Consider a binomial queue immediately prior to an insert.
Let r1 and r2 be the first two ranges in the schedule. Let z1
and z2 be the two completed zeros before r1, and let z3 be
the completed zero between r1 and r2. Now, before execut-
ing two jobs, insert first adds a new range r0 to the front of
the schedule. Note that r0 terminates in a One that replaces
z1. Let m be the number of Zero’s in r0. There are three
cases.

Case 1. m = 0. The only digit in r0 is a One, so r0 is
eliminated by executing a single job. The second job
forces the first digit of r1. If this digit is Zero, then
it becomes the second completed zero (along with z2)
before the first range. If this digit is One, then r1 is
eliminated and r2 becomes the new first range. The
two completed zeros prior to r2 are z2 and z3.

Case 2. m = 1. The first two digits of the old digit stream
were One and Zero (z1), but they are replaced with
Zero and One. Executing two jobs evaluates and mem-
oizes both of these digits, and eliminates r0. The lead-
ing Zero replaces z1 as one of the two completed zeros
before the first range (r1).

Case 3. m ≥ 2. The first two digits of r0 are both Zero’s.
They are both completed by executing the first two
jobs, and become the two completed zeros before the
new first range (the rest of r0). z2 becomes the single
completed zero between r0 and r1. 2

Once we have an implementation of binomial queues sup-
porting insert in O(1) worst-case time, we can improve the
bounds of findMin and merge to O(1) worst-case time using

the bootstrapping transformation of Brodal and Okasaki [2].
TheO(log n) bound for deleteMin is unaffected by this trans-
formation.

6 Related Work

There has been very little previous work on amortized func-
tional data structures. Schoenmakers [22] used functional
notation to aid in deriving bounds for many amortized data
structures, but considered only single-threaded data struc-
tures. Gries [6], Burton [3], and Hoogerwoord [9] described
purely functional queues and double-ended queues with amor-
tized bounds, but, again, supported only single-threaded
queues. We first described unrestricted amortized queues
in [17] as an intermediate step in the development of worst-
case queues based on lazy evaluation. However, because of
the concern with worst-case bounds, that implementation
is more complicated than the implementation in Section 3.
We derived the worst-case queues from the amortized queues
using techniques similar to those in Section 5. In [16], we
recognized the importance of lazy evaluation to non-single-
threaded amortized data structures in general, and adapted
the banker’s method to analyze such data structures. We
then used the banker’s method to describe an implementa-
tion of lists supporting catenation and all other usual list
primitives in O(1) amortized time. This paper extends our
earlier work by adapting the physicist’s method to cope with
persistence and by generalizing the technique for eliminat-
ing amortization. In addition, we introduce several new data
structures, which may be useful in their own right.

For every amortized functional data structure currently
known, there is a competing worst-case data structure that
does not depend on lazy evaluation. Examples include queues
[8], double-ended queues [7, 4], catenable lists [12], and skew
binomial queues [2]. In every case, the amortized data struc-
ture is significantly simpler than the worst-case version. How-
ever, the amortized data structure is usually slightly slower
in practice, mostly because of overheads associated with lazy
evaluation. Memoization, in particular, causes problems for
many garbage collectors. Of course, if both data structures
are implemented in a lazy language, then both data struc-
tures will pay these overheads. In that case, the amortized
data structure should usually be faster as well as simpler.

Our research is also related to earlier studies in the im-
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perative community. Driscoll, Sarnak, Sleator, and Tar-
jan [5] described several techniques for implementing per-
sistent imperative data structures, and Raman [18] explored
techniques for eliminating amortization from imperative data
structures.

7 Discussion

We have shown how lazy evaluation is essential to the de-
sign of amortized functional data structures, and given sev-
eral techniques for analyzing such data structures. In addi-
tion, we have described how to eliminate amortization from
data structures based on lazy evaluation by prematurely ex-
ecuting delayed components in a pattern suggested by the
amortized analysis. Finally, we have illustrated our tech-
niques with new implementations of FIFO queues and bino-
mial queues.

We have made several observations about the relation-
ship between evaluation order and kind of bound (amortized
or worst-case). Amortized data structures require lazy eval-
uation, but worst-case data structures require strict evalu-
ation. Thus, from our point of view, the ideal functional
programming language would seamlessly support both eval-
uation orders. Currently, both major functional languages
— Haskell and Standard ML — fail to meet this criterion.
Haskell has only limited support for strict evaluation, and
Standard ML has only limited support for lazy evaluation.

We close with some hints on designing amortized func-
tional data structures.

• Identify a (potentially expensive) procedure for reor-
ganizing your data to make future operations cheap.
Make sure that the procedure is executed lazily.

• Consider the access patterns of the data structure. If
operations routinely need the entire result of the re-
organizing procedure, attempt to use the physicist’s
method. If operations routinely inspect partial results,
use the banker’s method instead.

• Especially if using the banker’s method, make the pro-
cedure as incremental as possible. If some or all of the
procedure cannot be made incremental, arrange to set
up the computation well in advance of when it will be
needed to allow time to pay for the computation.

• If the entire procedure can be made incremental, and if
there is some clear order in which the fragments of the
computation should be executed, consider converting
the data structure to support worst-case bounds by
explicitly scheduling the premature evaluation of each
fragment.
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A Complete Source Code For Binomial Queues

In this appendix, we include the complete implementations
of two variations of binomial queues. The first supports
insertion in O(1) amortized time and the second supports
insertion in O(1) worst-case time. Fragments of these imple-
mentations appeared earlier in Sections 4 and 5, respectively.
Complete Haskell source code for amortized binomial queues
is given in Figure 4. Complete Standard ML source code for
worst-case binomial queues is given in Figures 5 and 6.
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data Tree a = Node a [Tree a] -- children in decreasing order of size

type BinQueue a = [(Int,Tree a)] -- trees in increasing order of size

empty :: BinQueue a
empty = []

isEmpty :: BinQueue a -> Bool
isEmpty = null

insert :: Ord a => a -> BinQueue a -> BinQueue a
insert x q = addUnique (1, Node x []) q

merge :: Ord a => BinQueue a -> BinQueue a -> BinQueue a
merge [] q = q
merge q [] = q
merge ((n1,t1) : q1) ((n2,t2) : q2)

| n1 < n2 = (n1,t1) : merge q1 ((n2,t2) : q2)
| n1 > n2 = (n2,t2) : merge ((n1,t1) : q1) q2
| n1 == n2 = addUnique (n1+n2, link t1 t2) (merge q1 q2)

findMin :: Ord a => BinQueue a -> a
findMin = minimum . map (root . snd) -- return the minimum root

deleteMin :: Ord a => BinQueue a -> BinQueue a
deleteMin q = merge c’ q’

where (Node x c, q’) = getMin q
c’ = zip sizes (reverse c) -- convert children into a valid BinQueue
sizes = 1 : map (2 *) sizes -- [1,2,4,8,...]

-- auxiliary functions

root :: Tree a -> a
root (Node x c) = x

-- add a new tree and link until all sizes are unique
addUnique :: Ord a => (Int,Tree a) -> BinQueue a -> BinQueue a
addUnique (n,t) [] = [(n,t)]
addUnique (n,t) ((n’,t’) : q) | n < n’ = (n,t) : (n’,t’) : q

| n == n’ = addUnique (n+n’, link t t’) q

-- make the tree with the larger root a child of the tree with the smaller root
link :: Ord a => Tree a -> Tree a -> Tree a
link (Node x c) (Node y d) | x <= y = Node x (Node y d : c)

| y < x = Node y (Node x c : d)

-- find and remove the tree with the minimum root
getMin :: Ord a => BinQueue a -> (Tree a, BinQueue a)
getMin [(n,t)] = (t,[])
getMin ((n,t) : q) = let (t’, q’) = getMin q

in if root t <= root t’ then (t, q) else (t’, (n,t) : q’)

Figure 4. A complete Haskell implementation of amortized binomial queues.
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(* Streams *)

datatype ’a StreamNode = Nil | Cons of ’a * ’a Stream
withtype ’a Stream = ’a StreamNode susp

val emptyStream = delay (fn () => Nil)
fun isEmptyStream s = case force s of Nil => true | Cons (x, s) => false
fun cons (x, s) = delay (fn () => Cons (x, s))
fun normalize s = case force s of Nil => () | Cons (x, s) => normalize s

(* Binomial Queues *)

type Elem = ... (* elements may be any ordered type *)

datatype Tree = Node of Elem * Tree list (* children in decreasing order of size *)
datatype Digit = Zero | One of Tree
type Schedule = Digit Stream list (* list of delayed calls to addUnique *)
type BinQueue = Digit Stream * Schedule (* digits/trees in increasing order of size *)

exception Empty

local (* auxiliary functions *)
fun root (Node (x,c)) = x

fun link (Node (x,c)) (Node (y,d)) =
if x <= y then Node (x, Node (y,d) :: c)

else Node (y, Node (x,c) :: d)

fun addUnique t q = (* add one to low-order digit, link/carry if already a one *)
delay (fn () => case force q of

Nil => Cons (One t, emptyStream)
| Cons (Zero, q) => Cons (One t, q)
| Cons (One t’, q) => Cons (Zero, addUnique (link t t’) q))

fun smerge q1 q2 = (* add digit streams, link/carry when two ones are in the same position *)
case (force q1, force q2) of

(Nil, ) => q2
| ( , Nil) => q1
| (Cons (Zero, q1), Cons (digit, q2)) => cons (digit, smerge q1 q2)
| (Cons (digit, q1), Cons (Zero, q2)) => cons (digit, smerge q1 q2)
| (Cons (One t1, q1), Cons (One t2, q2)) =>

cons (Zero, addUnique (link t1 t2) (smerge q1 q2))

fun getMin q = (* find and remove the tree with the minimum root *)
case force q of

Nil => raise Empty
| Cons (Zero, q) => (* zero is never the last digit *)

let val (t, q) = getMin q
in (t, cons (Zero, q)) end

| Cons (One t, q) =>
if isEmptyStream q then (t, emptyStream)
else let val (t’, q’) = getMin q

in if root t <= root t’ then (t, q) else (t’, cons (One t, q’)) end

Figure 5. A complete Standard ML implementation of worst-case binomial queues (part 1).
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fun execute [] = []
| execute (job :: schedule) = (* execute first job in schedule *)

case force job of
Cons (One t, ) => schedule (* addUnique terminates *)

| Cons (Zero, job’) => job’ :: schedule (* addUnique continues *)

val execute2 = execute o execute (* execute two jobs *)

in

val empty = (emptyStream, [])

fun isEmpty (q, schedule) = isEmptyStream q

fun insert x (q, schedule) =
let val q’ = addUnique (Node (x,[])) q
in (q’, execute2 (q’ :: schedule)) end

fun merge (q1,schedule1) (q2,schedule2) =
let val q = smerge q1 q2
in

normalize q; (* force and memoize entire stream *)
(q, [])

end

fun findMin (q, schedule) =
let val (t, ) = getMin q
in root t end

fun deleteMin (q, schedule) =
let val (Node (x,c), q’) = getMin q

fun ones [] = emptyStream
| ones (t :: ts) = cons (One t, ones ts)

val c’ = ones (rev c) (* convert children into a queue *)
val q’’ = smerge c’ q’

in
normalize q’’; (* force and memoize entire stream *)
(q’’, [])

end
end

Figure 6. A complete Standard ML implementation of worst-case binomial queues (part 2).
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