
From Fast Exponentiation to Square Matrices: An Adventure in Types

Chris Okasaki
Department of Computer Science

Columbia University
New York, NY 10027
(cdo@cs.columbia.edu)

Abstract

Square matrices serve as an interesting case study in func-
tional programming. Common representations, such as lists
of lists, are both inefficient—at least for access to individ-
ual elements—and error-prone, because the compiler cannot
enforce “squareness”. Switching to a typical balanced-tree
representation solves the first problem, but not the second.
We develop a representation that solves both problems: it
offers logarithmic access to each individual element and it
captures the shape invariants in the type, where they can
be checked by the compiler. One interesting feature of our
solution is that it translates the well-known fast exponentia-
tion algorithm to the level of types. Our implementation also
provides a stress test for today’s advanced type systems—
it uses nested types, polymorphic recursion, higher-order
kinds, and rank-2 polymorphism.

1 Introduction

How would you represent square matrices in your favorite
functional language? One common answer is as lists of lists.
Unfortunately, this simple approach suffers from at least two
weaknesses. First, it is inefficient—accessing an individual
element in an n × n matrix takes O(n) time.1 Second, it
is error-prone—the compiler has no way of enforcing that
your square matrices are actually square. The type fails to
constrain the inner lists to have the same length as the outer
list, or even the same length as each other!

Switching to a typical balanced-tree representation solves
only half the problem. It allows logarithmic access to indi-
vidual elements, but again fails to enforce the desired shape
invariants.

In this paper, we develop a representation of square ma-
trices that captures the shape invariants in the type, where
they can be checked at compile-time, while retaining loga-
rithmic access to each individual element. One interesting
feature of our solution is that it applies the well-known fast
exponentiation algorithm at the level of types. Our imple-

1On the other hand, a list-of-lists representation can be quite effi-

cient for bulk operations.

To appear in ICFP’99.

mentation also provides a stress test for today’s advanced
type systems—it uses nested types, polymorphic recursion,
higher-order kinds, and rank-2 polymorphism.

We begin by reviewing the quadtree data structure,
which we then modify to capture the shape invariants in the
type. However, this data structure only supports square ma-
trices whose dimensions are powers of two. We then adapt
the ideas of fast exponentiation to provide for square matri-
ces of arbitrary dimensions. Finally, we discuss some possi-
ble variations and conclude.

2 Quadtrees

A quadtree is a representation of square matrices that recur-
sively decomposes each non-singleton matrix into four quad-
rants, each of which is itself a square matrix [10]. David
Wise has studied functional quadtrees extensively [11, 4].
See also [3]. Quadtrees are easily implemented in Haskell [9]
as

> type Quad a = (a,a,a,a)
> data Square1 a = Zero a
> | Succ (Quad (Square1 a))

The names Zero and Succ refer to powers of two. Zero repre-
sents a 20×20 matrix (i.e., a singleton), and Succ represents
a 2k+1

× 2k+1 matrix that is decomposed into four 2k × 2k

matrices. For now, we disallow matrices whose dimensions
are not powers of two.

Although Wise has shown that this implementation is
efficient and quite convenient for many applications, it fails
to enforce the desired shape invariants. The reason is easy
to see: in the type Quad (Square1 a), there is no guarantee
that the submatrices are the same size.

We can fix this problem by decomposing matrices
bottom-up, rather than top-down. That is, instead of de-
composing a 2k+1

× 2k+1 matrix into a single 2 × 2 grid of
2k × 2k matrices, we will now decompose it into a single
2k×2k matrix containing 2×2 grids of elements. These two
views are illustrated in Figure 1.

We can implement the new type as

> data Square2 a = Zero a
> | Succ (Square2 (Quad a))

This is identical to the old type except that we have reversed
the order of the type constructors in the Succ case: Quad
(Square1 a) is now Square2 (Quad a). Figure 2 illustrates
a sample 4x4 matrix in both representations.

28

���
���

XXXXXX

(

h

(top-down)

��
��
��

PPPPPP

```̀

(bottom-up)

Figure 1: Decomposition of top-down and bottom-up
quadtrees.

a b

c d

e f

g h

i j

k l

m n

o p

(sample matrix)

Succ (Succ (Zero a,Zero b,Zero c,Zero d),
Succ (Zero e,Zero f,Zero g,Zero h),
Succ (Zero i,Zero j,Zero k,Zero l),
Succ (Zero m,Zero n,Zero o,Zero p))

(top-down)

Succ (Succ (Zero ((a,b,c,d),
(e,f,g,h),
(i,j,k,l),
(m,n,o,p))))

(bottom-up)

Figure 2: A sample 4x4 matrix in the top-down and bottom-
up representations.

The most striking difference between the two represen-
tations is that a tree in the bottom-up representation con-
tains many fewer constructors; the bottom-up approach ef-
fectively collapses all the constructors at each level of the
tree into a single constructor. In fact, this explains how
the bottom-up representation enforces the desired invari-
ants. By allowing multiple constructors at each level of the
tree, the top-down representation takes the risk that the
constructors may not all be the same (either all Succ or all
Zero. By allowing only a single constructor at each level of
the tree, the bottom-up representation avoids this risk.

Finally, note that the bottom-up representation is an
example of a nested (or non-regular) type [1], in which the
type Square2 a is defined recursively in terms of Square2
(Quad a), rather than in terms of itself. Paterson has also
considered bottom-up quadtrees as an example of nested
types (personal communication). See [8, 6, 2] for many other
examples of nested datatypes.

3 Fast Exponentiation, Vectors, and Rectangular
Matrices

Next, we briefly review the well-known fast exponentiation
algorithm, which raises a number to a non-negative integer
power.

> exp b n = fastexp 1 b n
>
> fastexp c b n -- = c * b^n
> | n == 0 = c
> | even n = fastexp c (b*b) (half n)
> | odd n = fastexp (c*b) (b*b) (half n)

The iterative version of this function, fastexp, works by
repeatedly squaring the base b and halving the exponent n.
The accumulating parameter c collects the product of all
the bases for which n was odd. When n reaches 0, the final
answer is contained in c. The main function exp simply calls
fastexp with c initialized to 1.

Now, what does fast exponentiation have to do with
square matrices? Well, instead of raising a number b to
a power n, suppose we were to raise a type t to the power n.
One way to think of the type tn is as the type of t-vectors of
length n. Then, we can think of the type (tn)n as n×n ma-
trices of t’s. More specifically, if we have a type constructor
v such that va = a

n, then v(va) is the type of n× n square
matrices.

But, we are skipping ahead. For now, let us concentrate
on the simpler problem of implementing vectors based on
the fast exponentiation algorithm. The following type def-
initions mirror the definitions of exp and fastexp except
that they are missing the integer argument n.

> type Vector a = Vector_ () a
> data Vector_ v w =
> Zero v
> | Even (Vector_ v (w,w))
> | Odd (Vector_ (v,w) (w,w))

Note that we have replaced multiplication with the product
type constructor, and 1 with the unit type (). The parame-
ters v and w are now the types of fixed-length vectors of a’s.
The product types (v,w) and (w,w) represent the combi-
nation of two fixed-length vectors into another vector whose
length is the sum of the other two. The size of each top-level
vector is an integer value that is supplied when the vector
is created.

29





















header

Odd

Even

Odd

Zero

@
@

�
�
A
A
�
�

A
A
�
�
C
C
�
�

C
C
�
�

() a

b c d e

Figure 3: A sample vector containing the elements a,b,c,d,e.
Note the header that precedes the actual tree.

> create x n = create_ () x n
> create_ v w n
> | n == 0 = Zero v
> | even n = Even (create_ v (w,w) (half n))
> | odd n = Odd (create_ (v,w) (w,w) (half n))

Interestingly, the resulting trees bear the same relationship
to the rightist right-perfect trees of Kaldewaij and Dielis-
sen [7] as bottom-up quadtrees do to ordinary (top-down)
quadtrees. Figure 3 shows a sample vector of five elements.
Note the path of Even, Odd, and Zero constructors that pre-
cedes the actual tree. We call such a path a header ; it
determines the type of the final tree. Such headers appear
in many, but by no means all, nested datatypes.

Vector is another example of a nested type. As is typical
of functions over nested types, the helper function create
requires polymorphic recursion, because the recursive calls
in the function occur at different types. For example, a call
to create at type v -> w -> Int -> Vector v w might
make a recursive call to create at type v -> (w,w) -> Int
-> Vector v (w,w) (in the even case) or at type (v,w) ->
(w,w) -> Int -> Vector (v,w) (w,w) (in the odd case).
Type inference is undecidable in the presence of polymor-
phic recursion [5], so Haskell insists that functions involv-
ing polymorphic recursion be accompanied by an explicit
type signature. Therefore, the above definition is not legal
Haskell without the signature

> create_ :: v -> w -> Int -> Vector_ v w

It is trivial to adapt this implementation of vectors to
support rectangular matrices. When we finally reach the
Zero constructor, the type v represents fixed-length vec-
tors of the appropriate size. We obtain rectangular matrices
simply by considering variable-length vectors of these fixed-
length vectors.

> type Rect a = Rect_ () a
> data Rect_ v w =
> ZeroR (Vector v)
> | EvenR (Rect_ v (w,w))
> | OddR (Rect_ (v,w) (w,w))

We now know that all the inner vectors have the same
length, but we still do not know whether the outer vector
has the same length.

4 Square Matrices

In the previous section, we hinted that the key to repre-
senting square matrices is to obtain a type constructor v for

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

Odd

Even

Odd

Zero

t

Q
Q
Q
Q
Q

�
�
�
�
�
A
A
AA

�
�
��

@
@
@@

�
�
��
A
A
AA

�
�
��

A
A
AA

�
�
��

() SS��
CC�� AA��
CC�� CC��

()a

bcde SS��
CC�� AA��
CC�� CC��

()f
ghij

SS��
CC�� AA��
CC�� CC��

()k

lmno

SS��
CC�� AA��
CC�� CC��

()p

qrst

SS��
CC�� AA��
CC�� CC��

()u

vwxy

Figure 4: A sample 5×5 square matrix. The circle indicates
the root of the outer vector. The square indicates the roots
of the inner vectors.

fixed-length vectors. Then, we could apply v twice to obtain
the type v (v a). However, in the type for rectangular ma-
trices, we obtained a type v rather than a type constructor.
Hence, to get square matrices, we have to shift all of our
type manipulations from the level of types to the level of
type constructors. In other words, we need to work at kind
* -> * rather than kind *.

We begin with the following auxiliary types:

> newtype Empty a = E ()
> newtype Id a = I a
> newtype Pair v w a = P (v a, w a)

Empty is the type constructor for empty vectors; Id is the
type constructor for singleton vectors. If v and w are type
constructors for vectors of lengthm and n, respectively, then
Pair v w is the type constructor for vectors of length m+n.

With these auxiliary types, we can now write Square in
the same style as Vector and Rect, except that we need to
carry the element type a around until we are ready to apply
the desired type constructor.

> type Square a = Square_ Empty Id a
> data Square_ v w a =
> Zero (v (v a))
> | Even (Square_ v (Pair w w) a)
> | Odd (Square_ (Pair v w) (Pair w w) a)

This type remedies both of our original complaints about the
lists-of-lists representation. It supports logarithmic access to
each individual element, and it captures the “squareness”
invariants in the type, where they can be checked by the
type checker.2 Figure 4 shows a sample 5× 5 matrix.

Now that we have the type, we can begin to define some
functions on this type. Here we consider only the index-
ing function sub; Appendix A contains implementations of

2This is true only for the Square a type. If the programmer ac-
cesses the Square type constructor directly, she can still do all sorts

of horrible things.

30



several other useful functions. We begin with indexing func-
tions for the auxiliary vector types.

> subE i (E ()) = fail
> subI 0 (I x) = x
> subP subv subw vsize i (P (v,w))
> | i < vsize = subv i v
> | i >= vsize = subw (i-vsize) w

Indexing into the empty vector always fails. Indexing into a
singleton vector succeeds only when the index is 0. Indexing
into a pair of vectors requires that we know how to index
into each of the component vectors. We also need to know
the size of the left vector. Indices below that size are in
the left vector; indices equal to or above that size are in the
right vector.

Using these basic indexing functions as building blocks,
sub walks the header path of Even’s and Odd’s, gradually
constructing the appropriate indexing functions for the type
constructors v and w. When it finally reaches the Zero, it
applies the indexing function for v twice: once with the row
and once with the column. Most of this work is done by the
helper function sub .

> sub (i,j) m = sub_ subE subI 0 1 (i,j) m
>
> sub_ subv subw vsize wsize (i,j) (Zero vv) =
> subv i (subv j vv)
> sub_ subv subw vsize wsize (i,j) (Even m) =
> sub_ subv (subP subw subw wsize)
> vsize (wsize+wsize) (i,j) m
> sub_ subv subw vsize wsize (i,j) (Odd m) =
> sub_ (subP subv subw vsize)
> (subP subw subw wsize)
> (vsize+wsize) (wsize+wsize) (i,j) m

We are dealing with a nested type, so we might expect to
use polymorphic recursion. And, indeed, the Even and Odd
cases of sub do require polymorphic recursion. But some-
thing even more interesting happens in the Zero case. The
indexing function subv is applied twice: once to a vector of
vectors and once to a vector of elements. To support this,
subv must be polymorphic. But subv is not the function
being defined, so polymorphic recursion does not help us
here. Instead, we need something called rank-2 polymor-
phism, that is, the ability to say that an argument to a
function is itself a polymorphic value. The Haskell standard
does not support rank-2 polymorphism, but at least two
popular implementions (GHC and Hugs) do. In the syntax
of those implementations, we would write the signature for
sub as

> sub_ :: (forall b. Int -> v b -> b)
> -> (forall b. Int -> w b -> b)
> -> Int -> Int
> -> (Int,Int)
> -> Square_ v w a -> a

GHC and Hugs do not attempt to infer rank-2 types, so this
type signature is mandatory.3

Bird and Paterson [2] also consider how rank-2 types
arise when dealing with nested datatypes.

3Even without the rank-2 types, the type signature would still be
mandatory because of the polymorphic recursion.

5 Performance

Preliminary benchmarks indicate that this implementation
runs about twice as slow as an implementation that uses
essentially the same algorithms, but with an ordinary rep-
resentation that does not enforce the shape invariants. The
main tradeoffs are these:

• (Less Space) A particular matrix requires many fewer
constructors in the nested type than in the equivalent
non-nested type. For example, compare the matrices in
Figure 2. Assume that there is a non-zero space over-
head to represent the tag in a datatype with more than
one constructor, and that there is no such overhead in
newtypes or tuples. Then the nested representation of
an n× n matrix has an O(log n) space overhead, com-
pared to an O(n2) space overhead in the non-nested
representation.

• (More Time) Accessing an element in the nested repre-
sentation may require 50% more pointer chasing than in
the equivalent non-nested representation. In the nested
representation, accessing an element traverses a total
of approximately 3 log n nodes: approximately log n
nodes each in the header, in the outer vector, and in
the inner vector. In the non-nested representation, we
only traverse the nodes in the outer vector and the in-
ner vector—there is no separate header. (On the other
hand, if it there is a time cost associated with pattern
matching on a datatype with more than one construc-
tor as opposed to a newtype or a tuple, then the nested
representation may come out ahead. It uses non-trivial
pattern matching only in the approximately log n nodes
of the header, whereas the non-nested representation
uses non-trivial pattern matching at all 2 log n steps
through the outer and inner vectors.)

• (More Time) The biggest culprit in the relatively slow
speed of the nested representation is the way that it
builds up the indexing function subv incrementally ev-
ery time the sub function is called. Building all those
closures at run-time takes a large amount of time com-
pared to executing a compiled loop. (It also requires a
great deal of space, but this demand is transient.) In
contrast, the non-nested representation allows the subv
function to be written as an ordinary loop.

Modifying the implementation to cache a copy of the subv
function rather than rebuilding it every time, as in Variation
#1 in the next section, improves the running time to only
about 10% slower than the non-type-safe version.

6 Variations

In this section, we consider a handful of possible variations
on this theme, some that work and some that do not. The
ones that do not give us insight into which features of our
solution are essential.

Variation #1 One of the dominant costs in executing
functions such as sub is incrementally building the appropri-
ate functions on vectors. These functions have to be built up
incrementally, because matrices of different sizes will need
functions for vectors of different types. However, multiple
calls to sub on the same matrix will always build the same
vector functions. Ideally, we would be able to share these

31



functions across the various calls. We can do just that by
storing the function as an extra field in the Zero constructor.
We will again need a rank-2 type signature for the function.

> data Square_ v w a =
> Zero (v (v a)) (forall b. Int -> v b -> b)
> | Even (Square_ v (Pair w w) a)
> | Odd (Square_ (Pair v w) (Pair w w) a)

Now the indexing function is built once when the matrix is
initially created, and shared among all matrices descended
from this original matrix via a chain of updates. Of course,
we may want to keep specialized copies of other functions as
well, such as update, map, etc.

Variation #2 Another variation we might consider is us-
ing triples or quadruples rather than pairs. For example, we
could rewrite the fast exponentiation algorithm to use base
4

> exp b n = fastexp 1 b n
> fastexp c b n
> | n == 0 = c
> | n ‘mod‘ 4 == 0 =
> fastexp c (b^4) (b ‘div‘ 4)
> | n ‘mod‘ 4 == 1 =
> fastexp (c*b) (b^4) (b ‘div‘ 4)
> | n ‘mod‘ 4 == 2 =
> fastexp (c*b*b) (b^4) (b ‘div‘ 4)
> | n ‘mod‘ 4 == 3 =
> fastexp (c*b*b*b) (b^4) (b ‘div‘ 4)

leading to the vector type

> type Vector a = Vector_ () a
> data Vector_ v w =
> Zero v
> | Mod0 (Vector_ v (Quad w))
> | Mod1 (Vector_ (v,w) (Quad w))
> | Mod2 (Vector_ (v,w,w) (Quad w))
> | Mod3 (Vector_ (v,w,w,w) (Quad w))

We could then easily extend the same ideas to get square
matrices.

A representation based on quadruples uses approxi-
mately one-third as many internal nodes as one based on
pairs. If we assume that each quadruple requires 5 words of
memory, and each pair requires 3 words, then we would ex-
pect the representation based on quadruples to take about
1

3
·
5

3
= 5

9
≈ 56% as much space as the representation based

on pairs. Of course, this does not count the space required
for the elements themselves.

Variation #3 A variation that seems like it should work,
but that does not, is to switch to the simpler, non-iterative
version of fast exponentiation.

> exp b n
> | n == 0 = 1
> | even n = exp (b*b) (half n)
> | odd n = b * exp (b*b) (half n)

Converting this to a type yields

> data Vector a =
> Zero
> | Even (Vector (a,a))
> | Odd a (Vector (a,a))

which some readers may recognize as the binary random-
access lists of Okasaki [8]. Unfortunately, this type cannot
be adapted to yield square matrices. The problem lies in
the odd case, where a single element is represented outside
the recursive vector type. When we move from the level
of types to the level of type constructors, we find that we
never get our hands on the vector type constructor of the
right length, except in the special case that the length is a
power of 2. Hence, we cannot apply this constructor twice
to ensure that the outer and inner vectors are all the same
length.

Variation #4 A similar non-variation might be based on
the naive exponentition algorithm that simply performs n

multiplications.

> exp b 0 = 1
> exp b n = b * exp b (n-1)

Converting this to a type yields

> data Vector a =
> Zero
> | Succ a (Vector a)

We have just re-invented lists! We already know that lists
fail to support the invariants we want, but we are now in a
better position to say why. At the top level, lists support
variable-length data, as they should—so do all the vector
types we have considered. However, variable-length data is
all that lists support, even internally; they have no internal
structure that we can exploit.

Variation #5 On the other hand, the iterative version of
the naive exponentiation algorithm does provide the guar-
antees we want.

> exp b n = naiveexp 1 b n
>
> naiveexp c b 0 = c
> naiveexp c b n = naiveexp (b*c) b (n-1)

From this, we get the type

> type Vector a = Vector_ () a
> data Vector_ v a =
> Zero v
> | Succ (Vector_ (a,v) a)

which is similar to ordinary lists, except that the construc-
tors all appear before any of the data rather than being
interleaved with the data. For example, the list containing
the elements 1,2,3 would be written in this representation
as

Succ (Succ (Succ (Zero (1, (2, (3, ()))))))

Now, when we adapt this implementation to support square
matrices

> type Square a = Square_ Empty a
> data Square_ v a =
> Zero (v (v a))
> | Succ (Pair Id v) a

32



we find that Zero constructor does have access to the vector
type constructor of the right length, and hence can apply it
twice. Paterson has considered a similar implementation of
square matrices (personal communication).

Comparing the last three variations with the solution
in Section 4, we see that the variations based on iterative
(that is, tail-recursive) algorithms work, whereas the varia-
tions based on non-iterative algorithms fail. Looking closer,
we see that the type inherits the tail recursion of the algo-
rithm, and it is this tail recursion at the level of types that
ultimately allows the trick of applying the built-up type con-
structor twice to obtain square matrices.

Variation #6 As a final variation, note that it is trivial to
adapt our implementation to higher dimensions, simply by
applying the final vector type constructor more than twice.
For example, here is the type of cubic matrices.

> type Cubic a = Cubic_ Empty Id a
> data Cubic_ v w a =
> Zero (v (v (v a)))
> | Even (Cubic_ v (Pair w w) a)
> | Odd (Cubic_ (Pair v w) (Pair w w) a)

7 Discussion

We have shown how to implement efficient type-safe square
matrices, in which the shape invariants are captured in the
type and can be checked by the compiler. In fairness, how-
ever, that type-safety may be illusory. The advantage of
capturing the invariants in the type is that the compiler
has a better chance of catching errors statically. But, this
particular application uses such sophisticated concepts that
there is probably a much greater chance of introducing bugs
in the first place. Whether the greater chance of introducing
bugs outweighs the greater chance of detecting bugs, we do
not know.

More generally, our case study highlights several in-
teresting concepts in langugage design and programming
methodology. First, we illustrate the motivation and use
of a number of exotic features of the type system—nested
types, polymorphic recursion, higher-order kinds, and rank-
2 polymorphism—in a fairly natural setting. Second, we
show how and why types can be directly derived from algo-
rithms, especially tail-recursive algorithms. Although we
have considered only the family of exponentiation algo-
rithms, we expect that this idea can be usefully applied to
other families of algorithms as well.

References

[1] Richard S. Bird and Lambert Meertens. Nested
datatypes. In Conference on Mathematics of Program
Construction, volume 1422 of LNCS, June 1998.

[2] Richard S. Bird and Ross Paterson. de Bruijn notation
as a nested datatype. Journal of Functional Program-
ming, To appear.

[3] F. Warren Burton and John G. Kollias. Functional
programming with quadtrees. IEEE Software, 6(1):90–
97, January 1989.

[4] Jeremy D. Frens and David S. Wise. Matrix inversion
using quadtrees implemented in gofer. Technical Re-
port 433, Computer Science Department, Indiana Uni-
versity, May 1995.

[5] Fritz Henglein. Type inference with polymorphic recur-
sion. ACM Transactions on Programming Languages
and Systems, 15(2):253–289, April 1993.

[6] Ralf Hinze. Polytypic functions over nested datatypes
(extended abstract). In Latin-American Conference on
Functional Programming, March 1999.

[7] Anne Kaldewaij and Victor J. Dielissen. Leaf trees. Sci-
ence of Computer Programming, 26(1–3):149–165, May
1996.

[8] Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

[9] Simon Peyton Jones et al. Haskell 98:
A non-strict, purely functional language.
http://haskell.org/onlinereport/, February
1999.

[10] Hanan Samet. The quadtree and related hierarchical
data structures. ACM Computing Surveys, 16(2):187–
260, June 1984.

[11] David S. Wise. Matrix algorithms using quadtrees.
Technical Report 357, Computer Science Department,
Indiana University, June 1992.

33



A Additional Source Code

A.1

Create an n× n matrix.

> mkE x = E ()
> mkI x = I x
> mkP mkv mkw x = P (mkv x, mkw x)
>
> create x n = create_ mkE mkP n
>
> create_ :: (forall b. b -> v b)
> -> (forall b. b -> w b)
> -> a
> -> Int
> -> Square_ v w a
> create_ mkv mkw x n
> | n == 0 = Zero (mkv (mkv x))
> | even n = Even (create_ mkv (mkP mkw mkw) x (half n))
> | odd n = Odd (create_ (mkP mkv mkw) (mkP mkw mkw) x (half n))

A.2

Calculate the dimensions of a matrix.

> dims m = dims_ 0 1 m
>
> dims_ :: Int -> Int -> Square_ v w a -> (Int,Int)
> dims_ nv nw (Zero vv) = (nv,nv)
> dims_ nv nw (Even m) = dims_ nv (nw+nw) m
> dims_ nv nw (Odd m) = dims_ (nv+nw) (nw+nw) m

A.3

Apply an update function to an individual element of a matrix.

> upE i f (E ()) = fail
> upI 0 f (I x) = I (f x)
> upP upv upw nv i f (P (v,w))
> | i < nv = P (upv i f v,w)
> | i >= nv = P (v,upw (i-nv) f w)
>
> update (i,j) f m = upd_ upE upI 0 1 i j f m
>
> upd_ :: (forall b. Int -> (b -> b) -> v b -> v b)
> -> (forall b. Int -> (b -> b) -> w b -> w b)
> -> Int -> Int -> Int -> Int -> (a -> a)
> -> Square_ v w a -> Square_ v w a
> upd_ upv upw nv nw i j f (Zero vv) = Zero (upv j (upv i f) vv)
> upd_ upv upw nv nw i j f (Even m) = Even (upd_ upv (upP upw upw nw) nv (nw+nw) i j f m)
> upd_ upv upw nv nw i j f (Odd m) = Odd (upd_ (upP upv upw nv) (upP upw upw nw)
> (nv+nw) (nw+nw) i j f m)

A.4

Map a function across the elements of a matrix.

> mapE f (E ()) = E ()
> mapI f (I x) = I (f x)
> mapP mapv mapw f (P (v,w)) = P (mapv f v,mapw f w)
>
> mapMat f m = mapMat_ mapE mapI f m
>
> mapMat_ :: (forall c d. (c -> d) -> v c -> v d)
> -> (forall c d. (c -> d) -> w c -> w d)

34



> -> (a -> b)
> -> Square_ v w a -> Square_ v w b
> mapMat_ mapv mapw f (Zero vv) = Zero (mapv (mapv f) vv)
> mapMat_ mapv mapw f (Even m) = Even (mapMat_ mapv (mapP mapw mapw) f m)
> mapMat_ mapv mapw f (Odd m) = Odd (mapMat_ (mapP mapv mapw) (mapP mapw mapw) f m)

35


