
J. Functional Programming 6(6): 839–857, November 1996 c© 1996 Cambridge University Press 1

Optimal Purely Functional Priority Queues

GERTH STØLTING BRODAL†

BRICS‡

Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Århus C, Denmark

(e-mail: gerth@daimi.aau.dk)

CHRIS OKASAKI§

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213

(e-mail: cokasaki@cs.cmu.edu)

Abstract

Brodal recently introduced the first implementation of imperative priority queues to sup-
port findMin, insert, and meld in O(1) worst-case time, and deleteMin in O(log n) worst-
case time. These bounds are asymptotically optimal among all comparison-based priority
queues. In this paper, we adapt Brodal’s data structure to a purely functional setting. In
doing so, we both simplify the data structure and clarify its relationship to the binomial
queues of Vuillemin, which support all four operations in O(log n) time. Specifically, we de-
rive our implementation from binomial queues in three steps: first, we reduce the running
time of insert to O(1) by eliminating the possibility of cascading links; second, we reduce
the running time of findMin to O(1) by adding a global root to hold the minimum element;
and finally, we reduce the running time of meld to O(1) by allowing priority queues to con-
tain other priority queues. Each of these steps is expressed using ML-style functors. The
last transformation, known as data-structural bootstrapping, is an interesting application
of higher-order functors and recursive structures.

1 Introduction

Purely functional data structures differ from imperative data structures in at least

two respects. First, many imperative data structures rely crucially on destructive

assignments for efficiency, whereas purely functional data structures are forbidden

from using destructive assignments. Second, purely functional data structures are

automatically persistent (Driscoll et al., 1989), meaning that, after an update, both

† Research partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 7141 (project ALCOM II) and by the Danish Natural Science
Research Council (Grant No. 9400044).

‡ Basic Research in Computer Science, Centre of the Danish National Research
Foundation

§ Research supported by the Advanced Research Projects Agency CSTO under the title
“The Fox Project: Advanced Languages for Systems Software”, ARPA Order No. C533,
issued by ESC/ENS under Contract No. F19628-95-C-0050.

2 Brodal and Okasaki

the new and old versions of a data structure are available for further accesses

and updates. In contrast, imperative data structures are almost always ephemeral,

meaning that, after an update, only the new version of a data structure is available.

In many cases, these differences prevent functional programmers from simply using

off-the-shelf data structures, such as those described in most algorithms texts. The

design of efficient purely functional data structures is thus of great theoretical and

practical interest to functional programmers, as well as to imperative programmers

for those occasions when a persistent data structure is required. In this paper, we

consider the design of an efficient purely functional priority queue.

The priority queue is a fundamental abstraction in computer programming, ar-

guably surpassed in importance only by the dictionary and the sequence. Many

implementations of priority queues have been proposed over the years; a small

sampling includes (Williams, 1964; Crane, 1972; Vuillemin, 1978; Fredman & Tar-

jan, 1987; Brodal, 1996). However, all of these consider only imperative priority

queues. Very little has been written about purely functional priority queues. To

our knowledge, only Paulson (1991), Kaldewaij and Schoenmakers (1991), Schoen-

makers (1992), and King (1994) have explicitly treated priority queues in a purely

functional setting.

We consider priority queues that support the following operations:

findMin (q) Return the minimum element of queue q.

insert (x, q) Insert the element x into queue q.

meld (q1, q2) Merge queues q1 and q2 into a single queue.

deleteMin (q) Discard the minimum element of queue q.

In addition, priority queues supply a value empty representing the empty queue

and a predicate isEmpty. For simplicity, we will ignore empty queues except when

presenting actual code. Figure 1 displays a Standard ML signature for these priority

queues.

Brodal (1995) recently introduced the first imperative data structure to sup-

port all these operations in O(1) worst-case time except deleteMin, which re-

quires O(log n) worst-case time. Several previous implementations, most notably

Fibonacci heaps (Fredman & Tarjan, 1987), had achieved these bounds, but in an

amortized, rather that worst-case, sense. It is easy to show by reduction to sorting

that these bounds are asymptotically optimal among all comparison-based priority

queues — the bound on deleteMin cannot be decreased without simultaneously

increasing the bounds on findMin, insert , and/or meld.

It is reasonably straightforward to adapt Brodal’s data structure to a purely func-

tional setting by combining the recursive-slowdown technique of Kaplan and Tar-

jan (1995) with a purely functional implementation of double-ended queues (Hood,

1982; Okasaki, 1995c). However, this approach suffers from at least two defects, one

practical and one pedagogical. First, both recursive slowdown and double-ended

queues carry non-trivial overheads, so the resulting data structure is quite slow

in practice (even though asymptotically optimal). Second, the resulting design is

difficult to explain and understand. The design choices are intermingled, and it is

Optimal Purely Functional Priority Queues 3

signature ORDERED =
sig

type T (∗ type of ordered elements ∗)
val leq : T × T → bool (∗ total ordering relation ∗)

end

signature PRIORITY QUEUE =
sig

structure Elem : ORDERED

type T (∗ type of priority queues ∗)

val empty : T
val isEmpty : T → bool

val insert : Elem.T × T → T

val meld : T × T → T

exception EMPTY

val findMin : T → Elem.T (∗ raises EMPTY if queue is empty ∗)
val deleteMin : T → T (∗ raises EMPTY if queue is empty ∗)

end

Figure 1: Signature for priority queues.

difficult to see the purpose and contribution of each. Furthermore, the relationship

to other priority queue designs is obscured.

For these reasons, we take an indirect approach to adapting Brodal’s data struc-

ture. First, we isolate the design choices in Brodal’s data structure and rethink

each in a functional, rather than imperative, environment. This allows us to re-

place recursive slowdown with a simpler technique borrowed from the random-

access lists of Okasaki (1995b) and to eliminate the need for double-ended queues

altogether. Then, starting from a well-known antecedent — the binomial queues

of Vuillemin (1978) — we reintroduce each modification, one at a time. This both

simplifies the data structure and clarifies its relationship to other priority queue

designs.

We begin by reviewing binomial queues, which support all four major opera-

tions in O(log n) time. We then derive our data structure from binomial queues

in three steps. First, we describe a variant of binomial queues, called skew bino-

mial queues, that reduces the running time of insert to O(1) by eliminating the

possibility of cascading links. Second, we reduce the running time of findMin to

O(1) by adding a global root to hold the minimum element. Third, we apply a

technique of Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum & Tarjan,

1995) called data-structural bootstrapping, which reduces the running time of meld

to O(1) by allowing priority queues to contain other priority queues. Each of these

steps is expressed using ML-style functors. The last transformation, data-structural

bootstrapping, is an interesting application of higher-order functors and recursive

structures. After describing a few possible optimizations, we conclude with brief

discussions of related work and future work.

4 Brodal and Okasaki

Rank 0
s

Rank 1
s

s

Rank 2
s

s

�
�s

s

Rank 3
s

s

�
�s

s

,
,,s

s

�
�s

s

Figure 2: Binomial trees of ranks 0–3.

All source code is presented in Standard ML (Milner et al., 1990) and is available

through the World Wide Web from

http://foxnet.cs.cmu.edu/people/cokasaki/priority.html

2 Binomial Queues

Binomial queues are an elegant form of priority queue introduced by Vuillemin (1978)

and extensively studied by Brown (1978). Although they considered binomial queues

only in an imperative setting, King (1994) has shown that binomial queues work

equally well in a functional setting. In this section, we briefly review binomial queues

— see King (1994) for more details.

Binomial queues are composed of more primitive objects known as binomial trees.

Binomial trees are inductively defined as follows:

• A binomial tree of rank 0 is a singleton node.

• A binomial tree of rank r+ 1 is formed by linking two binomial trees of rank

r, making one tree the leftmost child of the other.

From this definition, it is easy to see that a binomial tree of rank r contains exactly

2r nodes. There is a second, equivalent definition of binomial trees that is sometimes

more convenient: a binomial tree of rank r is a node with r children t1 . . . tr, where

each ti is a binomial tree of rank r − i. Figure 2 illustrates several binomial trees

of varying rank.

Assuming a total ordering on nodes, a binomial tree is said to be heap-ordered if

every node is ≤ each of its descendants. To preserve heap order when linking two

heap-ordered binomial trees, we make the tree with the larger root a child of the

tree with the smaller root, with ties broken arbitrarily.

A binomial queue is a forest of heap-ordered binomial trees where no two trees

have the same rank. Because binomial trees have sizes of the form 2r, the ranks

of the trees in a binomial queue of size n are distributed according to the ones in

the binary representation of n. For example, consider a binomial queue of size 21.

The binary representation of 21 is 10101, and the binomial queue contains trees of

ranks 0, 2, and 4 (of sizes 1, 4, and 16, respectively). Note that a binomial queue

of size n contains at most blog2(n+ 1)c trees.

We are now ready to describe the operations on binomial queues. Since all the

trees in a binomial queue are heap-ordered, we know that the minimum element

Optimal Purely Functional Priority Queues 5

in a binomial queue is the root of one of the trees. We can find this minimum

element in O(log n) time by scanning through the roots. To insert a new element

into a queue, we first create a new singleton tree (i.e., a binomial tree of rank 0).

We then step through the existing trees in increasing order of rank until we find

a missing rank, linking trees of equal rank as we go. Inserting an element into

a binomial queue corresponds precisely to adding one to a binary number, with

each link corresponding to a carry. The worst case is insertion into a queue of size

n = 2k − 1, requiring a total of k links and O(log n) time. The analogy to binary

addition also applies to melding two queues. We step through the trees of both

queues in increasing order of rank, linking trees of equal rank as we go. Once again,

each link corresponds to a carry. This also requires O(log n) time.

The trickiest operation is deleteMin. We first find the tree with the minimum

root and remove it from the queue. We discard the root, but then must return its

children to the queue. However, the children themselves constitute a valid binomial

queue (i.e., a forest of heap-ordered binomial trees with no two trees of the same

rank), and so may be melded with the remaining trees of the queue. Both finding

the tree to remove and returning the children to the queue require O(log n) time,

for a total of O(log n) time.

Figure 3 gives an implementation of binomial queues as a Standard ML func-

tor that takes a structure specifying a type of ordered elements and produces a

structure of priority queues containing elements of the specified type. Two aspects

of this implementation deserve further explanation. First, the conflicting require-

ments of insert and link lead to a confusing inconsistency, common to virtually all

implementations of binomial queues. The trees in binomial queues are maintained

in increasing order of rank to support the insert operation efficiently. On the other

hand, the children of binomial trees are maintained in decreasing order of rank to

support the link operation efficiently. This discrepancy compels us to reverse the

children of the deleted node during a deleteMin. Second, for clarity, every node con-

tains its rank. In a realistic implementation, however, only the roots would store

their ranks. The ranks of all other nodes are uniquely determined by the ranks

of their parents and their positions among their siblings. King (1994) describes

an alternative representation that eliminates all ranks, at the cost of introducing

placeholders for those ranks corresponding to the zeros in the binary representation

of the size of the queue.

3 Skew Binomial Queues

In this section, we describe a variant of binomial queues, called skew binomial

queues, that supports insertion in O(1) worst-case time. The problem with binomial

queues is that inserting a single element into a queue might result in a long cascade

of links, just as adding one to a binary number might result in a long cascade of

carries. We can reduce the cost of an insert to at most a single link by borrowing a

technique from random-access lists (Okasaki, 1995b). Random-access lists are based

on a variant number system, called skew binary numbers (Myers, 1983), in which

adding one causes at most a single carry.

6 Brodal and Okasaki

functor BinomialQueue (E : ORDERED) : PRIORITY QUEUE =
struct

structure Elem = E

type Rank = int
datatype Tree = Node of Elem.T × Rank × Tree list
type T = Tree list

(∗ auxiliary functions ∗)
fun root (Node (x,r,c)) = x

fun rank (Node (x,r,c)) = r

fun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (∗ r1 = r2 ∗)
if Elem.leq (x1, x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)

fun ins (t, []) = [t]
| ins (t, t′ :: ts) = (∗ rank t ≤ rank t′ ∗)

if rank t < rank t′ then t :: t′ :: ts else ins (link (t, t′), ts)

val empty = []
fun isEmpty ts = null ts

fun insert (x, ts) = ins (Node (x,0,[]), ts)
fun meld ([], ts) = ts

| meld (ts, []) = ts

| meld (t1 :: ts1, t2 :: ts2) =
if rank t1 < rank t2 then t1 :: meld (ts1, t2 :: ts2)
else if rank t2 < rank t1 then t2 :: meld (t1 :: ts1, ts2)
else ins (link (t1, t2), meld (ts1, ts2))

exception EMPTY

fun findMin [] = raise EMPTY

| findMin [t] = root t

| findMin (t :: ts) =
let val x = findMin ts

in if Elem.leq (root t, x) then root t else x end
fun deleteMin [] = raise EMPTY

| deleteMin ts =
let fun getMin [t] = (t, [])

| getMin (t :: ts) =
let val (t′, ts′) = getMin ts

in if Elem.leq (root t, root t′) then (t, ts) else (t′, t :: ts′) end
val (Node (x,r,c), ts) = getMin ts

in meld (rev c, ts) end
end

Figure 3: A functor implementing binomial queues.

Optimal Purely Functional Priority Queues 7

(a)
s

B
B
BB

�
�
�� r

�
�s
B
B
BB

�
�
�� r

(b)
s

\
\

�
�s
B
B
BB

�
�
�� r

s

B
B
BB

�
�
�� r

(c)
s

B
B
BB

�
�
�� r

�
�

�s
�

�s
B
B
BB

�
�
�� r

Figure 4: The three methods of constructing a skew binomial tree of rank r + 1. (a) a
simple link. (b) a type A skew link. (c) a type B skew link.

In skew binary numbers, the kth digit represents 2k+1 − 1, rather than 2k as in

ordinary binary numbers. Every digit is either zero or one, except that the lowest

non-zero digit may be two. For instance, 92 is written 002101 (least-significant digit

first). A carry occurs when adding one to a number whose lowest non-zero digit is

two. For instance, 1+002101 = 000201. Because the next higher digit is guaranteed

not to be two, only a single carry is ever necessary.

Just as binomial queues are composed of binomial trees, skew binomial queues

are composed of skew binomial trees. Skew binomial trees are inductively defined

as follows:

• A skew binomial tree of rank 0 is a singleton node.

• A skew binomial tree of rank r + 1 is formed in one of three ways:

— a simple link, making a skew binomial tree of rank r the leftmost child of

another skew binomial tree of rank r;

— a type A skew link, making two skew binomial trees of rank r the children

of a skew binomial tree of rank 0; or

— a type B skew link, making a skew binomial tree of rank 0 and a skew

binomial tree of rank r the leftmost children of another skew binomial

tree of rank r.

Figure 4 illustrates the three kinds of links. Note that type A and type B skew

links are equivalent when r = 0. Ordinary binomial trees and perfectly balanced

binary trees are special cases of skew binomial trees obtained by allowing only

simple links and type A skew links, respectively. A skew binomial tree of rank r

constructed entirely with skew links (type A or type B) contains exactly 2r+1 − 1

nodes, but, in general, the size of a skew binomial tree t of rank r is bounded by

2r ≤ |t| ≤ 2r+1 − 1. In addition, the height of a skew binomial tree is equal to

its rank. Once again, there is a second, equivalent definition: a skew binomial tree

of rank r > 0 is a node with up to 2k children s1t1 . . . sktk (1 ≤ k ≤ r), where

each ti is a skew binomial tree of rank r − i and each si is a skew binomial tree of

rank 0, except that sk has rank r − k (which is 0 only when k = r). Every si is

optional except that sk is optional only when k = r. Although somewhat confusing,

this definition arises naturally from the three methods of constructing a tree. Every

sktk pair is produced by a type A skew link, and every siti pair (i < k) is produced

by a type B skew link. Every ti without a corresponding si is produced by a simple

8 Brodal and Okasaki

s s s s

�
��

�
��

�
��

�
��

L
LL

L
LL

L
LL

L
LLs s s ss s s s

s s s s

�
�

�
�s ss s

s s s s

�
��

�
��

�
��

�
��

L
LL

L
LL

L
LL

L
LLs s s ss s s s

�
��

�
��

�
��

�
��

D
DD

D
DD

D
DD

D
DDs s s ss s s s

�
�

�
�s ss s

s s s s

�
��

�
��

�
��

�
��

L
LL

L
LL

L
LL

L
LLs s s ss s s s

s ss s

�
��

�
��

D
DD

D
DDs ss s

�
��

�
��

D
DD

D
DDs ss s

Figure 5: The twelve possible shapes of skew binomial trees of rank 2. Dashed boxes
surround each siti pair.

link. Unlike ordinary binomial trees, skew binomial trees may have many different

shapes. For example, the twelve possible shapes of skew binomial trees of rank 2

are shown in Figure 5.

A skew binomial tree is heap-ordered if every node is ≤ each of its descendants.

To preserve heap order during a simple link, we make the tree with the larger root

a child of the tree with the smaller root. During a skew link, we make the two trees

with larger roots children of the tree with the smallest root. We perform a type A

skew link if the rank 0 tree has the smallest root, and a type B skew link if one of

the rank r trees has the smallest root.

A skew binomial queue is a forest of heap-ordered skew binomial trees where no

two trees have the same rank, except possibly the two smallest ranked trees. Since

skew binomial trees of the same rank may have different sizes, there may be several

ways to distribute the ranks for a queue of any particular size. For example, a skew

binomial queue of size 4 may contain one rank 2 tree of size 4; two rank 1 trees,

each of size 2; a rank 1 tree of size 3 and a rank 0 tree; or a rank 1 tree of size 2

and two rank 0 trees. However, the maximum number of trees in a queue is still

O(log n).

We are now ready to describe the operations on skew binomial queues. The

findMin and meld operations are almost unchanged. To find the minimum element

in a skew binomial queue, we simply scan through the roots, taking O(log n) time.

To meld two queues, we step through the trees of both queues in increasing order

of rank, performing a simple link (not a skew link!) whenever we find two trees of

equal rank. Once again, this requires O(log n) time.

The big advantage of skew binomial queues over ordinary binomial queues is that

we can now insert a new element in O(1) time. We first create a new singleton tree

(i.e., a skew binomial tree of rank 0). We then check the ranks of the two smallest

trees in the queue. If both trees have rank r, then we skew link these two trees with

the new rank 0 tree to get a new rank r + 1 tree. We know that there can be no

Optimal Purely Functional Priority Queues 9

functor SkewBinomialQueue (E : ORDERED) : PRIORITY QUEUE =
struct

structure Elem = E

type Rank = int
datatype Tree = Node of Elem.T × Rank × Tree list
type T = Tree list

(∗ auxiliary functions ∗)
fun root (Node (x,r,c)) = x

fun rank (Node (x,r,c)) = r

fun link (t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) = (∗ r1 = r2 ∗)
if Elem.leq (x1,x2) then Node (x1,r1+1,t2 :: c1) else Node (x2,r2+1,t1 :: c2)

fun skewLink (t0 as Node (x0,r0,), t1 as Node (x1,r1,c1), t2 as Node (x2,r2,c2)) =
if Elem.leq (x1,x0) andalso Elem.leq (x1,x2) then Node (x1,r1+1,t0 :: t2 :: c1)
else if Elem.leq (x2,x0) andalso Elem.leq (x2,x1) then Node (x2,r2+1,t0 :: t1 :: c2)
else Node (x0,r1+1,[t1, t2])

fun ins (t, []) = [t]
| ins (t, t′ :: ts) = (∗ rank t ≤ rank t′ ∗)

if rank t < rank t′ then t :: t′ :: ts else ins (link (t, t′), ts)

fun uniqify [] = []
| uniqify (t :: ts) = ins (t, ts) (∗ eliminate initial duplicate ∗)

fun meldUniq ([], ts) = ts

| meldUniq (ts, []) = ts

| meldUniq (t1 :: ts1, t2 :: ts2) =
if rank t1 < rank t2 then t1 :: meldUniq (ts1, t2 :: ts2)
else if rank t2 < rank t1 then t2 :: meldUniq (t1 :: ts1, ts2)
else ins (link (t1, t2), meldUniq (ts1, ts2))

val empty = []
fun isEmpty ts = null ts

Figure 6: A functor implementing skew binomial queues (part I).

more than one existing rank r + 1 tree, and that this is the smallest rank in the

new queue, so we simply add the new tree to the queue. If the two smallest trees

in the queue have different ranks, then we simply add the new rank 0 tree to the

queue. Since there was at most one existing tree of rank 0, the new queue contains

at most two trees of the smallest rank. In either case, we are done.

Again, deleteMin is the most complicated operation. We first find and remove

the tree with the minimum root. After discarding the root, we partition its children

into two groups, those with rank 0 and those with rank > 0. Other than sk and

tk, every si has rank 0 and every ti has rank > 0. The ranks of sk and tk are both

0 when k = r and both > 0 when k < r. Note that every rank 0 child contains a

single element. The children with rank > 0 constitute a valid skew binomial queue,

so we meld these children with the remaining trees in the queue. Finally, we reinsert

each of the rank 0 children. Each of these steps requires O(log n) time, so the total

time required is O(log n).

Figures 6 and 7 present an implementation of skew binomial queues as a Stan-

10 Brodal and Okasaki

fun insert (x, ts as t1 :: t2 :: rest) =
if rank t1 = rank t2 then skewLink (Node (x,0,[]),t1,t2) :: rest
else Node (x,0,[]) :: ts

| insert (x, ts) = Node (x,0,[]) :: ts
fun meld (ts, ts′) = meldUniq (uniqify ts, uniqify ts′)

exception EMPTY

fun findMin [] = raise EMPTY

| findMin [t] = root t

| findMin (t :: ts) =
let val x = findMin ts

in if Elem.leq (root t, x) then root t else x end
fun deleteMin [] = raise EMPTY

| deleteMin ts =
let fun getMin [t] = (t, [])

| getMin (t :: ts) =
let val (t′, ts′) = getMin ts

in if Elem.leq (root t, root t′) then (t, ts) else (t′, t :: ts′) end
fun split (ts,xs,[]) = (ts, xs)

| split (ts,xs,t :: c) =
if rank t = 0 then split (ts,root t :: xs,c) else split (t :: ts,xs,c)

val (Node (x,r,c), ts) = getMin ts

val (ts′,xs′) = split ([],[],c)
in fold insert xs′ (meld (ts, ts′)) end

end

Figure 7: A functor implementing skew binomial queues (part II).

dard ML functor. Like the binomial queue functor, this functor takes a structure

specifying a type of ordered elements and produces a structure of priority queues

containing elements of the specified type. Once again, lists of trees are maintained

in different orders for different purposes. The trees in a queue are maintained in in-

creasing order of rank (except that the first two trees may have the same rank), but

the children of skew binomial trees are maintained in a more complicated order. The

ti children are maintained in decreasing order of rank, but they are interleaved with

the si children, which have rank 0 (except sk, which has rank r− k). Furthermore,

recall that each si is optional (except that sk is optional only if k = r).

4 Adding a Global Root

We next describe a simple module-level transformation on priority queues to reduce

the running time of findMin to O(1). Although this transformation can be applied

to any priority queue module, it is only useful on priority queues for which findMin

requires more than O(1) time.

Most implementations of priority queues represent a queue as a single heap-

ordered tree so that the minimum element can always be found at the root in O(1)

time. Unfortunately, binomial queues and skew binomial queues represent a queue as

a forest of heap-ordered trees, so finding the minimum element requires scanning all

Optimal Purely Functional Priority Queues 11

the roots in the forest. However, we can convert this forest into a single heap-ordered

tree, thereby supporting findMin in O(1) time, by simply adding a global root to

hold the minimum element. In general, this tree will not be a binomial or skew

binomial tree, but this is irrelevant since the global root will be treated separately

from the rest of the queue. The details of this transformation are quite routine, but

we present them anyway as a warm-up for the more complicated transformation in

the next section.

Given some type Pα of primitive priority queues containing elements of type α,

we define the type of rooted priority queues RPα to be

RPα = {empty}+ (α× Pα)

In other words, a rooted priority queue is either empty or a pair of a single ele-

ment (the root) and a primitive priority queue. We maintain the invariant that the

minimum element of any non-empty priority queue is at the root. For each oper-

ation f on priority queues, let f and f ′ indicate the operations on Pα and RPα,

respectively. Then,

findMin ′ (〈x, q〉) = x

insert ′ (y, 〈x, q〉) = 〈x, insert (y, q)〉 if x ≤ y

insert ′ (y, 〈x, q〉) = 〈y, insert (x, q)〉 if y < x

meld ′ (〈x1, q1〉, 〈x2, q2〉) = 〈x1, insert (x2,meld (q1, q2))〉 if x1 ≤ x2

meld ′ (〈x1, q1〉, 〈x2, q2〉) = 〈x2, insert (x1,meld (q1, q2))〉 if x2 < x1

deleteMin ′ (〈x, q〉) = 〈findMin (q), deleteMin (q)〉

In Figure 8, we present this transformation as a Standard ML functor that takes

a priority queue structure and produces a new structure incorporating this opti-

mization. When applied to the skew binomial queues of the previous section, this

tranformation produces a priority queue that supports both insert and findMin in

O(1) time. However, meld and deleteMin still require O(log n) time.

If a program requires several priority queues with different element types, it

may be more convenient to implement this transformation as a higher-order func-

tor (MacQueen & Tofte, 1994). First-order functors can only take and return struc-

tures, but higher-order functors can take and return other functors as well. Although

the definition of Standard ML (Milner et al., 1990) describes only first-order func-

tors, some implementations of Standard ML, notably Standard ML of New Jersey,

support higher-order functors.

A priority queue functor, such as BinomialQueue or SkewBinomialQueue, is one

that takes a structure specifying a type of ordered elements and returns a structure

of priority queues containing elements of the specified type. The following higher-

order functor takes a priority queue functor and returns a priority queue functor

incorporating the AddRoot optimization.

functor AddRootToFun (functor MakeQ (E : ORDERED) :

sig

include PRIORITY QUEUE

sharing Elem = E

end)

12 Brodal and Okasaki

functor AddRoot (Q : PRIORITY QUEUE) : PRIORITY QUEUE =
struct

structure Elem = Q.Elem

datatype T = Empty | Root of Elem.T × Q.T

val empty = Empty

fun isEmpty Empty = true
| isEmpty (Root) = false

fun insert (y, Empty) = Root (y, Q.empty)
| insert (y, Root (x, q)) =

if Elem.leq (y, x) then Root (y, Q.insert (x, q)) else Root (x, Q.insert (y, q))
fun meld (Empty, rq) = rq

| meld (rq, Empty) = rq

| meld (Root (x1, q1), Root (x2, q2)) =
if Elem.leq (x1, x2) then Root (x1, Q.insert (x2, Q.meld (q1, q2)))

else Root (x2, Q.insert (x1, Q.meld (q1, q2)))

exception EMPTY

fun findMin Empty = raise EMPTY

| findMin (Root (x, q)) = x

fun deleteMin Empty = raise EMPTY

| deleteMin (Root (x, q)) =
if Q.isEmpty q then Empty else Root (Q .findMin q, Q .deleteMin q)

end

Figure 8: A functor for adding a global root to existing priority queues.

(E : ORDERED) : PRIORITY QUEUE =

AddRoot (MakeQ (E))

Note that this functor is curried, so although it appears to take two arguments,

it actually takes one argument (MakeQ) and returns a functor that takes the sec-

ond argument (E). The sharing constraint is necessary to ensure that the functor

MakeQ returns a priority queue with the desired element type. Without the sharing

constraint, MakeQ might ignore E and return a priority queue structure with some

arbitrary element type.

Now, if we need both a string priority queue and an integer priority queue, we

can write

functor RootedSkewBinomialQueue =

AddRootToFun (functor MakeQ = SkewBinomialQueue)

structure StringQueue = RootedSkewBinomialQueue (StringElem)

structure IntQueue = RootedSkewBinomialQueue (IntElem)

where StringElem and IntElem match the ORDERED signature and define the

desired orderings over strings and integers, respectively.

Optimal Purely Functional Priority Queues 13

5 Bootstrapping Priority Queues

Finally, we improve the running time of meld to O(1) by applying a technique of

Buchsbaum et al. (Buchsbaum et al., 1995; Buchsbaum & Tarjan, 1995) called data-

structural bootstrapping. The basic idea is to reduce melding to simple insertion by

using priority queues that contain other priority queues. Then, to meld two priority

queues, we simply insert one priority queue into the other.

As in the previous section, we describe bootstrapping as a module-level transfor-

mation on priority queues. Let Pα be the type of primitive priority queues containing

elements of type α. We wish to construct the type BPα of bootstrapped priority

queues containing elements of type α. A bootstrapped priority queue will be a prim-

itive priority queue whose “elements” are other bootstrapped priority queues. As a

first attempt, we consider

BPα = PPα

Here we have applied a single level of bootstrapping. However, this simple solution

does not work because the elements of the top-level primitive priority queue have the

wrong type — they are simple primitive priority queues rather than bootstrapped

priority queues. Clearly, we need to apply the idea of bootstrapping recursively, as

in

BPα = PBPα

Unfortunately, this solution offers no place to store simple elements. We therefore

borrow from the previous section and add a root to every primitive priority queue.

BPα = α× PBPα

Thus, a bootstrapped priority queue is a simple element (which should be the

minimum element in the queue) paired with a primitive priority queue containing

other bootstrapped priority queues ordered by their respective minimums. Since

bootstrapping adds a root to every primitive priority queue, the bootstrapping

transformation subsumes the AddRoot transformation. Finally, we must allow for

the possibility of an empty queue. The final definition is thus

BPα = {empty}+Rα where Rα = α× PRα

Note that the primitive priority queues contain only non-empty bootstrapped pri-

ority queues as elements.

Now, each of the operations on bootstrapped priority queues can be defined in

terms of the operations on the primitive priority queues. For each operation f on

priority queues, let f and f ′ indicate the operations on PRα
and BPα, respectively.

14 Brodal and Okasaki

Then,

findMin ′ (〈x, q〉) = x

insert ′ (x, q) = meld ′ (〈x, empty〉, q)

meld ′ (〈x1, q1〉, 〈x2, q2〉) = 〈x1, insert (〈x2, q2〉, q1)〉 if x1 ≤ x2

meld ′ (〈x1, q1〉, 〈x2, q2〉) = 〈x2, insert (〈x1, q1〉, q2)〉 if x2 < x1

deleteMin ′ (〈x, q〉) = 〈y,meld(q1, q2)〉

where 〈y, q1〉 = findMin (q)

q2 = deleteMin (q)

Next, we consider the efficiency of bootstrapped priority queues. Since the min-

imum element is stored at the root, findMin requires O(1) time regardless of the

underlying implementation. The insert and meld operations depend only on the in-

sert of the primitive implementation. By bootstrapping a priority queue with O(1)

insertion, such as the skew binomial queues of Section 3, we obtain both O(1) inser-

tion and O(1) melding. Finally, deleteMin on bootstrapped priority queues depends

on findMin, meld, and deleteMin from the underlying implementation. Since skew

binomial queues support each of these in O(log n) time, deleteMin on bootstrapped

skew binomial queues also requires O(log n) time.

In summary, bootstrapped skew binomial queues support every operation in O(1)

time except deleteMin, which requires O(log n) time. It is easy to show by reduc-

tion to sorting that these bounds are optimal among all comparison-based priority

queues. Other tradeoffs between the running times of the various operations are

also possible, but no comparison-based priority queue can support insert in better

than O(log n) worst-case time or meld in better than O(n) worst-case time unless

one of findMin or deleteMin takes at least O(log n) worst-case time (Brodal, 1995).

The bootstrapping process can be elegantly expressed in Standard ML extended

with higher-order functors and recursive structures, as shown in Figure 9. The

higher-order nature of Bootstrap is analogous to the higher-order nature of Add-

RootToFun, while the recursion between RootedQ and Q captures the recursion be-

tween Rα and PRα
. Unfortunately, although some implementations of Standard ML

support higher-order functors (MacQueen & Tofte, 1994), none support recursive

structures, so the recursion between RootedQ and Q is forbidden. In fact, there

are good reasons for not supporting recursion like this in general. For instance,

this recursion may not even be sensible if MakeQ can have computational effects!

However, many priority queue functors, such as SkewBinomialQueue, simply define

a few datatypes and functions, and have no computational effects. For these well-

behaved functors, the recursion between RootedQ and Q does appear to be sensible,

and it would be pleasant to be able to bootstrap these functors in this manner.

Without recursive structures, we can still implement bootstrapped priority queues,

but much less cleanly. We manually specialize Bootstrap to each desired primitive

priority queue by inlining the appropriate priority queue functor for MakeQ and

eliminating Q and RootedQ as separate structures. This reduces the recursion on

structures to recursion on datatypes, which is easily supported by Standard ML.

Of course, as with any manual program transformation, this process is tedious and

error-prone.

Optimal Purely Functional Priority Queues 15

functor Bootstrap (functor MakeQ (E : ORDERED) : sig
include PRIORITY QUEUE

sharing Elem = E

end)
(E : ORDERED) : PRIORITY QUEUE =

struct
structure Elem = E

(∗ recursive structures not supported in SML! ∗)
structure rec RootedQ =

struct
datatype T = Root of Elem.T × Q.T

fun leq (Root (x1, q1), Root (x2, q2)) = Elem.leq (x1, x2)
end

and Q = MakeQ (RootedQ)

open RootedQ (∗ expose Root constructor ∗)

datatype T = Empty | NonEmpty of RootedQ.T

val empty = Empty

fun isEmpty Empty = true
| isEmpty (NonEmpty) = false

fun insert (x, xs) = meld (NonEmpty (Root (x, Q.empty)), xs)
and meld (Empty, xs) = xs

| meld (xs, Empty) = xs

| meld (NonEmpty (r1 as Root (x1, q1)), NonEmpty (r2 as Root (x2, q2))) =
if Elem.leq (x1, x2) then NonEmpty (Root (x1, Q.insert (r2, q1)))

else NonEmpty (Root (x2, Q.insert (r1, q2)))

exception EMPTY

fun findMin Empty = raise EMPTY

| findMin (NonEmpty (Root (x, q))) = x

fun deleteMin Empty = raise EMPTY

| deleteMin (NonEmpty (Root (x, q))) =
if Q .isEmpty q then Empty

else let val (Root (y, q1)) = Q .findMin q

val q2 = Q .deleteMin q

in NonEmpty (Root (y, Q.meld (q1, q2))) end
end

Figure 9: A higher-order functor for bootstrapping priority queues.

16 Brodal and Okasaki

6 Optimizations

Although bootstrapped skew binomial queues as described in the previous section

are asymptotically optimal, there are still further optimizations we can make. Con-

sider the type of priority queues resulting from inlining SkewBinomialQueue for

MakeQ:

datatype Tree = Node of Root × Rank × Tree list

and Root = Root of Elem.T × Tree list

datatype T = Empty | NonEmpty of Root

In this representation, a node has the form Node(Root(x, f), r, c), where x is an

element, f is a list of trees representing a forest, r is a rank, and c is a list of trees

representing the children of the node. Since every node contains both x and f we

can flatten the representation of nodes to be

datatype Tree = Node of Elem.T × Tree list × Rank × Tree list

In many implementations, this will eliminate an indirection on every access to x.

Next, note that f is completely ignored until its root is deleted. Thus, we do not

require direct access to f and can in fact store it at the tail of c, combining the

two into a single list representing c++ f . This leads to the following representation,

which usually saves a word of storage at every node:

datatype Tree = Node of Elem.T × Rank × Tree list

In this representation, it is necessary to traverse c during deleteMin to access f ,

but we need to traverse c anyway to extract the rank 0 children and reverse the

remaining children. Given a rank r node, determining where c ends and f begins is

usually quite easy. If r = 0, then c = []. If r = 1, then c consists of either one or two

rank 0 nodes. If r > 1, then c ends with either a pair of nodes of the same non-zero

rank or a rank 1 node followed by one or two rank 0 nodes. The only ambiguities

involve rank 0 nodes: it is sometimes impossible to distinguish the case where c

ends with two rank 0 nodes from the case where c ends with a single rank 0 node

and f begins with a rank 0 node. However, in every such situation, it does no harm

to treat the ambiguous node as if it were part of c rather than f .

As a final simplification, note that the distinction between trees and roots is

unnecessary, since every root can be treated as a tree of rank 0. Our final represen-

tation is then

datatype Tree = Node of Elem.T × Rank × Tree list

datatype T = Empty | NonEmpty of Tree

This increases the size of every root slightly, but also eliminates some minor copying

during melds.

7 Related Work

Although there is an enormous literature on imperative priority queues, there has

been very little work on purely functional priority queues.

Optimal Purely Functional Priority Queues 17

Paulson (1991) describes a (non-meldable) priority queue combining the tech-

niques of implicit heaps (Williams, 1964), which traditionally are implemented us-

ing arrays, with a balanced-tree representation of arrays supporting extension at

the rear. Hoogerwoord (1992) represents arrays using the same trees as Paulson, but

also allows the arrays to be extended at the front. A variant of Paulson’s queues,

using the slightly simpler front-extension of Hoogerwoord, appears to be part of

the functional programming folklore.

King (1994) presents a purely functional implementation of binomial queues.

Although binomial queues are considered to be rather complicated in imperative

settings (Jones, 1986), King demonstrates that the more convenient list-processing

capabilities of functional languages support binomial queues quite elegantly.

Schoenmakers (1992), extending earlier work with Kaldewaij (1991), uses func-

tional notation to aid in the derivation of amortized bounds for a number of data

structures, including three priority queues: skew heaps† (Sleator & Tarjan, 1986),

Fibonacci heaps (Fredman & Tarjan, 1987), and pairing heaps (Fredman et al.,

1986). Schoenmakers also discusses splay trees (Sleator & Tarjan, 1985), a form of

self-adjusting binary search tree that has been shown by Jones (1986) to be particu-

larly effective as a non-meldable priority queue. Each of these four data structures is

efficient only in the amortized sense. Although he uses functional notation, Schoen-

makers restricts his attention to ephemeral uses of data structures, where only the

most recent version of a data structure may be accessed or updated. Ephemeral-

ity is closely related to the notion of linearity (Wadler, 1990). When persistence is

allowed, traditional amortized analyses break down because operations on “expen-

sive” versions of a data structure can be repeated arbitrarily often. Okasaki (1995a;

1996) describes how to use the memoization implicit in lazy evaluation to support

amortized data structures whose bounds hold even under persistence. However,

of the above data structures, only pairing heaps appear to be amenable to this

technique.

Finally, our data structure borrows techniques from several sources. Skew linking

is borrowed from the random-access lists of Okasaki (1995b), which in turn are a

modification of the random-access stacks of Myers (1983). We use skew linking to

reduce the cost of insertion in binomial queues to O(1), but recursive slowdown (Ka-

plan & Tarjan, 1995) and lazy evaluation (Okasaki, 1996) could be used for the same

purpose. Data-structural bootstrapping is used by Buchsbaum et al. (Buchsbaum

et al., 1995; Buchsbaum & Tarjan, 1995) to support catenation for double-ended

queues, much as we use it to support melding for priority queues.

8 Discussion

We have described the first purely functional implementation of priority queues

to support findMin, insert, and meld in O(1) worst-case time, and deleteMin in

† Note that the “skew” in skew heaps is completely unrelated to the “skew” in skew
binomial queues.

18 Brodal and Okasaki

O(log n) worst-case time. These bounds are asymptotically optimal among all com-

parison-based priority queues. Our data structure is an adaptation of an imper-

ative data structure introduced by Brodal (1995), but we have both simplified

his original data structure and clarified its relationship to the binomial queues of

Vuillemin (1978). Our data structure is reasonably efficient in practice; however,

there are several competing data structures that, although not asymptotically op-

timal, are somewhat faster than ours in practice. Hence, our work is primarily of

theoretical interest. The major area in which our data structure should be useful in

practice is applications dominated by melding, particularly applications that also

require persistent priority queues.

Although we have implemented our data structure in Standard ML, a strict func-

tional language, it could easily be translated into other functional languages, even

lazy languages such as Haskell (Hudak et al., 1992). However, in a lazy language,

the worst-case bounds become amortized because the actions of each insert, meld,

and deleteMin are delayed until their results are needed by a findMin. For instance,

a findMin following a sequence of m insertions and melds will take Ω(m) time,

although that time can be amortized over the insertions and melds in the usual

way. This problem is not unique to our data structure — it applies to virtually all

nominally worst-case data structures in a lazy language. See Okasaki (1995a; 1996)

for a fuller discussion of the interaction between lazy evaluation and amortization.

Next, we note that imperative priority queues often support two additional op-

erations, decreaseKey and delete, that decrease and delete a specified element of

the queue, respectively. The element in question is usually specified by a pointer

into the middle of the queue, but this is awkward in a functional setting. One ap-

proach is to represent the queue as a binary search tree, so that we can efficiently

search for arbitrary elements. This is essentially the approach taken by King (1994).

Empirical comparisons by Jones (1986) suggest that splay trees would be ideal for

this purpose, at least for predominantly ephemeral usage.‡ Unfortunately, melding

binary search trees (including splay trees) requires O(n) time.

An alternative approach is to use two priority queues, one containing “positive”

occurrences of elements and one containing “negative” occurrences of elements. To

delete an element, simply insert it into the negative queue. To decrease an element,

delete the old value and insert the new value. Positive and negative occurrences

of the same element cancel each other out when they both become the minimum

elements of their respective queues. This approach can be viewed as the functional

analogue of the lazy delete operation of Tarjan (1983). This solution works well

provided the number of negative elements is relatively small. However, when there

are many positive-negative pairs that have not yet cancelled each other out, this

solution may be inefficient in both time and space. Further research is needed to

support decreaseKey and delete efficiently in a functional setting.

A final area of future work concerns the Standard ML module system. As noted

in Section 5, recursive modules are not always sensible, and hence are currently

‡ However, since findMin on splay trees takes O(log n) amortized time, it may be desirable
to first apply the AddRoot transformation of Section 4.

Optimal Purely Functional Priority Queues 19

disallowed in implementations of the language. However, recursion at the module

level does appear to be sensible — and useful — for certain well-behaved modules.

It would be interesting to formalize the conditions under which recursive modules

should be allowed, and extend some implementation of Standard ML accordingly.

Acknowledgments

Thanks to Peter Lee, David King, and AmyMoormann Zaremski for their comments

and suggestions on an earlier draft of this paper.

References

Brodal, G. S. (1995) Fast meldable priority queues. Workshop on Algorithms and Data

Structures. LNCS 955, pp. 282–290. Springer-Verlag.

Brodal, G. S. (1996) Worst-case priority queues. ACM-SIAM Symposium on Discrete

Algorithms pp. 52–58.

Brown, M. R. (1978) Implementation and analysis of binomial queue algorithms. SIAM

Journal on Computing 7(3):298–319.

Buchsbaum, A. L. and Tarjan, R. E. (1995) Confluently persistent deques via data struc-
tural bootstrapping. Journal of Algorithms 18(3):513–547.

Buchsbaum, A. L., Sundar, R. and Tarjan, R. E. (1995) Data-structural bootstrapping,
linear path compression, and catenable heap-ordered double-ended queues. SIAM Jour-

nal on Computing 24(6):1190–1206.

Crane, C. A. (1972) Linear lists and priority queues as balanced binary trees. PhD thesis,
Computer Science Department, Stanford University. Available as STAN-CS-72-259.

Driscoll, J. R., Sarnak, N., Sleator, D. D. K. and Tarjan, R. E. (1989) Making data
structures persistent. Journal of Computer and System Sciences 38(1):86–124.

Fredman, M. L. and Tarjan, R. E. (1987) Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM 34(3):596–615.

Fredman, M. L., Sedgewick, R., Sleator, D. D. K. and Tarjan, R. E. (1986) The pairing
heap: A new form of self-adjusting heap. Algorithmica 1(1):111–129.

Hood, R. (1982) The Efficient Implementation of Very-High-Level Programming Language

Constructs. PhD thesis, Department of Computer Science, Cornell University. (Cornell
TR 82-503).

Hoogerwoord, R. R. (1992) A logarithmic implementation of flexible arrays. Conference

on Mathematics of Program Construction. LNCS 669, pp. 191–207. Springer-Verlag.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzmán,
M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain,
W. and Peterson, J. (1992) Report on the functional programming language Haskell,
Version 1.2. SIGPLAN Notices 27(5).

Jones, D. W. (1986) An empirical comparison of priority-queue and event-set implemen-
tations. Communications of the ACM 29(4):300–311.

Kaldewaij, A. and Schoenmakers, B. (1991) The derivation of a tighter bound for top-down
skew heaps. Information Processing Letters 37(5):265–271.

Kaplan, H. and Tarjan, R. E. (1995) Persistent lists with catenation via recursive slow-
down. ACM Symposium on Theory of Computing pp. 93–102.

King, D. J. (1994) Functional binomial queues. Glasgow Workshop on Functional Pro-

gramming pp. 141–150.

20 Brodal and Okasaki

MacQueen, D. B. and Tofte, M. (1994) A semantics for higher-order functors. European

Symposium on Programming pp. 409–423.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. The MIT
Press.

Myers, E. W. (1983) An applicative random-access stack. Information Processing Letters

17(5):241–248.

Okasaki, C. (1995a) Amortization, lazy evaluation, and persistence: Lists with catenation
via lazy linking. IEEE Symposium on Foundations of Computer Science pp. 646–654.

Okasaki, C. (1995b) Purely functional random-access lists. Conference on Functional

Programming Languages and Computer Architecture pp. 86–95.

Okasaki, C. (1995c) Simple and efficient purely functional queues and deques. Journal of
Functional Programming 5(4):583–592.

Okasaki, C. (1996) The role of lazy evaluation in amortized data structures. ACM SIG-

PLAN International Conference on Functional Programming pp. 62–72.

Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University Press.

Schoenmakers, B. (1992) Data Structures and Amortized Complexity in a Functional

Setting. PhD thesis, Eindhoven University of Technology.

Sleator, D. D. K. and Tarjan, R. E. (1985) Self-adjusting binary search trees. Journal of

the ACM 32(3):652–686.

Sleator, D. D. K. and Tarjan, R. E. (1986) Self-adjusting heaps. SIAM Journal on

Computing 15(1):52–69.

Tarjan, R. E. (1983) Data Structures and Network Algorithms. CBMS Regional Conference
Series in Applied Mathematics, vol. 44. Society for Industrial and Applied Mathematics.

Vuillemin, J. (1978) A data structure for manipulating priority queues. Communications

of the ACM 21(4):309–315.

Wadler, P. (1990) Linear types can change the world! Proceedings of the IFIP TC 2

Working Conference on Programming Concepts and Methods pp. 561–581.

Williams, J. W. J. (1964) Algorithm 232: Heapsort. Communications of the ACM

7(6):347–348.

