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Abstract

Catenable double-ended queues are double-ended quegessjle
that support catenation (i.e., append) efficiently withgadrificing
the efficiency of other operations. We present a purely fanat
implementation of catenable deques for which every oparatn-
cluding catenation, take®(1) amortized time. Kaplan and Tar-
jan have independently developed a much more complicated im
plementation of catenable deques that achieves similastvease
bounds. The two designs are superficially similar, but difiehe
underlying mechanism used to achieve efficiency in a persiset-
ting (i.e., when used in a non-single-threaded fashionirlimple-
mentation uses a technique called recursive slowdown evehits
relies on the simpler mechanism of lazy evaluation.

Besides lazy evaluation, our implementation also exenreglifi
the use of two additional language features: polymorpréanson
and views. Neither is indispensable, but both significasithyplify
the presentation.

1 Introduction

Purely functional programming is gradually gaining redtign in

the data structures community as an excellent medium fagules
ing persistent(i.e., immutable) data structures. Several other gen-
eral techniques for designing persistent data structwiss |8, 4],

but unfortunately, these other techniques break down whedata
structure in question supports operations that combineotwoore
structures. Examples of such offending operations inctadenat-

ing (i.e., appending) two sequences, unioning two sets,evgimg

two priority queues. Of these, sequence catenation haveedhe
most attention [6, 1, 11, 17].

Two implementations of purely functional catenable lisayén
recently been proposed. Kaplan and Tarjan [11] describeaban
proach that supports catenation and all other usual listatipas
in O(1) worst-case time. Okasaki [17] presented a much sim-
pler implementation based on lazy evaluation that achiesie-
lar amortized bounds. In this paper, we extend these resulte
double-ended case, yielding a purely functional implemion of
catenable deques that supports catenation and all othalrdesgue
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operations irO(1) amortized time. Kaplan and Tarjan [12] have in-
dependently developed an implementation of catenableesettpat
achieves the same bounds in the worst case. However, ogndssi
much simpler than theirs.

Continuing in the tradition of [16, 17, 18], our implemeiat
reinforces the important role of lazy evaluation in purelpdtional
data structures. Our implementation also makes extensigeofl
two additional language features: polymorphic recursibs, [7]
and views [22, 2, 20]. Although neither is indispensablehtsig-
nificantly simplify the presentation. We hope that this epéwill
motivate more language designers to include these fedtuthsir
languages.

Section 2 briefly reviews related work. Section 3 describes t
notation and properties we will assume for deques and fgrdaal-
uation. Section 4 presents our implementation of caterdddeies
and its analysis. Section 5 shows how to implement our data-st
ture in a language without views or polymorphic recursiorc-S
tion 6 compares our data structure to the catenable dequ€a-of
plan and Tarjan [12]. Finally, Section 7 concludes with a fgyen
problems.

2 Reated Work

Hood and Melville [9] presented the first purely functionaple-
mentation of queues to support all normal operation® i) time.
In his thesis, Hood [8] extended this design to the doubliedn
case. Chuang and Goldberg [3] later re-invented Hood's statia-
ture. Okasaki [16] simplified these implementations of eageand
deques using lazy evaluation. Kaplan and Tarjan [11] intced an
entirely different implementation of deques, based on hrtiggie
calledrecursive slowdown

None of the above structures support catenation efficieliyy
ers [15] described an implementation of AVL trees that suspo
all relevant deque operations, including catenationQiflog n)
time. Hughes [10] represented lists as functions in suchyatkait
catenation becomes simple function composition, runmng@ 1)
time. Unfortunately, his structure can only be inspedtetbto —
it no longer supports individual head and tail operatiofiigieftly.
Driscoll, Sleator, and Tarjan [6] presented the first impatation
of catenable lists to support all operations in sublogarithtime:
catenation irO(log log k) time, wherek is the number of list opera-
tions (which may be much smaller thaj, and all other operations
in O(1) time. Their implementation is persistent, but not purely
functional. Buchsbaum and Tarjan [1] gave a purely functiom-
plementation of catenable deques supporting deletionedfitst or
last element inD(log™ k) time, and all other operations if(1)
time.

Kaplan and Tarjan [11] finally achieved an implementation of
catenable lists that supports all operations, includirtgretion, in
O(1) time. Their implementation is based on recursive slowdown



and achieves its bounds in the worst case. Okasaki [17] ganeh
simpler implementation based on lazy evaluation that alpparts

all operations inD(1) time, but only in the amortized sense. The
catenable deques in this paper are descended from Kaplaraand
jan’s implementation of catenable lists, but use lazy etidm in-
stead of recursive slowdown. In independent work, Kaplath an
Tarjan [12] have also extended their implementation of reaée
lists to the double-ended case. Modulo the difference betazy
evaluation and recursive slowdown, their approach is vemjlar

to ours. For comparison purposes, we present their datztstelin
Section 6. To make the comparison clearer, we have adapted th
data structure to use lazy evaluation instead of recursivedown.
This greatly simplifies their design, but also degrades dsnids
from worst-case to amortized.

3 Preliminaries

3.1 Non-Catenable Deques

Our implementation of catenable deques uses non-catethedples
internally. We will henceforth refer to catenable deques-dsques
and to non-catenable dequespadequegprimitive deques).

time the suspension is forced, the value can be looked upadsif
recomputed.

In addition, we provide a view for suspensions that allows-fo
ing during pattern matching. When matching a suspensioinstga
patternp, we first force the suspension, and then match the resulting
value againsp.

This style of notation for lazy evaluation is explored mdrert
oughly in [19], along with many examples of its use.

4 Catenable Deques

In this section, we present our implementation of c-dequ€s.
deques support exactly the same operations as p-dequeisn-but
prove the running time ok to O(1) amortized time. Except for
size the remaining operations continue to runGx{1) time, al-
thoughfor t | andrt | this becomes an amortized bound, whereas
for some implementations of p-deques it may be a worst-caised
If desired, we could also malkszerun in O(1) time by adding a
size field to the root of each c-deque.

Except at the level of types, we use the same notation fordsoth
deques and p-deques. Whether a given occurrence of sefers
to c-deques or p-deques will always be uniquely determiyeaxbh-

Let [«] denote the type of p-deques containing elements of type text.

a. Let[a],+ denote the subtype of p-deques of lengthr greater.

We assume that we are given an implementation of p-deques tha

supports each of the following operations@{1) time (see, for
example, [8, 3, 16]):

[ ¢ o] (the empty deque)
N oaX[a =9 (left cons)
> ¢ o] x a— [a] (right cons)
I hd,rhd [a]i+ = a (left and right head)
lth,rtl : [ali+ = [q] (left and right tail)
| -] [a] — int (size)

<and> are infix operators, and are right-associative and lefb@atve,

respectively. Even though we treat p-deques as an abstaet d
type, we allow[], <, andr> to be used in pattern matching. These
kinds of abstract patterns are callegws[22, 2, 20]. A[] pat-
tern matches the empty deque. The patigrr: pt means “given a
non-empty dequé, match patterph against hd d and pattermpt
against t| d". The patterrpt>ph is interpreted similarly. In both
expressions and patterns, we use the abbrevidtion . ., x,] for
14+ <4z, <[] (or equivalently[] > z1 > - - > xy).

P-deques do not support catenation efficiently, but given th
above primitives, it is simple to implement a catenationrafien
that runs in time proportional to the shorter of the two arguts.

X 2 o] X [o] = [o]
xsX ] = s
[[Xys = ys

(z<zs) X (ys>y) < (zsXys)>y

Note that the last line is ambiguous, depending on the velptiece-

dences ofq and >, but both readings yield the same result since

z<a(dpy) = (zad)>y.

3.2 Lazy Evaluation

We assume that all computation is strict except where axplic
indicated otherwise. To delay the evaluation of an expoessiof
typer, we writee. This returns a suspension of typeTo force the
execution of a suspensianof type 7, we write!s, which returns
a value of typer. Suspensions ammemoized meaning that the
first time a suspension is forced, the value is saved so thateht

4.1 Representation

Let [a]~ denote the type of c-deques containing elements of type
a. A c-deque is either a simple p-deque, writtel, or a five-tuple
(f,a,m,b,r), where f, m, andr are p-deques and andb are
suspended c-deques of compound elemeghémdr must contain at
least three elements each andnust contain at least two elements.
A compound element is either a simple p-deque, writién or a
three-tuple(f, ¢, ), whered, f, andr are p-deques containing at
least two elements each, an a suspended c-deque of compound
elements. These types are summarized by the following mmsat

[a] | ([ads+ x [CEa]m X [a]s+ X [CEa]x x [a]s+)

[ala+ | ([a]a+ x [CEalw x [a]5+)

[l =
CEa =

Whether(d) is a c-deque or a compound element will always be
uniquely determined by context.

Note that[a]w is defined in terms ofCE a]x. Supporting this
kind of non-uniform type in a useful way requirpslymorphic re-
cursion[14, 7]. (See Section 5 for how to cope without polymor-
phic recursion.)

The order of elements is from left to right at every level. Een
the first and last elements ¢f, a, m, b, r) are the first element of
f and the last element @f respectively.

4.2 Operations

Next, we define the operations on c-deques. The empty c-deque
defined in terms of the empty p-deque.

[1=AD

Adding an element on the left or right simply adds the elentent
the p-deque on that side.

x < (d) = (z<d)
:Z:<<f7a7m7b7r> = <x<]f7a7m7b77‘>
(d)y>x = (d>zx)
<f7a7m7b7r>l>x = <f7a7m7b77‘l>x>



Similarly, asking for the leftmost or rightmost elementureis the
appropriate element of the p-deque on that side.

I hd (z<d)
I 'hd (z<f,a,m,b,r)
rhd (dvz)
rhd (f,a,m,b,r>zx)
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The auxiliary functiond t 1’ andrt|’ remove the elements re-

turned byl hd andr hd.

[t (zad) = (d)
[t (xaf,a,mb,r) = (f am,b,r)
rtl’ (doz) = {(d)
rtl’ {f,a,m,b,r>z) = {(f,a,m,b,r)

These auxiliary functions sometimes violate the size megouénts
of the data structure by leaving tlfeor r fields with only two ele-
ments instead of three. We will use these functions only when
intend to immediately replace the missing element.

We next turn to catenation. First, we consider catenating tw
simple p-deques. If one or both p-deques contains fewerfthan
elements, we combine them using p-deque catenation.

(d1) M (d2) = (d1 M d2) ,if |di] <4V |d2| <4
Otherwise, we place both p-deques in a five-tuple with emptgd
b fields. We remove one element from each p-deque to form the
middle field.

<d1l>:E> X <y<]d2> = <d17 Hv [l’,y], []7d2>

When catenating a p-deque with a five-tuple, we simply invoke
p-deque catenation if the p-deque is short enough, andvaeer
move the existingf or r field into a or b and installd as the newf

or r field.

Jif |di| > 3Ada| > 3

(d) X (f,a,m,b,r) = (dX f,a,m,b,r) Jif |d] < 4
= (d,(f)<la,m,b,r) ,otherwise
(fya,m,b,r) X {(d) = {(f,a,m,b,rXd) Jif |d] < 4
= (f,a,m,!b>(r),d) ,otherwise

The most interesting case is catenating two five-tuples.|@hbalf
of a five-tuple comprises thg anda fields, and half of then field.
Theright half of a five-tuple comprises theandb fields, and the
other half of them field. To catenate two five-tuples, we first fold
the right half of the left tuple into the left half, and thetléilf of
the right tuple into the right half. Then, we glue the two lealv
together.

<f1,a1,m1,b1,7“1 [>$> X (y<1f2,a27m2,bg7r2> =
<f17 lay > <m1,b177’1>, [xvy]v <f2,a2,m2><1!b2,7’2>

The definitions ofl t| andrt| use several auxiliary views.
The first pair of viewsg andp, are just likes and> except that
they delay their tails. For example, matchipf < pt against a
non-empty c-deques first matchegph againstl hd xs and then
matchespt againstl t1 zs. The second pair of viewss and >,
are just likeq and> except that they callt | “ andr t | " instead of
I't] andrtl.

Finally, we are ready to definet | andrt!|. We begin with
I t|. The simplest cases are whienl zs can discard the leftmost
element ofzs without violating the size restrictions. This happens
whenzs is a simple p-deque or whens is a five-tuple whosef
field contains more than three elements.

(xad) (d)
<x<f7a7m7b77‘> <f7a7m7b77‘>

Il
Il

JfFI >3

In the remaining casess is a five-tuple whos¢ field contains ex-
actly three elements so removing the leftmost element &eanb/
two elements. To refill the field, we first try to remove a com-
pound element from the field. If it is a simple p-dequéd, we add
it to the f field.

Itl ([z,y,z2],(d) <a,m,b,r) = (y<z<d,a,m,b,r)

Note the use of polymorphic recursion here — by matchingremai
the<view,| t| on ac-deque of elements implicitly invokiesl on

a c-deque of compound elements. However, note that thesieeur
call tol t| is suspended by the view. This use of lazy evalua-
tion is critical if the data structure is to be efficient in argistent
setting [18].

We continue with the remaining clauses|dfl . If the first
compound element from thefield is a three-tupléf’, ¢, r’), then
we addf’ to the f field and replace the three-tupledrwith (r').
Finally, we catenate’ anda to obtain the new: field.

Itl {[z,y,z2],{f', ¢ ") < a,m,b,r) =
(yazaf I X ({r'y<a),m,b,r)

If the a field is empty, then we attempt to remove a compound ele-
ment from the field.

Ll ([z,y,z],[],m, (d) 9b,7) =

(y<az<am,[],d,b,r)

Itl {[z,y,z2],[],m, {(f',c ") <b,T) =
(y<azam, (fyald, v’ b,r)

If the a andb fields are both empty, then we add the remaining
elements of th¢ field tom and catenate the result with

Ll (fe,y, 2], [],m, [, ) = (y <z am) X (r)

This completes the definition dft | . rtl is defined symmetri-
cally. The complete implementation of c-deques is sumradria
Figure 1.

4.3 Analysis

We first argue informally that every operation runsChil) amor-
tized time. Then we prove this formally using a debit arguhien
the style of [17, 18, 19].

First, note thatonly t | andrt| call themselves recursively.
The remaining operations clearly run @(1) time since none of
them loop. Now considert | (the argument for t | is similar).
The first two cases terminate immediately. Several of theaneimg
cases recursively cdlit | ona orb. But note that at the end of each
of these caseg contains at least four elementg; z, and two or
more elements from the p-deque used to r¢filTherefore, the next
call tol t | will terminate immediately in the second clause. This
means that at most every other call tol can call itself recursively.
Extending this argument a few steps further, we note thatcst m
every fourth call can make two recursive calls, at most eegghith
call can make three recursive calls, and so on. Altogettesr, tthe
amortized cost of any one call at the top level is

Ol+5+3+5+--)=0(Q).

As an aside, this argument explains the size restrictiordace
on the various p-deques in five-tuples and compound elemfitsn
we refill an f or r field that has dropped below the minimum size,
we wish to raise it not justo the minimum size, buaboveit so
that the next operation that removes an element from thaltviiil
terminate immediately. Therefore; and the various p-deques in
compound elements that are used to r¢filndr» must contain at



(o]
CEa =

(]

x < (d)

z a(f,a,m,b,r)
(d)>x
<f7a’7m7b7/r>bx

I hd (z<d)

I 'hd (z<f,a,m,b,r)
rhd (d>z)

rhd (f,a,m,b,r>zx)
It (zad)

Itl’ {x<af,a,m,b,r)
rtl’ (dox)

rtl’ (f,a,m,b,rozx)
(d1) MW (dz2)

<d1[>$> X <y<1d2>
(d) X (f,a,m,b,r)

(f,a,m,b,r) X (d)

)
<ad)
<f7a7m7b7r>
> x)

,a,m, b, > )

d17ﬂ7 [$7y]7ﬂ7 d2>
dX f a,m,b,r)

(fra,m,1b v (r), d)

[a] | ([a]s+ x [CEas x [a]p+ X [CEafs X [a]5+)

[ad2+ | (la]o+ x [CE Al x [a]5+)

Jif |di] <4V |d2] < 4
Jif |di] >3 A |d2] >3
Lif|d| < 4
, otherwise
if |d] < 4
, otherwise

(f1,a1,m1,b1,m1>2) X (y < fa,a2,ma, bz, T2)

= (f17'a11>
Itl (x<d)
I't] (x<af,a,m,b,r)
Itl {[z,y,z],{d) <a,m,b,r)
Ltl ([z,y, 2], (f',¢,r") < a,m,b,7)
Ftl ([z,y,2], [],m, (d) 9b,7)
Ll ([z,y, 2], [],m, {f",¢/,7") 9b,7)
Itl {[z,y,z2],[],m,][],7)
rtl < m)
rtl (f,a,m,b,7>x)
rtl (f,a,m,br (d),[z,y, z])
rel (foa,m b= (f',c,1'), [x,y,2])
rel (frar {d),m,[], [z,y,2])
rel (fia (f,c¢,r),m,[], [#,y,2])
rel (£ 1lm, [, sy, 2]

| 1 1 | I /\

bl7T1> [m7y]7 <f27a27m2> <l!b277“2>

fra,m,b,r)
y<z<ad,a,m,b,r)

y<zdaf, e/ ) ((r') <a),m,b,r)
y<azam,[],d,b,r)

y<z<am, (fy<le,r' b,r)

(d .
( P [f] >3
(
(
(
(
(y<azam) X (r)
(
(
(
(
(
(
(f

f?ambr) Jif [r] >3
fra,m,b,doxz>y)
f7am7(bb<f>)l><l'c’7r'l>m>y>
f,ad[]mbxby)

fa, )l e (r),mpzey)

Y X (mp>z>y)

Figure 1: Catenable deques.




least two elements each. Tliendr fields in five-tuples must con-
tain at least three elements, because during catenatioalement

is transferred to the: field and the remainder of the p-deque goesin
a compound element (and thus must contain at least two etsjnen

Although the above informal argument provides a useful-intu
ition, it fails to address two important concerns. Firstammappens
if there are other operations, suchrdd , interleaved with the calls
toltl? Sincel t1 andrt| can both recurse on either theor
b field of a c-deque, we cannot blithely assume that they will no
interfere with each other. Second, what happens if c-degtes
used persistently? For examplel ifl s recurses to depth, how
can we be sure that repeating this eatimes will not takeO(nk)
time?

We could satisfy the first concern using any of several formal
techniques, such as the standard techniques of amortizdgsen
using credits or potential functions [21] or the non-stadddebit
techniques of Okasaki [17, 18, 19] for analyzing amortizethd
structures involving lazy evaluation. The basic approauten any
of these methods is to establish an invariant and show tlyahdit
vidual call tol t | orrt| preserves the invariant, so any sequence
of interleaved calls also preserves the invariant. Howenfethese
various proof techniques, only debit arguments addressjtls-
tion of persistence. The key ingredient in this techniquiaésuse
of lazy evaluation to delay expensive computations. THisnal
the results of these computations to be shared via memmizati
among multiple “threads” of a non-single threaded comjuitett
See [17, 18, 19] for a fuller discussion of the role of lazyleation
in persistent, amortized data structures.

In a debit argument, every suspension is assigned a cettain n
ber of debits, which account for the cost of eventually exegithe
suspension. Every debit must be discharged before itsspnel-
ing suspension may be forced. There are three kinds of ssigmsn
in our data structure: theandb fields of five-tuples, and thefield
of three-tuples. We limit the number of debits on eacteld to
four, and limit the number of debits on eactor b field according
to the sizes off andr.

e If |f| > 3and|r| > 3, thena andb are allowed five debits
each.

e If |f| > 3 and|r| = 3, thena is allowed four debits andis
allowed one debit.

o If |f| = 3 and|r| > 3, thena is allowed one debit andlis
allowed four debits.

e If |f| = 3 and|r| = 3, thena andb are allowed zero debits
each.

The amortized cost of each operatioi¥i§l + #debits discharged
We show that< discharges at most four debits and that and
rt| discharge at most five debits each.
Proof: (X) The interesting case is catenating two five-tuples =
<f17 ai,mi, bl, 7“1> and:c32 = <f27 a2, mz, b2, 7“2). We create and
immediately discharge two debits to pay for the susperdaadr
ontoa; andb.. In addition, we discharge at most one debit from
eithera; or az, and at most one debit from eithiar or b2. Suppose
|r2| > 3. Thenaz might have five debits, one of which must be dis-
charged as» becomes the field of a new three-tuple. Otherwise,
if |r2| = 3 and|r:| > 3, then the allowance af; might decrease
by one, requiring the discharge of a single debit. A similgua
ment holds forb; andb,. Altogether, we discharge no more than
four debits.

(Itl andrtl) Sincel t1 andrt| are symmetric, we present
the argument only fokt | . Consider acalltdt | that recurses to

1 This terminology can be somewhat confusing. Here the taremdsrefers not to
concurrent threads of execution, but rather to multiplégaitrough the graph of data
dependencies. Reusing a given deque induces a branch irefite of data dependen-
cies and hence creates a new thread.

depthk and note that every call except the outermost is enclosed in
a suspension. Five debits must be discharged before eabks# t
calls, but only the debits for the outermost call must beldisged
immediately. For each of the recursive calls, those fivetdedoie
charged to the enclosing suspension. These debits willlibetis-
charged sometime before the enclosing suspension is farakthe
recursive call in question is executed. We call this transfelebits
from one set of suspensions to anottiebit passingNow, there is
one case for every clause lof | . We describe only the cases for
clauses 2, 3, and 4. The other cases are similar.

e ltl (xzaf,a,m,b,r) = (f,a,m,b,r) ,if|f] >3
This is a terminating call. If the length of théfield drops
from four to three, then the debit allowanceaadrops by four
and the debit allowance éfdrops by one. We pass these five
debits to the enclosing suspension, or discharge themsif thi
is the outermost call.

o ltl {[z,y,2],{d) <a,m,b,ry = (y<z<d,a,m,b,r)
This is not a terminating call. Since we force thdfield,
we must pass or discharge any debits currently on that field.
If |r| > 3 then there is currently at most one debit on the
a field. We pass this debit to the enclosing suspension or
discharge it if this is the outermost call. In addition, theawn
suspension for (the one create by the view) receives at
most five debits from its recursive call kd | . However, the
new allowance fou is five, so we do not pass on any of these
debits. If|r| = 3 then there are currently zero debits on the
a field. The new suspension farreceives at most five debits
from the recursive call, but the new allowance das four, so
we pass on one of these debits. Either way, we pass a single
debit (or discharge it if this is the outermost call).

o It {[z,y,z2], (f,c,7") <a,m,b,r)=
(yazaf 1w ((7)<a),m,b,r)

This is a terminating call. Since we force théeld, we must
pass on any debits that are currently on that field. There is
one such debit ifr| > 3 and none ifjr| = 3. The newa
field receives at most four debits froeh at most four debits
from the call to, and one newly created debit that accounts
for the call to<. The new allowance is five ifr| > 3 so we
pass on the excess four credits, making five altogether. The
new allowance is four ifr| = 3 so we pass on the excess
five debits. In either case, we pass or discharge a total of five
debits. O

5 Restricting the Language of I mplementation

The code presented in Section 4 takes advantage of both views
and polymorphic recursion. However, few current languayes

port these features, so we briefly sketch how the implemientat
changes without them.

5.1 Without Views

Views [22, 2, 20] are a language mechanism allowing pattexttin
ing on abstract datatypes. As with pattern matching in ggner
views are a syntactic convenience that can be replaced Bigiexp
calls to case predicates (suchrad | ) and access functions (such
asl hdandl t1).

We use views in two ways. First, we use patterns such as
d andd > x on p-deques to both recognize and decompose non-
empty p-deques. The use of these patterns reveals nothing ab
the representation of p-deques, which is held abstracorieeve
use patterns such as< a andz < a on c-deques to decompose
these deques in non-standard ways. Note that we also usgordi



Itl (x<d) = (d)
I'tl (x<f,a,m,b,r) = (f,a,m,b,r) ,if|f]| >3
Itl {[z,y,z],{d) <a,m,b,r) = (y<z<d,a,m,b,r)
Pl ([z,y, 2], (f, ¢, 1) <a,m,br) = <y<1,z<1f’,!_c’M((r’)qa),m,b,r)
Ltl ([z,y,2],[],m, (d) 9b,7) = (y<dz<m,l],d,b,r)
Ll ([z,y, 2], [],m, (f', ¢/, ") abr) = (y<azam, (f)<le, ' br)
It ([z,v,2],[],m,[],7) = (ydz<am) X (r)
(d)y = (Itl d)

It
I'tl (f,a,m,b,r) =
if|fl>3then(ltl f,a,m,b,r)
elselet z =rhd f
y =rhd (rtl f)
a =la
inif not (null a’)then
case | hd o’ of
(d)y = (y<zad,l t] a’,m,b,r)
| (ff,c,r")y = (y<azad,led X ((rya(lt]’a’)),m,b,r)
elseletdt =
inif not (null ¥)then
case | hd ¥’ of
(d) = (y<zam,[],d,1 t1 ¥, r)
| (ff, ")y = (yazam, (f)ale, v T t] v,r)
el se (y<z<am) X (r)

Figure 2: Thd t | function, written with and without views.

[ass = [a] | ([eds+ x [CE]x X [ala+ X [CEa]x X [a]5+)

CEa = [alas | ([alo+ x [CEalw X [a]+)

ol = [CEa] | ([CEalys x [ae x [CEaly x faf x [CEaly:)
CEa = «a | [CEa]y+ | ([CEa]yt X [a]x X [CE ]yt )

Figure 3: The type of c-deques, with and without polymorphkicursion.




pattern matching on c-deques to distinguish between, tante,
(d) and(f,a, m,b,r). Views are not necessary for this last class
of patterns because they match the concrete representdtion
deques, which is visible within the implementation.

definitions and operations for this data structure are sutizethin
Figure 4.

Kaplan and Tarjan's design replaces our five-tuples with-fou
tuples, and our three-tuples with left pairs and right pdinsaddi-

To remove the dependency on views, we replace each view pat-tion, they reduce the minimum size of tfi@ndr fields in a c-deque

tern with appropriate calls toul | , I hd (r hd), andl t| (rtl).
For example, Figure 2 contrasts versions oflthé function writ-
ten with and without views. The version with views is clearigre
concise, but more importantly, it is also easier to understat least
for a reader comfortable with views. Even for a reader notfooim
able with views, the version with views is probably easieread
for the gist of the implementation, although for such a reade
second version may be preferable for understanding thdseta

5.2  Without Polymorphic Recursion

Polymorphic recursion [14, 7] allows one to write recursiviac-
tions onnon-uniformrecursive datatypes. Without polymorphic
recursion, recursive functions can be written only doiform re-
cursive types. The type of c-deques, as presented in Settisn
non-uniform becaus@x|w is defined in terms ofCE o] rather
than[a]x. If polymorphic recursion is not available, then we must
modify this type definition to be uniform.

Consider the elements in the various p-deques in the repieese
tion of a c-deque. These elements have tyfa the first (top) level,
type CE « at the second level, type CECE «) at the third level,
and so on. To makéx]. uniform, we must collapse all of these
types into a single type. First, we allow a simple elemengtoged
anywhere a compound element can be used by extending the defin
tion of CE a with a third summand of type (i.e., CEa = ] .. .).

from three to two. On the other hand, our structure is morelaeg
having no need to distinguish between left pairs and righispa

The operations on both structures are mostly similar. Tiyek
difference occurs in thet | andrt| functions. The question is:
when thef field becomes too small, how do we refill it from the
field? In Kaplan and Tarjan’s design, this is accomplishedhey
following two rules:

It ([z,y],([],7") <a,b,T) (y<r',a,b,r)
Itl {[z,y], ((f,a') 2V, ") < a,b,r)

(y<f'la/ ) ((V,r7) 9a),b,r)

The second rule, in particular, is rather involved, cortajra total
of four views that force two suspensions and remove the fiest e
ments of two c-deques. In contrast, these are the equivalet
for our implementation:

Itl ([z,y,z2],{(d) <a,m,b,r) (y<z<ad,a,m,b,r)
Ltl ([z,y,2], (f',¢/,r") < a,m,b,r)
(yazaf' )l M ({r') <a), m,b,r)

Here the second rule contains only two views, one to forcetise

pension and one to remove the first element of the inner cedequ
All'in all, as long as our design and Kaplan and Tarjan’s desig

are both implemented using lazy evaluation or both usingrrec

Next, we allow a compound element to be used anywhere a simplesjye slowdown, there is little reason to prefer one over themon

element can be used by replacing each p-deque of[typith a
p-deque of typgCE «]. With these changes, we can finally replace
each[CE a]x with [a]~. Figure 3 shows the final type definitions.

The rest of the implementation is mostly unaffected by these
changes. We need only provide wrapper functions<dge) and
I hd (r hd) to inject and project elements of typeto and from
type CE«. These wrapper functions are exported to the user, while
X, tl,andrtl continue to call the original versions.

Although these changes are all relatively minor, we feet tha
the original implementation using polymorphic recursistiiar su-
perior. Not only does the non-uniform type provide much drett
documentation of the invariants of the data structure, {ibat the
first level p-deques contain elements of typethe second level p-
deques contain elements of type CE and so on), it also allows
the type system to catch many more accidental violationbexe
invariants.

6 AnAlternativel mplementation of Catenable De-
ques

the grounds of simplicity or aesthetics. Which is to be preid
in practice can only be decided by a suitable empirical stluty
fortunately, we do not yet have enough experience with ediien
deques—especially persistent ones—to determine an ajguep
instruction mix for such a study.

7 Open Praoblems

The catenable deques of Kaplan and Tarjan [12] are asyroaligti
optimal. However, they are rather complex, so one might hope
that a simpler structure with equivalent asymptotic bouwvdsid
run faster in practice. The catenable deques describedsip#h
per are simpler, but achieve only amortized rather than twearse
bounds. It is still an open problem whether the catenabts tif
Okasaki [17] can be extended to the double-ended case. Such a
data structure would likely be simpler yet, but would alsbiaee
amortized rather than worst-case bounds. Is a simpler vears
approach possible?

A second area of further research involves extending chtena
deques with additional operations. For example, it is nagt easy

The catenable deques of Kaplan and Tarjan [12] share a super10 extend both our data structure and Kaplan and Tarjan'sige s

ficially similar structure with ours, but the two implemetivas
are difficult to compare because of differences in their dyiwy
mechanisms. To facilitate comparison, we adapt their implea-
tion to our framework. This greatly simplifies many detailsheir
structure, but also degrades its bounds from worst-casento-a
tized. For the opposite view, see [12], where Kaplan andaharj
have adapted our implementation to their framework.

In Kaplan and Tarjan’s design|eft pair is a pair{f, a), where
f is a p-deque containing at least two elements aigla c-deque
of right pairs. Aright pair is a pair(b, r), wherer is a p-deque
containing at least two elements ahds a c-deque of left pairs.
A c-deque is either a simple p-deque, writteh), or a four-tuple
(f,a,b,r) containing both a left pair and a right pair. The type

port bothreverseandfindMinin O(1) time [12]. Can either design
be extended with efficient primitives for random accesshsas
looking up or updating théh element, or inserting or deleting the
ith element? Kaplan and Tarjan [13] have described a relattd d
structure supporting these operations, but catenatidmaindesign
requiresO(log log(min{ni,n2})) time. Is it possible to achieve
constant-time catenation for such a data structure?
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