
Catenable Double-Ended Queues

Chris Okasaki∗

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
(cokasaki@cs.cmu.edu)

Abstract

Catenable double-ended queues are double-ended queues (deques)
that support catenation (i.e., append) efficiently withoutsacrificing
the efficiency of other operations. We present a purely functional
implementation of catenable deques for which every operation, in-
cluding catenation, takesO(1) amortized time. Kaplan and Tar-
jan have independently developed a much more complicated im-
plementation of catenable deques that achieves similar worst-case
bounds. The two designs are superficially similar, but differ in the
underlying mechanism used to achieve efficiency in a persistent set-
ting (i.e., when used in a non-single-threaded fashion). Their imple-
mentation uses a technique called recursive slowdown, while ours
relies on the simpler mechanism of lazy evaluation.

Besides lazy evaluation, our implementation also exemplifies
the use of two additional language features: polymorphic recursion
and views. Neither is indispensable, but both significantlysimplify
the presentation.

1 Introduction

Purely functional programming is gradually gaining recognition in
the data structures community as an excellent medium for design-
ing persistent(i.e., immutable) data structures. Several other gen-
eral techniques for designing persistent data structures exist [5, 4],
but unfortunately, these other techniques break down when the data
structure in question supports operations that combine twoor more
structures. Examples of such offending operations includecatenat-
ing (i.e., appending) two sequences, unioning two sets, or merging
two priority queues. Of these, sequence catenation has received the
most attention [6, 1, 11, 17].

Two implementations of purely functional catenable lists have
recently been proposed. Kaplan and Tarjan [11] described anap-
proach that supports catenation and all other usual list operations
in O(1) worst-case time. Okasaki [17] presented a much sim-
pler implementation based on lazy evaluation that achievedsimi-
lar amortized bounds. In this paper, we extend these resultsto the
double-ended case, yielding a purely functional implementation of
catenable deques that supports catenation and all other usual deque

∗This research was sponsored by the Advanced Research Projects Agency CSTO
under the title “The Fox Project: Advanced Languages for Systems Software”, ARPA
Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

To appear in ICFP’97.

operations inO(1) amortized time. Kaplan and Tarjan [12] have in-
dependently developed an implementation of catenable deques that
achieves the same bounds in the worst case. However, our design is
much simpler than theirs.

Continuing in the tradition of [16, 17, 18], our implementation
reinforces the important role of lazy evaluation in purely functional
data structures. Our implementation also makes extensive use of
two additional language features: polymorphic recursion [14, 7]
and views [22, 2, 20]. Although neither is indispensable, both sig-
nificantly simplify the presentation. We hope that this example will
motivate more language designers to include these featuresin their
languages.

Section 2 briefly reviews related work. Section 3 describes the
notation and properties we will assume for deques and for lazy eval-
uation. Section 4 presents our implementation of catenabledeques
and its analysis. Section 5 shows how to implement our data struc-
ture in a language without views or polymorphic recursion. Sec-
tion 6 compares our data structure to the catenable deques ofKa-
plan and Tarjan [12]. Finally, Section 7 concludes with a fewopen
problems.

2 Related Work

Hood and Melville [9] presented the first purely functional imple-
mentation of queues to support all normal operations inO(1) time.
In his thesis, Hood [8] extended this design to the double-ended
case. Chuang and Goldberg [3] later re-invented Hood’s datastruc-
ture. Okasaki [16] simplified these implementations of queues and
deques using lazy evaluation. Kaplan and Tarjan [11] introduced an
entirely different implementation of deques, based on a technique
calledrecursive slowdown.

None of the above structures support catenation efficiently. My-
ers [15] described an implementation of AVL trees that supports
all relevant deque operations, including catenation, inO(log n)
time. Hughes [10] represented lists as functions in such a way that
catenation becomes simple function composition, running in O(1)
time. Unfortunately, his structure can only be inspectedin toto —
it no longer supports individual head and tail operations efficiently.
Driscoll, Sleator, and Tarjan [6] presented the first implementation
of catenable lists to support all operations in sublogarithmic time:
catenation inO(log log k) time, wherek is the number of list opera-
tions (which may be much smaller thann), and all other operations
in O(1) time. Their implementation is persistent, but not purely
functional. Buchsbaum and Tarjan [1] gave a purely functional im-
plementation of catenable deques supporting deletion of the first or
last element inO(log∗ k) time, and all other operations inO(1)
time.

Kaplan and Tarjan [11] finally achieved an implementation of
catenable lists that supports all operations, including catenation, in
O(1) time. Their implementation is based on recursive slowdown

and achieves its bounds in the worst case. Okasaki [17] gave amuch
simpler implementation based on lazy evaluation that also supports
all operations inO(1) time, but only in the amortized sense. The
catenable deques in this paper are descended from Kaplan andTar-
jan’s implementation of catenable lists, but use lazy evaluation in-
stead of recursive slowdown. In independent work, Kaplan and
Tarjan [12] have also extended their implementation of catenable
lists to the double-ended case. Modulo the difference between lazy
evaluation and recursive slowdown, their approach is very similar
to ours. For comparison purposes, we present their data structure in
Section 6. To make the comparison clearer, we have adapted their
data structure to use lazy evaluation instead of recursive slowdown.
This greatly simplifies their design, but also degrades its bounds
from worst-case to amortized.

3 Preliminaries

3.1 Non-Catenable Deques

Our implementation of catenable deques uses non-catenabledeques
internally. We will henceforth refer to catenable deques asc-deques
and to non-catenable deques asp-deques(primitive deques).

Let [α] denote the type of p-deques containing elements of type
α. Let [α]k+ denote the subtype of p-deques of lengthk or greater.
We assume that we are given an implementation of p-deques that
supports each of the following operations inO(1) time (see, for
example, [8, 3, 16]):

[] : [α] (the empty deque)
/ : α× [α] → [α] (left cons)
. : [α]× α → [α] (right cons)

lhd,rhd : [α]1+ → α (left and right head)
ltl,rtl : [α]1+ → [α] (left and right tail)

| · | : [α] → int (size)

/ and. are infix operators, and are right-associative and left-associative,
respectively. Even though we treat p-deques as an abstract data
type, we allow[], /, and. to be used in pattern matching. These
kinds of abstract patterns are calledviews [22, 2, 20]. A [] pat-
tern matches the empty deque. The patternph / pt means “given a
non-empty dequed, match patternph againstlhd d and patternpt
againstltl d”. The patternpt.ph is interpreted similarly. In both
expressions and patterns, we use the abbreviation[x1, . . . , xn] for
x1 / · · · / xn / [] (or equivalently,[] . x1 . · · · . xn).

P-deques do not support catenation efficiently, but given the
above primitives, it is simple to implement a catenation operation
that runs in time proportional to the shorter of the two arguments.

1 : [α]× [α] → [α]

xs1 [] = xs
[]1 ys = ys

(x / xs)1 (ys . y) = x / (xs 1 ys) . y

Note that the last line is ambiguous, depending on the relative prece-
dences of/ and ., but both readings yield the same result since
x / (d . y) = (x / d) . y.

3.2 Lazy Evaluation

We assume that all computation is strict except where explicitly
indicated otherwise. To delay the evaluation of an expression e of
typeτ , we writee. This returns a suspension of typeτ . To force the
execution of a suspensions of type τ , we write !s, which returns
a value of typeτ . Suspensions arememoized, meaning that the
first time a suspension is forced, the value is saved so that the next

time the suspension is forced, the value can be looked up instead of
recomputed.

In addition, we provide a view for suspensions that allows forc-
ing during pattern matching. When matching a suspension against a
patternp, we first force the suspension, and then match the resulting
value againstp.

This style of notation for lazy evaluation is explored more thor-
oughly in [19], along with many examples of its use.

4 Catenable Deques

In this section, we present our implementation of c-deques.C-
deques support exactly the same operations as p-deques, butim-
prove the running time of1 to O(1) amortized time. Except for
size, the remaining operations continue to run inO(1) time, al-
though forltl andrtl this becomes an amortized bound, whereas
for some implementations of p-deques it may be a worst-case bound.
If desired, we could also makesizerun in O(1) time by adding a
size field to the root of each c-deque.

Except at the level of types, we use the same notation for bothc-
deques and p-deques. Whether a given occurrence of, say,/ refers
to c-deques or p-deques will always be uniquely determined by con-
text.

4.1 Representation

Let [α]1 denote the type of c-deques containing elements of type
α. A c-deque is either a simple p-deque, written〈d〉, or a five-tuple
〈f, a,m, b, r〉, wheref , m, andr are p-deques anda and b are
suspended c-deques of compound elements.f andr must contain at
least three elements each andm must contain at least two elements.
A compound element is either a simple p-deque, written〈d〉, or a
three-tuple〈f, c, r〉, whered, f , andr are p-deques containing at
least two elements each, andc is a suspended c-deque of compound
elements. These types are summarized by the following equations:

[α]1 = [α] | ([α]3+ × [CEα]1 × [α]2+ × [CEα]1 × [α]3+)

CEα = [α]2+ | ([α]2+ × [CEα]1 × [α]2+)

Whether〈d〉 is a c-deque or a compound element will always be
uniquely determined by context.

Note that[α]1 is defined in terms of[CE α]1. Supporting this
kind of non-uniform type in a useful way requirespolymorphic re-
cursion [14, 7]. (See Section 5 for how to cope without polymor-
phic recursion.)

The order of elements is from left to right at every level. Hence,
the first and last elements of〈f, a,m, b, r〉 are the first element of
f and the last element ofr, respectively.

4.2 Operations

Next, we define the operations on c-deques. The empty c-dequeis
defined in terms of the empty p-deque.

[] = 〈[]〉

Adding an element on the left or right simply adds the elementto
the p-deque on that side.

x / 〈d〉 = 〈x / d〉
x / 〈f, a,m, b, r〉 = 〈x / f, a,m, b, r〉
〈d〉 . x = 〈d . x〉
〈f, a,m, b, r〉 . x = 〈f, a,m, b, r . x〉

2

Similarly, asking for the leftmost or rightmost element returns the
appropriate element of the p-deque on that side.

lhd 〈x / d〉 = x
lhd 〈x / f, a,m, b, r〉 = x
rhd 〈d . x〉 = x
rhd 〈f, a,m, b, r . x〉 = x

The auxiliary functionsltl′ andrtl′ remove the elements re-
turned bylhd andrhd.

ltl′ 〈x / d〉 = 〈d〉
ltl′ 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉
rtl′ 〈d . x〉 = 〈d〉
rtl′ 〈f, a,m, b, r . x〉 = 〈f, a,m, b, r〉

These auxiliary functions sometimes violate the size requirements
of the data structure by leaving thef or r fields with only two ele-
ments instead of three. We will use these functions only whenwe
intend to immediately replace the missing element.

We next turn to catenation. First, we consider catenating two
simple p-deques. If one or both p-deques contains fewer thanfour
elements, we combine them using p-deque catenation.

〈d1〉 1 〈d2〉 = 〈d1 1 d2〉 , if |d1| < 4 ∨ |d2| < 4

Otherwise, we place both p-deques in a five-tuple with emptya and
b fields. We remove one element from each p-deque to form the
middle field.

〈d1.x〉 1 〈y/d2〉 = 〈d1, [], [x, y], [], d2〉 , if |d1| ≥ 3∧ |d2| ≥ 3

When catenating a p-deque with a five-tuple, we simply invoke
p-deque catenation if the p-deque is short enough, and otherwise
move the existingf or r field intoa or b and installd as the newf
or r field.

〈d〉 1 〈f, a,m, b, r〉 = 〈d 1 f, a,m, b, r〉 , if |d| < 4

= 〈d, 〈f〉 / !a,m, b, r〉 , otherwise
〈f, a,m, b, r〉 1 〈d〉 = 〈f, a,m, b, r 1 d〉 , if |d| < 4

= 〈f, a,m, !b . 〈r〉, d〉 , otherwise

The most interesting case is catenating two five-tuples. Theleft half
of a five-tuple comprises thef anda fields, and half of them field.
The right half of a five-tuple comprises ther andb fields, and the
other half of them field. To catenate two five-tuples, we first fold
the right half of the left tuple into the left half, and the left half of
the right tuple into the right half. Then, we glue the two halves
together.

〈f1, a1,m1, b1, r1 . x〉 1 〈y / f2, a2,m2, b2, r2〉 =

〈f1, !a1 . 〈m1, b1, r1〉, [x, y], 〈f2, a2,m2〉 / !b2, r2〉

The definitions ofltl andrtl use several auxiliary views.
The first pair of views,/ and., are just like/ and. except that
they delay their tails. For example, matchingph / pt against a
non-empty c-dequexs first matchesph againstlhd xs and then
matchespt againstltl xs. The second pair of views,≺ and�,
are just like/ and. except that they callltl′ andrtl′ instead of
ltl andrtl.

Finally, we are ready to defineltl andrtl. We begin with
ltl. The simplest cases are whenltl xs can discard the leftmost
element ofxs without violating the size restrictions. This happens
whenxs is a simple p-deque or whenxs is a five-tuple whosef
field contains more than three elements.

ltl 〈x / d〉 = 〈d〉
ltl 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉 , if |f | ≥ 3

In the remaining cases,xs is a five-tuple whosef field contains ex-
actly three elements so removing the leftmost element leaves only
two elements. To refill thef field, we first try to remove a com-
pound element from thea field. If it is a simple p-dequed, we add
it to thef field.

ltl 〈[x, y, z], 〈d〉 / a,m, b, r〉 = 〈y / z / d, a,m, b, r〉

Note the use of polymorphic recursion here — by matching against
the/ view,ltl on a c-deque of elements implicitly invokesltl on
a c-deque of compound elements. However, note that the recursive
call to ltl is suspended by the/ view. This use of lazy evalua-
tion is critical if the data structure is to be efficient in a persistent
setting [18].

We continue with the remaining clauses ofltl. If the first
compound element from thea field is a three-tuple〈f ′, c′, r′〉, then
we addf ′ to thef field and replace the three-tuple ina with 〈r′〉.
Finally, we catenatec′ anda to obtain the newa field.

ltl 〈[x, y, z], 〈f ′, c′, r′〉 ≺ a,m, b, r〉 =

〈y / z / f ′, !c′ 1 (〈r′〉 / a),m, b, r〉

If the a field is empty, then we attempt to remove a compound ele-
ment from theb field.

ltl 〈[x, y, z], [],m, 〈d〉 / b, r〉 =

〈y / z / m, [], d, b, r〉

ltl 〈[x, y, z], [],m, 〈f ′, c′, r′〉 / b, r〉 =

〈y / z / m, 〈f ′〉 / !c′, r′, b, r〉

If the a and b fields are both empty, then we add the remaining
elements of thef field tom and catenate the result withr.

ltl 〈[x, y, z], [],m, [], r〉 = 〈y / z / m〉 1 〈r〉

This completes the definition ofltl. rtl is defined symmetri-
cally. The complete implementation of c-deques is summarized in
Figure 1.

4.3 Analysis

We first argue informally that every operation runs inO(1) amor-
tized time. Then we prove this formally using a debit argument in
the style of [17, 18, 19].

First, note that onlyltl andrtl call themselves recursively.
The remaining operations clearly run inO(1) time since none of
them loop. Now considerltl (the argument forrtl is similar).
The first two cases terminate immediately. Several of the remaining
cases recursively callltl ona or b. But note that at the end of each
of these cases,f contains at least four elements:y, z, and two or
more elements from the p-deque used to refillf . Therefore, the next
call toltl will terminate immediately in the second clause. This
means that at most every other call toltl can call itself recursively.
Extending this argument a few steps further, we note that at most
every fourth call can make two recursive calls, at most everyeighth
call can make three recursive calls, and so on. Altogether then, the
amortized cost of any one call at the top level is

O(1 + 1

2
+ 1

4
+ 1

8
+ · · ·) = O(1).

As an aside, this argument explains the size restrictions weplace
on the various p-deques in five-tuples and compound elements. When
we refill anf or r field that has dropped below the minimum size,
we wish to raise it not justto the minimum size, butaboveit so
that the next operation that removes an element from that field will
terminate immediately. Therefore,m and the various p-deques in
compound elements that are used to refillf andr must contain at

3

[α]1 = [α] | ([α]3+ × [CEα]1 × [α]2+ × [CEα]1 × [α]3+)

CEα = [α]2+ | ([α]2+ × [CEα]1 × [α]2+)

[] = 〈[]〉

x / 〈d〉 = 〈x / d〉
x / 〈f, a,m, b, r〉 = 〈x / f, a,m, b, r〉
〈d〉 . x = 〈d . x〉
〈f, a,m, b, r〉 . x = 〈f, a,m, b, r . x〉

lhd 〈x / d〉 = x
lhd 〈x / f, a,m, b, r〉 = x
rhd 〈d . x〉 = x
rhd 〈f, a,m, b, r . x〉 = x

ltl′ 〈x / d〉 = 〈d〉
ltl′ 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉
rtl′ 〈d . x〉 = 〈d〉
rtl′ 〈f, a,m, b, r . x〉 = 〈f, a,m, b, r〉

〈d1〉 1 〈d2〉 = 〈d1 1 d2〉 , if |d1| < 4 ∨ |d2| < 4

〈d1 . x〉 1 〈y / d2〉 = 〈d1, [], [x, y], [], d2〉 , if |d1| ≥ 3 ∧ |d2| ≥ 3
〈d〉 1 〈f, a,m, b, r〉 = 〈d 1 f, a,m, b, r〉 , if |d| < 4

= 〈d, 〈f〉 / !a,m, b, r〉 , otherwise
〈f, a,m, b, r〉 1 〈d〉 = 〈f, a,m, b, r 1 d〉 , if |d| < 4

= 〈f, a,m, !b . 〈r〉, d〉 , otherwise
〈f1, a1,m1, b1, r1 . x〉 1 〈y / f2, a2,m2, b2, r2〉

= 〈f1, !a1 . 〈m1, b1, r1〉, [x, y], 〈f2, a2,m2〉 / !b2, r2〉

ltl 〈x / d〉 = 〈d〉
ltl 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉 , if |f | ≥ 3

ltl 〈[x, y, z], 〈d〉 / a,m, b, r〉 = 〈y / z / d, a,m, b, r〉

ltl 〈[x, y, z], 〈f ′, c′, r′〉 ≺ a,m, b, r〉 = 〈y / z / f ′, !c′ 1 (〈r′〉 / a),m, b, r〉

ltl 〈[x, y, z], [],m, 〈d〉 / b, r〉 = 〈y / z / m, [], d, b, r〉

ltl 〈[x, y, z], [],m, 〈f ′, c′, r′〉 / b, r〉 = 〈y / z / m, 〈f ′〉 / !c′, r′, b, r〉

ltl 〈[x, y, z], [],m, [], r〉 = 〈y / z / m〉 1 〈r〉

rtl 〈d . x〉 = 〈d〉
rtl 〈f, a,m, b, r . x〉 = 〈f, a,m, b, r〉 , if |r| ≥ 3

rtl 〈f, a,m, b . 〈d〉, [x, y, z]〉 = 〈f, a,m, b, d . x . y〉

rtl 〈f, a,m, b � 〈f ′, c′, r′〉, [x, y, z]〉 = 〈f, a,m, (b . 〈f ′〉) 1 !c′, r′ . x . y〉

rtl 〈f, a . 〈d〉,m, [], [x, y, z]〉 = 〈f, a, d, [],m . x . y〉

rtl 〈f, a . 〈f ′, c′, r′〉,m, [], [x, y, z]〉 = 〈f, a, f ′, !c′ . 〈r′〉,m . x . y〉

rtl 〈f, [],m, [], [x, y, z]〉 = 〈f〉 1 〈m . x . y〉

Figure 1: Catenable deques.

4

least two elements each. Thef andr fields in five-tuples must con-
tain at least three elements, because during catenation oneelement
is transferred to them field and the remainder of the p-deque goes in
a compound element (and thus must contain at least two elements).

Although the above informal argument provides a useful intu-
ition, it fails to address two important concerns. First, what happens
if there are other operations, such asrtl, interleaved with the calls
to ltl? Sinceltl andrtl can both recurse on either thea or
b field of a c-deque, we cannot blithely assume that they will not
interfere with each other. Second, what happens if c-dequesare
used persistently? For example, ifltl xs recurses to depthk, how
can we be sure that repeating this calln times will not takeO(nk)
time?

We could satisfy the first concern using any of several formal
techniques, such as the standard techniques of amortized analysis
using credits or potential functions [21] or the non-standard debit
techniques of Okasaki [17, 18, 19] for analyzing amortized data
structures involving lazy evaluation. The basic approach under any
of these methods is to establish an invariant and show that any indi-
vidual call toltl or rtl preserves the invariant, so any sequence
of interleaved calls also preserves the invariant. However, of these
various proof techniques, only debit arguments address theques-
tion of persistence. The key ingredient in this technique isthe use
of lazy evaluation to delay expensive computations. This allows
the results of these computations to be shared via memoization
among multiple “threads” of a non-single threaded computation.1

See [17, 18, 19] for a fuller discussion of the role of lazy evaluation
in persistent, amortized data structures.

In a debit argument, every suspension is assigned a certain num-
ber of debits, which account for the cost of eventually executing the
suspension. Every debit must be discharged before its correspond-
ing suspension may be forced. There are three kinds of suspensions
in our data structure: thea andb fields of five-tuples, and thec field
of three-tuples. We limit the number of debits on eachc field to
four, and limit the number of debits on eacha or b field according
to the sizes off andr.

• If |f | > 3 and|r| > 3, thena andb are allowed five debits
each.

• If |f | > 3 and|r| = 3, thena is allowed four debits andb is
allowed one debit.

• If |f | = 3 and|r| > 3, thena is allowed one debit andb is
allowed four debits.

• If |f | = 3 and|r| = 3, thena andb are allowed zero debits
each.

The amortized cost of each operation isO(1 + #debits discharged).
We show that1 discharges at most four debits and thatltl and
rtl discharge at most five debits each.
Proof: (1) The interesting case is catenating two five-tuplesxs1 =
〈f1, a1,m1, b1, r1〉 andxs2 = 〈f2, a2,m2, b2, r2〉. We create and
immediately discharge two debits to pay for the suspended/ and.
ontoa1 andb2. In addition, we discharge at most one debit from
eithera1 or a2, and at most one debit from eitherb1 or b2. Suppose
|r2| > 3. Thena2 might have five debits, one of which must be dis-
charged asa2 becomes thec field of a new three-tuple. Otherwise,
if |r2| = 3 and|r1| > 3, then the allowance ofa1 might decrease
by one, requiring the discharge of a single debit. A similar argu-
ment holds forb1 andb2. Altogether, we discharge no more than
four debits.

(ltl andrtl) Sinceltl andrtl are symmetric, we present
the argument only forltl. Consider a call toltl that recurses to

1This terminology can be somewhat confusing. Here the termthreadsrefers not to
concurrent threads of execution, but rather to multiple paths through the graph of data
dependencies. Reusing a given deque induces a branch in the graph of data dependen-
cies and hence creates a new thread.

depthk and note that every call except the outermost is enclosed in
a suspension. Five debits must be discharged before each of these
calls, but only the debits for the outermost call must be discharged
immediately. For each of the recursive calls, those five debits are
charged to the enclosing suspension. These debits will thenbe dis-
charged sometime before the enclosing suspension is forcedand the
recursive call in question is executed. We call this transfer of debits
from one set of suspensions to anotherdebit passing. Now, there is
one case for every clause ofltl. We describe only the cases for
clauses 2, 3, and 4. The other cases are similar.

• ltl 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉 , if |f | ≥ 3
This is a terminating call. If the length of thef field drops
from four to three, then the debit allowance ofa drops by four
and the debit allowance ofb drops by one. We pass these five
debits to the enclosing suspension, or discharge them if this
is the outermost call.

• ltl 〈[x, y, z], 〈d〉 / a,m, b, r〉 = 〈y / z / d, a,m, b, r〉
This is not a terminating call. Since we force thea field,
we must pass or discharge any debits currently on that field.
If |r| > 3 then there is currently at most one debit on the
a field. We pass this debit to the enclosing suspension or
discharge it if this is the outermost call. In addition, the new
suspension fora (the one create by the/ view) receives at
most five debits from its recursive call toltl. However, the
new allowance fora is five, so we do not pass on any of these
debits. If |r| = 3 then there are currently zero debits on the
a field. The new suspension fora receives at most five debits
from the recursive call, but the new allowance fora is four, so
we pass on one of these debits. Either way, we pass a single
debit (or discharge it if this is the outermost call).

• ltl 〈[x, y, z], 〈f ′, c′, r′〉 ≺ a,m, b, r〉 =

〈y / z / f ′, !c′ 1 (〈r′〉 / a),m, b, r〉
This is a terminating call. Since we force thea field, we must
pass on any debits that are currently on that field. There is
one such debit if|r| > 3 and none if|r| = 3. The newa
field receives at most four debits fromc′, at most four debits
from the call to1, and one newly created debit that accounts
for the call to/. The new allowance is five if|r| > 3 so we
pass on the excess four credits, making five altogether. The
new allowance is four if|r| = 3 so we pass on the excess
five debits. In either case, we pass or discharge a total of five
debits. 2

5 Restricting the Language of Implementation

The code presented in Section 4 takes advantage of both views
and polymorphic recursion. However, few current languagessup-
port these features, so we briefly sketch how the implementation
changes without them.

5.1 Without Views

Views [22, 2, 20] are a language mechanism allowing pattern match-
ing on abstract datatypes. As with pattern matching in general,
views are a syntactic convenience that can be replaced by explicit
calls to case predicates (such asnull) and access functions (such
aslhd andltl).

We use views in two ways. First, we use patterns such asx /
d andd . x on p-deques to both recognize and decompose non-
empty p-deques. The use of these patterns reveals nothing about
the representation of p-deques, which is held abstract. Second, we
use patterns such asx / a andx ≺ a on c-deques to decompose
these deques in non-standard ways. Note that we also use ordinary

5

ltl 〈x / d〉 = 〈d〉
ltl 〈x / f, a,m, b, r〉 = 〈f, a,m, b, r〉 , if |f | ≥ 3

ltl 〈[x, y, z], 〈d〉 / a,m, b, r〉 = 〈y / z / d, a,m, b, r〉

ltl 〈[x, y, z], 〈f ′, c′, r′〉 ≺ a,m, b, r〉 = 〈y / z / f ′, !c′ 1 (〈r′〉 / a),m, b, r〉

ltl 〈[x, y, z], [],m, 〈d〉 / b, r〉 = 〈y / z / m, [], d, b, r〉

ltl 〈[x, y, z], [],m, 〈f ′, c′, r′〉 / b, r〉 = 〈y / z / m, 〈f ′〉 / !c′, r′, b, r〉

ltl 〈[x, y, z], [],m, [], r〉 = 〈y / z / m〉 1 〈r〉

ltl 〈d〉 = 〈ltl d〉
ltl 〈f, a,m, b, r〉 =

if |f | > 3 then 〈ltl f, a,m, b, r〉
else let z = rhd f

y = rhd (rtl f)
a′ = !a

in if not (null a′) then
case lhd a′ of

〈d〉 → 〈y / z / d,ltl a′, m, b, r〉

| 〈f ′, c′, r′〉 → 〈y / z / d, !c′ 1 (〈r′〉 / (ltl′ a′)),m, b, r〉
else let b′ = !b

in if not (null b′) then
case lhd b′ of

〈d〉 → 〈y / z / m, [], d,ltl b′, r〉

| 〈f ′, c′, r′〉 → 〈y / z / m, 〈f ′〉 / !c′, r′,ltl b′, r〉
else 〈y / z / m〉 1 〈r〉

Figure 2: Theltl function, written with and without views.

[α]1 = [α] | ([α]3+ × [CEα]1 × [α]2+ × [CEα]1 × [α]3+)

CEα = [α]2+ | ([α]2+ × [CEα]1 × [α]2+)

[α]1 = [CEα] | ([CEα]3+ × [α]1 × [CEα]2+ × [α]1 × [CEα]3+)

CEα = α | [CEα]2+ | ([CEα]2+ × [α]1 × [CEα]2+)

Figure 3: The type of c-deques, with and without polymorphicrecursion.

6

pattern matching on c-deques to distinguish between, for instance,
〈d〉 and〈f, a,m, b, r〉. Views are not necessary for this last class
of patterns because they match the concrete representationof c-
deques, which is visible within the implementation.

To remove the dependency on views, we replace each view pat-
tern with appropriate calls tonull, lhd (rhd), andltl (rtl).
For example, Figure 2 contrasts versions of theltl function writ-
ten with and without views. The version with views is clearlymore
concise, but more importantly, it is also easier to understand, at least
for a reader comfortable with views. Even for a reader not comfort-
able with views, the version with views is probably easier toread
for the gist of the implementation, although for such a reader the
second version may be preferable for understanding the details.

5.2 Without Polymorphic Recursion

Polymorphic recursion [14, 7] allows one to write recursivefunc-
tions onnon-uniformrecursive datatypes. Without polymorphic
recursion, recursive functions can be written only foruniform re-
cursive types. The type of c-deques, as presented in Section4, is
non-uniform because[α]1 is defined in terms of[CE α]1 rather
than[α]1. If polymorphic recursion is not available, then we must
modify this type definition to be uniform.

Consider the elements in the various p-deques in the representa-
tion of a c-deque. These elements have typeα at the first (top) level,
type CEα at the second level, type CE(CE α) at the third level,
and so on. To make[α]1 uniform, we must collapse all of these
types into a single type. First, we allow a simple element to be used
anywhere a compound element can be used by extending the defini-
tion of CEα with a third summand of typeα (i.e., CEα = α| . . .).
Next, we allow a compound element to be used anywhere a simple
element can be used by replacing each p-deque of type[α] with a
p-deque of type[CEα]. With these changes, we can finally replace
each[CEα]1 with [α]1. Figure 3 shows the final type definitions.

The rest of the implementation is mostly unaffected by these
changes. We need only provide wrapper functions for/ (.) and
lhd (rhd) to inject and project elements of typeα to and from
type CEα. These wrapper functions are exported to the user, while
1, ltl, andrtl continue to call the original versions.

Although these changes are all relatively minor, we feel that
the original implementation using polymorphic recursion is far su-
perior. Not only does the non-uniform type provide much better
documentation of the invariants of the data structure (i.e., that the
first level p-deques contain elements of typeα, the second level p-
deques contain elements of type CEα, and so on), it also allows
the type system to catch many more accidental violations of these
invariants.

6 An Alternative Implementation of Catenable De-
ques

The catenable deques of Kaplan and Tarjan [12] share a super-
ficially similar structure with ours, but the two implementations
are difficult to compare because of differences in their underlying
mechanisms. To facilitate comparison, we adapt their implementa-
tion to our framework. This greatly simplifies many details of their
structure, but also degrades its bounds from worst-case to amor-
tized. For the opposite view, see [12], where Kaplan and Tarjan
have adapted our implementation to their framework.

In Kaplan and Tarjan’s design, aleft pair is a pair〈f, a〉, where
f is a p-deque containing at least two elements anda is a c-deque
of right pairs. Aright pair is a pair〈b, r〉, wherer is a p-deque
containing at least two elements andb is a c-deque of left pairs.
A c-deque is either a simple p-deque, written〈d〉, or a four-tuple
〈f, a, b, r〉 containing both a left pair and a right pair. The type

definitions and operations for this data structure are summarized in
Figure 4.

Kaplan and Tarjan’s design replaces our five-tuples with four-
tuples, and our three-tuples with left pairs and right pairs. In addi-
tion, they reduce the minimum size of thef andr fields in a c-deque
from three to two. On the other hand, our structure is more regular,
having no need to distinguish between left pairs and right pairs.

The operations on both structures are mostly similar. The largest
difference occurs in theltl andrtl functions. The question is:
when thef field becomes too small, how do we refill it from thea
field? In Kaplan and Tarjan’s design, this is accomplished bythe
following two rules:

ltl 〈[x, y], 〈[], r′〉 / a, b, r〉 = 〈y / r′, a, b, r〉

ltl 〈[x, y], 〈〈f ′, a′〉 / b′, r′〉 ≺ a, b, r〉 =

〈y / f ′, !a′ 1 (〈b′, r′〉 / a), b, r〉

The second rule, in particular, is rather involved, containing a total
of four views that force two suspensions and remove the first ele-
ments of two c-deques. In contrast, these are the equivalentrules
for our implementation:

ltl 〈[x, y, z], 〈d〉 / a,m, b, r〉 = 〈y / z / d, a,m, b, r〉

ltl 〈[x, y, z], 〈f ′, c′, r′〉 ≺ a,m, b, r〉 =

〈y / z / f ′, !c′ 1 (〈r′〉 / a), m, b, r〉

Here the second rule contains only two views, one to force thesus-
pension and one to remove the first element of the inner c-deque.

All in all, as long as our design and Kaplan and Tarjan’s design
are both implemented using lazy evaluation or both using recur-
sive slowdown, there is little reason to prefer one over the other on
the grounds of simplicity or aesthetics. Which is to be preferred
in practice can only be decided by a suitable empirical study. Un-
fortunately, we do not yet have enough experience with catenable
deques—especially persistent ones—to determine an appropriate
instruction mix for such a study.

7 Open Problems

The catenable deques of Kaplan and Tarjan [12] are asymptotically
optimal. However, they are rather complex, so one might hope
that a simpler structure with equivalent asymptotic boundswould
run faster in practice. The catenable deques described in this pa-
per are simpler, but achieve only amortized rather than worst-case
bounds. It is still an open problem whether the catenable lists of
Okasaki [17] can be extended to the double-ended case. Such a
data structure would likely be simpler yet, but would also achieve
amortized rather than worst-case bounds. Is a simpler worst-case
approach possible?

A second area of further research involves extending catenable
deques with additional operations. For example, it is relatively easy
to extend both our data structure and Kaplan and Tarjan’s to sup-
port bothreverseandfindMin in O(1) time [12]. Can either design
be extended with efficient primitives for random access, such as
looking up or updating theith element, or inserting or deleting the
ith element? Kaplan and Tarjan [13] have described a related data
structure supporting these operations, but catenation in that design
requiresO(log log(min{n1, n2})) time. Is it possible to achieve
constant-time catenation for such a data structure?

References

[1] Adam L. Buchsbaum and Robert E. Tarjan. Confluently per-
sistent deques via data structural bootstrapping.Journal of
Algorithms, 18(3):513–547, May 1995.

7

[α]1 = [α] | ([α]2+ × [Rightα]1 × [Leftα]1 × [α]2+)

Leftα = [α]2+ × [Rightα]1

Rightα = [Leftα]1 × [α]2+

[] = 〈[]〉

x / 〈d〉 = 〈x / d〉
x / 〈f, a, b, r〉 = 〈x / f, a, b, r〉
〈d〉 . x = 〈d . x〉
〈f, a, b, r〉 . x = 〈f, a, b, r . x〉

lhd 〈x / d〉 = x
lhd 〈x / f, a, b, r〉 = x
rhd 〈d . x〉 = x
rhd 〈f, a, b, r . x〉 = x

ltl′ 〈x / d〉 = 〈d〉
ltl′ 〈x / f, a, b, r〉 = 〈f, a, b, r〉
rtl′ 〈d . x〉 = 〈d〉
rtl′ 〈f, a, b, r . x〉 = 〈f, a, b, r〉

〈d1〉 1 〈d2〉 = 〈d1 1 d2〉 , if |d1| < 2 ∨ |d2| < 2

= 〈d1, [], [], d2〉 , otherwise
〈d〉 1 〈f, a, b, r〉 = 〈d 1 f, a, b, r〉 , if |d| < 3

= 〈d, 〈[], f〉 / !a, b, r〉 , otherwise
〈f, a, b, r〉 1 〈d〉 = 〈f, a, b, r 1 d〉 , if |d| < 3

= 〈f, a, !b . 〈r, []〉, d〉 , otherwise
〈f1, a1, b1, r1〉 1 〈f2, a2, b2, r2〉

= 〈f1, !a1 . 〈b1, r1〉, 〈f2, a2〉 / !b2, r2〉

ltl 〈x / d〉 = 〈d〉
ltl 〈x / f, a, b, r〉 = 〈f, a, b, r〉 , if |f | ≥ 2

ltl 〈[x, y], 〈[], r′〉 / a, b, r〉 = 〈y / r′, a, b, r〉

ltl 〈[x, y], 〈〈f ′, a′〉 / b′, r′〉 ≺ a, b, r〉 = 〈y / f ′, !a′ 1 (〈b′, r′〉 / a), b, r〉

ltl 〈[x, y], [], 〈f ′, a′〉 / b, r〉 = 〈y / f ′, a′, b, r〉

ltl 〈[x, y], [], [], r〉 = 〈y / r〉

rtl 〈d . x〉 = 〈d〉
rtl 〈f, a, b, r . x〉 = 〈f, a, b, r〉 , if |r| ≥ 2

rtl 〈f, a, b . 〈f ′, []〉, [x, y]〉 = 〈f, a, b, f ′ . x〉

rtl 〈f, a, b � 〈f ′, a′ . 〈b′, r′〉〉, [x, y]〉 = 〈f, a, (b . 〈f ′, a′〉) 1 !b′, r′ . x〉

rtl 〈f, a . 〈b′, r′〉, [], [x, y]〉 = 〈f, a, b′, r′ . x〉

rtl 〈f, [], [], [x, y]〉 = 〈f . x〉

Figure 4: Catenable deques based on a design by Kaplan and Tarjan [12], adapted to use lazy evaluation.

8

[2] F. Warren Burton and Robert D. Cameron. Pattern matching
with abstract data types.Journal of Functional Programming,
3(2):171–190, April 1993.

[3] Tyng-Ruey Chuang and Benjamin Goldberg. Real-time de-
ques, multihead Turing machines, and purely functional pro-
gramming. InConference on Functional Programming Lan-
guages and Computer Architecture, pages 289–298, June
1993.

[4] Paul F. Dietz. Fully persistent arrays. InWorkshop on Al-
gorithms and Data Structures, volume 382 ofLNCS, pages
67–74. Springer-Verlag, August 1989.

[5] James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and
Robert E. Tarjan. Making data structures persistent.Jour-
nal of Computer and System Sciences, 38(1):86–124, Febru-
ary 1989.

[6] James R. Driscoll, Daniel D. K. Sleator, and Robert E. Tarjan.
Fully persistent lists with catenation.Journal of the ACM,
41(5):943–959, September 1994.

[7] Fritz Henglein. Type inference with polymorphic recursion.
ACM Transactions on Programming Languages and Systems,
15(2):253–289, April 1993.

[8] Robert Hood. The Efficient Implementation of Very-High-
Level Programming Language Constructs. PhD thesis, De-
partment of Computer Science, Cornell University, August
1982. (Cornell TR 82-503).

[9] Robert Hood and Robert Melville. Real-time queue opera-
tions in pure Lisp.Information Processing Letters, 13(2):50–
53, November 1981.

[10] John Hughes. A novel representation of lists and its applica-
tion to the function “reverse”.Information Processing Letters,
22(3):141–144, March 1986.

[11] Haim Kaplan and Robert E. Tarjan. Persistent lists withcate-
nation via recursive slow-down. InACM Symposium on The-
ory of Computing, pages 93–102, May 1995.

[12] Haim Kaplan and Robert E. Tarjan. Purely functional lists
with catenation via recursive slow-down. Draft revision of
[11], August 1996.

[13] Haim Kaplan and Robert E. Tarjan. Purely functional repre-
sentations of catenable sorted lists. InACM Symposium on
Theory of Computing, pages 202–211, May 1996.

[14] Alan Mycroft. Polymorphic type schemes and recursive defi-
nitions. InInternational Symposium on Programming, volume
167 ofLNCS, pages 217–228. Springer-Verlag, April 1984.

[15] Eugene W. Myers. Efficient applicative data types. InACM
Symposium on Principles of Programming Languages, pages
66–75, January 1984.

[16] Chris Okasaki. Simple and efficient purely functional queues
and deques.Journal of Functional Programming, 5(4):583–
592, October 1995.

[17] Chris Okasaki. Amortization, lazy evaluation, and persis-
tence: Lists with catenation via lazy linking. InIEEE Sym-
posium on Foundations of Computer Science, pages 646–654,
October 1995.

[18] Chris Okasaki. The role of lazy evaluation in amortizeddata
structures. InACM SIGPLAN International Conference on
Functional Programming, pages 62–72, May 1996.

[19] Chris Okasaki.Purely Functional Data Structures. PhD the-
sis, School of Computer Science, Carnegie Mellon University,
September 1996.

[20] Pedro Palao Gostanza, Ricardo Peña, and Manuel Núñez. A
new look at pattern matching in abstract data types. InACM
SIGPLAN International Conference on Functional Program-
ming, pages 110–121, May 1996.

[21] Robert E. Tarjan. Amortized computational complexity. SIAM
Journal on Algebraic and Discrete Methods, 6(2):306–318,
April 1985.

[22] Philip Wadler. Views: A way for pattern matching to cohabit
with data abstraction. InACM Symposium on Principles of
Programming Languages, pages 307–313, January 1987.

9

