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Abstract

We present purely functional implementations of queues and double-ended queues (deques)
requiring only O(1) time per operation in the worst case. Our algorithms are considerably
simpler than previous designs with the same bounds. The inspiration for our approach is
the incremental behavior of certain functions on lazy lists.

Capsule Review

This paper presents another example of the ability to write programs in functional lan-
guages that satisfy our desire for clarity while satisfying our need for efficiency. In this case,
the subject (often-studied) is the implementation of queues and dequeues that are func-
tional and exhibit constant-time worst-case insertion and deletion operations. Although
the problem has been solved previously, this paper presents the simplest algorithm so far.
As the author notes, it has a strange feature of requiring some laziness – but not too much!

1 Introduction

Consider the related problems of implementing queues and double-ended queues

(deques) in a purely functional programming language. The standard solutions

require only O(1) amortized time per operation, but might require O(n) time for

any particular operation. Improved solutions, requiring O(1) time per operation in

the worst case, have existed for well over a decade but have not seen widespread use,

perhaps due to their complexity. We present new implementations of queues and

deques, based on lazy lists, which also require O(1) worst-case time per operation

but which are considerably simpler than previous solutions.

We begin by reviewing the standard paired-list implementation of queues. We

then introduce lazy lists and use them to reduce the worst-case time per operation

to O(log n). Next, by incrementally pre-evaluating the lazy lists, we reduce the

worst-case time to O(1). Finally, we extend our approach to double-ended queues

and close with a discussion of related and future work.

SML source code for the algorithms described in this paper is available via anony-

mous ftp at ftp.cs.cmu.edu in the file /afs/cs/project/fox/ftp/queue.tar.Z.
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[ ]q = 〈[ ], [ ]〉

|〈L,R〉|q = |L|+ |R|

insert (e, 〈L,R〉) = 〈L, e : R〉

remove 〈L,R〉 = 〈hd L, 〈tl L,R〉〉 {|L| > 0}
= remove 〈rev R, [ ]〉 {|L| = 0}

Fig. 1. The standard implementation of queues as paired lists. Each operation requires
only O(1) amortized time, but any particular remove might require O(n) time.

2 Queues as paired lists

We desire an implementation of queues with the following specifications:

• [ ]q is the empty queue.

• insert (e,Q) returns the new queue obtained by adding e to the end of Q.

• remove Q returns the pair 〈e,Q′〉 consisting of the first element of Q and the

new queue obtained by deleting e from Q. remove Q is undefined if Q is empty.

• |Q|q returns the length of Q.

The first temptation is to represent a queue as a list. Although removing the head

of the list could easily be accomplished in O(1) time, inserting an element at the

end of the list would require O(n) time. If the list were maintained in reverse order,

then insertions would require O(1) time and removals O(n) time.

The standard trick, reinvented many times (Hood and Melville, 1981; Gries, 1981;

Burton, 1982), is to represent the queue as a pair of lists 〈L,R〉 where L is the front

portion of the queue and R is the rear portion of the queue in reverse order. In this

representation, the first element of the queue is the head of L and the last element

of the queue is the head of R. Each is easily accessible in O(1) time. The only

complication occurs if we try to remove an element when L is empty. Then, the

first element of the queue is the last element of R. In this case, we replace 〈[ ], R〉

with 〈rev R, [ ]〉 and try again. (The result is undefined if R is also empty.) Code

for this implementation appears in Figure 1.

Assuming that length information is maintained for each list, we can easily see

that each queue operation requires O(1) time except for removals that trigger a

list reversal. However, a list of length n is only reversed when there have been n

insertions since the last list reversal. By amortizing the cost of the reversal over

those insertions, we see that each operation requires only O(1) amortized time.

Although simple and efficient, there are two situations when this implementation

might be unsatisfactory. The first is in real-time programming, where an O(n) pause

to reverse the list might be unacceptable. The second is when previous versions of

the queue may be accessed—not just the most recent. (This property, known as

full persistence (Sarnak, 1986), is always assumed in purely functional languages.)

In this case, a list reversal might be triggered many times by repeatedly removing

from the same queue.
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X ++Y = Y {|X| = 0}
= hd X : (tl X ++Y ) {|X| > 0}

rev X = rev ′(X, [ ])
where rev ′(X,A) = A

= rev ′(tl X, hd X : A)
{|X| = 0}
{|X| > 0}

take (n,X) = [ ] {n = 0}
= hd X : take (n− 1, tl X) {n > 0}

drop (n,X) = X {n = 0}
= drop (n− 1, tl X) {n > 0}

Fig. 2. Some useful functions on lists. Note that append (++) and take are incremental
but rev and drop are not.

The culprit in both cases is the linear-time list reversal. The solution is to perform

the list reversal incrementally rather than all at once. However, one must take care

to begin the list reversal early enough that it is completed by the time the first

element is needed. We next discuss the use of lazy lists in incremental computation

and then show how to use lazy lists in implementing queues.

3 Lazy lists and incremental computation

For our purposes, lazy lists (often called streams (Abelson and Sussman, 1985)) have

two important properties. First, the tails of lists are computed on demand, that is,

they are not evaluated until and unless they are needed. Second, this evaluation,

when it does occur, is memoized (i.e., the first time a tail is demanded, the result is

cached so that the next time it is demanded the result can be returned immediately).

Such lists are widely useful and appear in many functional programming languages,

either built-in or in libraries. From here on, all lists in this paper are assumed to

be lazy.

We illustrate the properties of lazy lists through a discussion of the append

function (++), shown in Figure 2. How much time does this function require and

exactly when does the computation take place? For strict lists, append requires

|X |+ 1 steps, which occur all at once. Each step requires O(1) time. For lazy lists,

the answer is more complicated. Again the function requires |X |+1 steps, but these

steps occur one at a time. Because the recursive call to (tl X ++ Y ) is delayed, the

first step returns immediately, and each successive step does not take place until

the appropriate tail of the resulting lazy list is demanded. For this reason, we call

append an incremental function. Examining the other functions in Figure 2, we see

that take is also incremental, but rev and drop are not—each performs all of its

work at once. The key to implementing queues (and later deques) using lazy lists

will be to write rev and drop as incremental functions.

There is another difference between strict and lazy lists—for lazy lists, each of the

|X |+1 steps of the append might require more than O(1) time. During evaluation
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of the delayed tail (tl X ++ Y ), the tail of X is demanded. Evaluation of that tail

could involve arbitrary computation. However, since lazy lists are memoized, we

can guarantee that no step of the append requires more than O(1) time if we can

ensure that the lazy list X has been entirely evaluated prior to the call to append.

We will take advantage of this fact in Section 5.

Finally, note that although cons is lazy in its second argument, all other opera-

tions are assumed to be strict.

4 Queues as paired lazy lists

For the next implementation, we represent a queue as a pair of lazy lists 〈L,R〉

with R reversed in the usual way. To prevent the long pauses of the previous imple-

mentation, we wish to incrementally reverse R before it is needed, that is, before L

becomes empty. We do this by periodically replacing 〈L,R〉 with 〈L ++ rev R, [ ]〉.

Call this a rotation. The trick is to compute L++ rev R in an incremental fashion.

Since append is already incremental, we can make the whole thing incremental by

performing one step of the reverse for every step of the append. Of course, this

assumes that L and R are about the same length. We will maintain the invari-

ant |R| ≤ |L| and perform a rotation whenever the invariant would otherwise be

violated. Thus, a rotation occurs whenever |R| = |L|+ 1.

We implement rotations as follows, where rot (L,R, [ ]) = L ++ rev R and A

accumulates the partially reversed list:

rot (L,R,A) = hd R : A {|L| = 0}

= hd L : rot (tl L, tl R, hd R : A) {|L| > 0}

Note that this is nothing more than a fusion of the usual code for append with

the usual code for reverse. The complete code for this implementation of queues

appears in Figure 3.

Each operation still requires only O(1) amortized time, but we now show that the

worst-case time for any particular remove has been reduced to O(log n). Note that

remove takes O(1) time plus the time to evaluate tl L. If tl L has been evaluated

previously, then because of memoization, this evaluation will take only O(1) time.

Otherwise, by inspection of rot, the tail of L is either of the form A or rot (tl L′, . . .).

Evaluating the former takes O(1) time. Evaluating the latter takes O(1) time plus

the time to evaluate tl L′.† Similar arguments hold for evaluating tl L′. In particular,

evaluating tl L′ might involve evaluating tl L′′ and so on. We must show that no

more than a logarithmic number of tails are evaluated by a single removal. However,

since rot is always called with |R| = |L|+1, we know that if the tail of L is of the form

rot (tl L′, . . .), then |L′| < |L|/2. If the tail of L′ is also of the form rot (tl L′′, . . .),

then |L′′| < |L′|/2 and so on. Since the length of the lists is at least halved each

step, this pattern cannot repeat more than logn times.

† In evaluating rot (tl L′, tl R′, . . .), the evaluation of tl R′ always takes O(1) time since,
by inspection of insert, the tail of R′ is always of the form R′′. In fact, since R never
has a non-trivial delayed tail, we could implement it with a strict list instead of a lazy
one.
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Invariant
|R| ≤ |L|

[ ]q = 〈[ ], [ ]〉

|〈L,R〉|q = |L|+ |R|

insert (e, 〈L,R〉) = makeq 〈L, e : R〉

remove 〈L,R〉 = 〈hd L,makeq 〈tl L,R〉〉

makeq 〈L,R〉 = 〈L,R〉 {|R| ≤ |L|}
= 〈rot (L,R, [ ]), [ ]〉 {|R| = |L|+ 1}

rot (L,R,A) = hd R : A {|L| = 0}
= hd L : rot (tl L, tl R, hd R : A) {|L| > 0}

Fig. 3. Implementation of queues as paired lazy lists. Each operation requires only O(1)
amortized time, but any particular remove might require O(log n) time. Note that makeq

is an auxiliary function that enforces the invariant and that rot is always called with
|R| = |L|+ 1.

In addition to improving the worst-case bounds, this implementation of queues

also extends the applicability of the amortized bounds, which now hold even when

previous versions of the queue may be accessed. For instance, repeated removals

from the same queue cause no problems for this implementation—because of mem-

oization, only the first removal might take more than O(1) time. In the next section,

we take further advantage of memoization to achieve O(1) worst-case bounds rather

than amortized bounds.

5 Queues with pre-evaluation

To ensure that no queue operation takes more than O(1) time in the worst case, we

must guarantee that no tail takes more than O(1) time to evaluate. One way to do

this is to arrange that whenever there is a tail of the form rot (tl L, . . .), the tail of

L has already been evaluated and memoized. Since we cannot force the user to call

remove with sufficient frequency to guarantee this condition, we will pre-evaluate

L. That is, after each rotation, we will incrementally walk down L, evaluating each

tail, so that every tail of L has been evaluated and memoized by the time of the

next rotation.

We change the representation of queues to a triple of lazy lists 〈L,R, L̂〉 where

L and R are as before and L̂ is some tail of L marking the boundary between the

evaluated and unevaluated portions of L. (Think of L̂ as a pointer into L rather

than as a distinct list.) When L̂ = [ ], the entire list has been pre-evaluated. Every

call to insert and remove that does not cause a rotation advances L̂ by one position,

pre-evaluating the next tail. After a rotation, L̂ is set to L. We must guarantee that

by the time of the next rotation L̂ = [ ]. This is easily shown by noting the invariant
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Invariants

|R| ≤ |L| ∧ |L̂| = |L| − |R|

[ ]q = 〈[ ], [ ], [ ]〉

|〈L,R, L̂〉|q = |L|+ |R|

insert (e, 〈L,R, L̂〉) = makeq 〈L, e : R, L̂〉

remove 〈L,R, L̂〉 = 〈hd L,makeq 〈tl L,R, L̂〉〉

makeq 〈L,R, L̂〉 = 〈L,R, tl L̂〉 {|L̂| > 0}

= let L′ = rot (L,R, [ ]) in 〈L′, [ ], L′〉 {|L̂| = 0}

rot (L,R,A) = hd R : A {|L| = 0}
= hd L : rot (tl L, tl R,hd R : A) {|L| > 0}

Fig. 4. Implementation of queues with pre-evaluation. Each operation requires only O(1)
worst-case time. Note that makeq is always called with |L̂| = |L| − |R|+ 1 so that

|R| = |L|+ 1 exactly when |L̂| = 0.

|L̂| = |L|− |R| so that when |L| = |R|, |L̂| = 0. In fact, since this occurs just before

the next rotation, we can use the condition |L̂| = 0 as the trigger for the rotation.

(In practice, this means that we do not need to maintain the lengths of the lists.)

This final implementation of queues appears in Figure 4.

6 Double-ended Queues

Next we consider an efficient implementation of double-ended queues (deques) with

the following specifications:

• [ ]d is the empty deque.
• insertL (e,Q) returns the new deque obtained by adding e to the left of Q.

insertR (e,Q) adds e to right of Q.
• removeLQ returns the pair 〈e,Q′〉 consisting of the leftmost element of Q

and the new deque obtained by deleting e from Q. removeRQ removes the

rightmost element of Q. removeLQ and removeRQ are undefined if Q is

empty.
• |Q|d returns the length of Q.

The implementation of deques closely follows that of queues, differing mainly in

the need to treat L and R symmetrically. We represent deques as quadruples of

lazy lists 〈L,R, L̂, R̂〉 where L and R are as before and L̂ and R̂ are tails of L and

R indicating which portions of L and R have been pre-evaluated.

We wish for L and R to be of approximately equal size. In particular, both should

be non-empty whenever the deque contains two or more elements. We guarantee

this with the invariant

|L| ≤ c|R|+ 1 ∧ |R| ≤ c|L|+ 1
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where c ≥ 2 (c = 3 is a typical choice (Hood, 1982; Chuang and Goldberg, 1993)).

When the invariant would otherwise be violated, we truncate the longer list to half

the combined length of both lists, and rotate the remaining portion onto the back

of the shorter list. In the following discussion, assume that R is the longer list. At

the beginning of a rotation

c|L|+ 2 ≤ |R| ≤ c|L|+ c+ 1

We replace R with take (n,R) and L with L ++ rev (drop (n,R)), where n =

b(|L| + |R|)/2c. As with queues, the trick is to write the latter as an incremental

function (take is already incremental). We distribute the rev and drop computations

across the append in two phases, the first corresponding to the drop and the second

corresponding to the rev. We process c elements of R for each element of L. At the

end of the first phase, we process an extra nmod c elements of R, and at the end

of the second phase, we process at most c+1 leftover elements of R. If nmod c > 2

(which can only happen if c > 3), we might have fewer than c elements remaining in

R when processing the last element of L. This is all made concrete in the following

code, where rot1 (n, L,R) = L++ rev (drop (n,R)).

rot1 (n, L,R) = hd L : rot1 (n− c, tl L, drop(c, R)) {n ≥ c}

= rot2 (L, drop(n,R), [ ]) {n < c}

rot2 (L,R,A) = hdL : rot2 ( tl L, drop (c, R),

rev(take(c, R)) ++A)

{|L| > 0 ∧ |R| ≥ c}

= L++ revR++A {|L| = 0 ∨ |R| < c}

(Note that if c ≤ 3, rot2 can be simplified by eliminating the check for |R| < c.)

Although we make use of the non-incremental versions of rev and drop, each takes

only O(1) time since the size of the arguments is bounded by c+ 1.

We pre-evaluate each list as before, setting L̂ and R̂ to L and R after a rotation

and advancing each during insertions and removals. However, there is the following

complication: if after a rotation the two lists are each of size n, the next rotation

could occur after only about n−n/c operations if elements are repeatedly removed

from the same side. This is not enough to ensure that the lists are completely pre-

evaluated if L̂ and R̂ are advanced by only one position with each operation. Hence,

we advance L̂ and R̂ by two positions for each removal. They need only be advanced

by one position for each insertion. The proof that this suffices to completely pre-

evaluate the lists relies on the invariant

|L̂| ≤ max(2j + 2− k, 0) ∧ |R̂| ≤ max(2j + 2− k, 0)

where j = min(|L|, |R|) and k = max(|L|, |R|). The bound 2j + 2 − k is easily

established after a rotation (when |L| and |R| differ by at most one) and is reduced

by at most one per insert and by at most two per remove.

Finally, note that when the deque contains only a single element, that element

may be stored in either list. If a removeL is attempted when the element is stored in

the right list (or vice-versa), the element must be fetched from that side. Otherwise,

removeL and removeR always fetch the head of the left and right lists respectively.
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Invariants
|L| ≤ c|R|+ 1 ∧ |R| ≤ c|L|+ 1

|L̂| ≤ max(2j + 2− k, 0) ∧ |R̂| ≤ max(2j + 2− k, 0)
where j = min(|L|, |R|) ∧ k = max(|L|, |R|)

[ ]d = 〈[ ], [ ], [ ], [ ]〉

|〈L,R, L̂, R̂〉|d = |L|+ |R|

insertL (e, 〈L,R, L̂, R̂〉) = makedq 〈e : L,R, tl L̂, tl R̂〉

insertR (e, 〈L,R, L̂, R̂〉) = makedq 〈L, e : R, tl L̂, tl R̂〉

removeL 〈L,R, L̂, R̂〉 = 〈hd R, [ ]d〉 {|L| = 0}

= 〈hd L,makedq 〈tl L,R, tl (tl L̂), tl (tl R̂)〉〉 {|L| > 0}

removeR 〈L,R, L̂, R̂〉 = 〈hd L, [ ]d〉 {|R| = 0}

= 〈hd R,makedq 〈L, tl R, tl (tl L̂), tl (tl R̂)〉〉 {|R| > 0}

makedq 〈L,R, L̂, R̂〉 = let n = b(|L|+ |R|)/2c
L′ = take (n,L)
R′ = rot1 (n,R,L)

in 〈L′, R′, L′, R′〉

{|L| > c|R|+ 1}

= let n = b(|L|+ |R|)/2c
L′ = rot1 (n, L,R)
R′ = take (n,R)

in 〈L′, R′, L′, R′〉

{|R| > c|L|+ 1}

= 〈L,R, L̂, R̂〉 {otherwise}

rot1 (n,L,R) = hd L : rot1 (n− c, tl L, drop(c,R)) {n ≥ c}
= rot2 (L, drop(n,R), [ ]) {n < c}

rot2 (L,R,A) = hdL : rot2 ( tl L, drop (c,R),
rev(take(c,R)) ++A)

{|L| > 0 ∧ |R| ≥ c}

= L++ revR ++A {|L| = 0 ∨ |R| < c}

Fig. 5. Implementation of double-ended queues. Each operation takes only O(1)
worst-case time. Note that makedq enforces the invariant and that, to avoid special cases

when L̂ or R̂ are [ ], we assume that tl [ ] = [ ].

The complete code for this implementation of deques appears in Figure 5.

7 Discussion

We have presented purely functional implementations of queues and deques requir-

ing only O(1) time per operation in the worst case. Although not the first such, our

implementations are considerably simpler than previous ones.

The standard paired-list implementation of queues has been reinvented many

times (Hood and Melville, 1981; Gries, 1981; Burton, 1982). Hoogerwoord (1992)

described a similar implementation of deques. Hood and Melville (1981) gave the
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first purely functional implementation of queues with O(1) worst-case behavior.

Hood (1982) and later Sarnak (1986), Gajewska and Tarjan (1986), and Chuang

and Goldberg (1993) extended this implementation to deques. Many of the tech-

niques used in all these implementations were anticipated by developments in the

simulation of multihead Turing machines (Stoß, 1970; Fischer et al., 1972; Leong

and Seiferas, 1981).

To see the relative simplicity of our approach, consider the Hood/Melville im-

plementation of queues. (The implementations of deques are similar.) A queue is

rotated by first (incrementally) reversing both L and R to get L′ and R′, and then

reversing L′ onto R′—a total of three reverses. Our implementation corresponds

more closely to the single reverse and append that are logically required. Further-

more, in the Hood/Melville implementation, the front elements of L are inaccessible

during a rotation since L is reversed. Removing those elements takes special care.

In our implementation, no such special treatment is required since the head of a

lazy list is available even when “work” is being performed on some tail of the list.

Some might argue that our implementation is not, in fact, purely functional

because of the imperative nature of memoization.‡ However, we feel that this use of

memoization is the same as in lazy functional languages—memoization or the lack

thereof has no effect on the correctness of the algorithms, merely the efficiency.

This paper presents a rather unusual use of laziness. Laziness is typically used

when one either does not care when a computation takes place or wishes to delay it

to the last possible instant. Here, however, we care very much when the computation

takes place and we cannot afford to delay it too long. We use pre-evaluation to

schedule the computation at precisely the time that we want. These combined

techniques of laziness and pre-evaluation may be applicable to other data structures.

In the future, we intend to investigate their use in converting other data structures

with good amortized time bounds into ones with good worst-case bounds, or in

simplifying other incremental algorithms.
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