
J. Functional Programming 7 (6) 661–666, November 1997 c© 1997 Cambridge University Press 661

FUNCTIONAL PEARLS

Three Algorithms on Braun Trees

CHRIS OKASAKI†

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213

(e-mail: cokasaki@cs.cmu.edu)

1 Introduction

Among the many flavors of balanced binary trees, Braun trees (Braun & Rem,

1983) are perhaps the most circumscribed. For any given node of a Braun tree,

the left subtree is either exactly the same size as the right subtree, or one element

larger. Braun trees always have minimum height, and the shape of each Braun

tree is completely determined by its size. In return for this rigor, algorithms that

manipulate Braun trees are often exceptionally simple and elegant, and need not

maintain any explicit balance information.

Braun trees have been used to implement both flexible arrays (Braun & Rem,

1983; Hoogerwoord, 1992; Paulson, 1996) and priority queues (Paulson, 1996; Bird,

1996). Most operations involving a single element (e.g. adding, removing, inspecting

or updating an element) take O(log n) time since the trees are balanced. We consider

three algorithmically interesting operations that manipulate entire trees. First, we

give an O(log2 n) algorithm for calculating the size of a tree. Second, we show how

to create a tree containing n copies of some element x in O(log n) time. Finally, we

describe an order-preserving algorithm for converting a list to a tree in O(n) time.

This last operation is not nearly as straightforward as it sounds!

Notation

A tree is either empty, written 〈〉, or a triple 〈x, s, t〉, where x is an element and s

and t are trees. The subtrees s and t must satisfy the balance condition

|t|+ 1 ≥ |s| ≥ |t|

We abbreviate the leaf 〈x, 〈〉, 〈〉〉 as 〈x〉.

† This research was sponsored by the Advanced Research Projects Agency CSTO under
the title “The Fox Project: Advanced Languages for Systems Software”, ARPA Order
No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

662 Chris Okasaki

2 Calculating the size of a tree

It is trivial to calculate the size of a tree in O(n) time by counting every node

individually.

size 〈〉 = 0

size 〈x, s, t〉 = 1 + size s+ size t

However, this fails to take advantage of the fact that, once we know the size of one

subtree, there are only two possibilities for the size of the other subtree. If |t| = m

then either |s| = m or |s| = m+ 1. Let us define a function diff s m that returns 0

if |s| = m and 1 if |s| = m+ 1. Then, size can be rewritten

size 〈〉 = 0

size 〈x, s, t〉 = let m = size t in 1 + 2 ∗m+ diff s m

The base cases for diff are trivial.

diff 〈〉 0 = 0

diff 〈x〉 0 = 1

The remaining cases use the easily verified fact that, if |〈x, s, t〉| = m, then |s| =
d(m − 1)/2e and |t| = b(m − 1)/2c. Now, suppose that |〈x, s, t〉| is either m or

m+ 1. If m is odd, then the size of the right subtree is fixed, since b(m− 1)/2c =
(m− 1)/2 = b(m+ 1− 1)/2c. On the other hand, the size of the left subtree might

be either d(m−1)/2e = (m−1)/2 or d(m+1−1)/2e= (m+1)/2. We can determine

which by recursing on the left subtree.

diff 〈x, s, t〉 (2 ∗ k + 1) = diff s k

If m is even, the situation is reversed — the size of the left subtree is fixed and we

recurse on the right subtree.

diff 〈x, s, t〉 (2 ∗ k + 2) = diff t k

The complete algorithm is

size 〈〉 = 0

size 〈x, s, t〉 = let m = size t in 1 + 2 ∗m+ diff s m

diff 〈〉 0 = 0

diff 〈x〉 0 = 1

diff 〈x, s, t〉 (2 ∗ k + 1) = diff s k

diff 〈x, s, t〉 (2 ∗ k + 2) = diff t k

The running time of size is dominated by the calls to diff, one for each left subtree

along the right spine. Each call to diff runs in O(log n) time, for a total of O(log2 n).

3 Creating a tree by copying

Suppose we want a function copy x n that creates a tree containing n copies of x.

Of course, we can easily do this in O(n) time with

copy x 0 = 〈〉
copy x n = 〈x, copy x d(n− 1)/2e, copy x b(n− 1)/2c〉

Functional pearls 663

However, this function will frequently call copy multiple times on the same argu-

ments. In particular, whenever n is odd, the two recursive calls will be identical.

Our next version of copy takes advantage of this fact.

copy x 0 = 〈〉
copy x (2 ∗m+ 1) = let t = copy x m in 〈x, t, t〉
copy x (2 ∗m+ 2) = 〈x, copy x (m+ 1), copy x m〉

Exercise: Show that this version of copy runs in

O(fib (log2 n)) = O(φlog
2
n) = O(nlog

2
φ) = O(n0.69...)

time, where φ is the golden mean, (1 +
√
5)/2. 2

We can do still better by realizing that copy x (m+1) and copy x m produce very

similar results. The former is the result of adding a single x to the latter. Writing

the cons function on trees x⊕ t, we get

copy x 0 = 〈〉
copy x (2 ∗m+ 1) = 〈x, t, t〉
copy x (2 ∗m+ 2) = 〈x, x ⊕ t, t〉

where t = copy x m

where

x⊕ 〈〉 = 〈x〉
x⊕ 〈y, s, t〉 = 〈x, y ⊕ t, s〉

is the standard algorithm for adding an element to a Braun tree. Note that this

function swaps the subtrees s and t. This behavior is a distinguishing feature of

Braun trees. It is used to maintain the balance condition since

|t|+ 1 ≥ |s| ≥ |t|
⇒ |s|+ 1 ≥ |t|+ 1 ≥ |s|

This version of copy runs in O(log2 n) time. The analysis is identical to that of size.

For our final version of copy, we delve deeper into the structure of Braun trees.

Note that if |〈x1, s1, t1〉| = |〈x2, s2, t2〉| + 1, then either |s1| = |t1| = |s2| = |t2| + 1

or |s1| − 1 = |t1| = |s2| = |t2|. In either case, we can create trees of both size n and

size n+ 1 given only trees of sizes b(n − 1)/2c and b(n− 1)/2c+ 1. Applying this

idea recursively yields

copy x n = snd (copy2 x n)

copy2 x 0 = (〈x〉, 〈〉)
copy2 x (2 ∗m+ 1) = (〈x, s, t〉, 〈x, t, t〉)
copy2 x (2 ∗m+ 2) = (〈x, s, s〉, 〈x, s, t〉)

where (s, t) = copy2 x m

where copy2 x n returns a pair of trees of sizes n+ 1 and n respectively. This runs

in only O(log n) time.

664 Chris Okasaki

0

�
�

�

@
@
@

1

�
�
�

A
A
A

2

�
�
�

A
A
A

3

�
�
�

C
C
C

5

�
�
�

C
C
C

4

�
�
�

C
C
C

6

�
�
�

C
C
C

7 11 9 13 8 12 10 14

Fig. 1. A Braun tree of size 15, with each node labeled by its index.

4 Converting a list to a tree

The previous algorithms have applied to Braun trees representing either flexible

arrays or priority queues. This last algorithm applies only to flexible arrays. See

Bird (1996) for a similar treatment of priority queues.

Given a list, we want to create a flexible array containing the same elements in the

same order. Figure 1 illustrates the order of elements in a Braun tree representing

an array. This order is defined recursively. Element 0 of 〈x, s, t〉 is x. The left subtree
s contains the odd elements, while the right subtree t contains the (positive) even

elements. Thus, for example, the indexing function s ! i can be written

〈x, s, t〉 ! 0 = x

〈x, s, t〉 ! (2 ∗ i+ 1) = s ! i

〈x, s, t〉 ! (2 ∗ i+ 2) = t ! i

Now, a simple but inefficient way to convert a list to an array is to insert the

elements one at a time into an initially empty array.

makeArray xs = foldr (⊕) 〈〉 xs

Unfortunately, this takes O(n log n) time.

A second approach exploits the fact that the left subtree contains the odd ele-

ments and the right subtree contains the even elements.

makeArray [] = 〈〉
makeArray (x : xs) = 〈x,makeArray odds,makeArray evens〉

where (odds, evens) = unravel xs

unravel [] = ([], [])

unravel (x : xs) = (x : evens, odds)

where (odds, evens) = unravel xs

But this also takes O(n log n) time.

This last approach works top down. Let us instead try to work bottom up. First,

consider the relationship between adjacent rows. For example, here are the third

and fourth rows from Figure 1.

Functional pearls 665

3 5 4 6

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

7 9 8 1011 13 12 14

A pattern emerges as we rearrange the nodes from the third row in numerical order.

We draw the subtrees slightly askew to emphasize our point.

3 4 5 6

�
��

�
��

�
��

�
��

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

7 8 9 10

11 12 13 14

From this picture, we see that the first half of each row become the left children of

the previous row, and the second half of each row become the right children of the

previous row. We begin to code this idea as an algorithm by partitioning the input

list into rows.

rows k [] = []

rows k xs = (k, take k xs) : rows (2 ∗ k) (drop k xs)

For example,

rows 1 [0..14] = [(1, [0]), (2, [1, 2]), (4, [3, 4, 5, 6]), (8, [7, 8, 9, 10, 11, 12, 13, 14])]

Note that we explicitly store the size of each row. This size may be inaccurate for

the last row if it is not full.

Next, we process the rows bottom up. At each step, we combine a row with a list

of its subtrees.

build (k, xs) ts = zipWith3 makeNode xs ts1 ts2
where (ts1, ts2) = split k (ts++repeat 〈〉)

makeNode x s t = 〈x, s, t〉

We first split the list of subtrees into left children and right children, and then zip

these lists with xs to make a list of trees. We use the infinite list repeat 〈〉 to fill in

〈〉 for any missing children. Note that we are not committing to lazy evaluation by

using an infinite list — we could easily replace it with a finite list of length 2k.

Finally, we fold build across the list of rows, and extract the head of the result.

makeArray = head ◦ foldr build [〈〉] ◦ rows 1

The singleton list [〈〉] guarantees that head will find a tree even if xs is empty. The

666 Chris Okasaki

complete algorithm is

rows k [] = []

rows k xs = (k, take k xs) : rows (2 ∗ k) (drop k xs)

build (k, xs) ts = zipWith3 makeNode xs ts1 ts2
where (ts1, ts2) = split k (ts++repeat 〈〉)

makeNode x s t = 〈x, s, t〉
makeArray = head ◦ foldr build [〈〉] ◦ rows 1

Each call to rows or build takes O(k) time, so the entire program runs in O(n) time.

Exercise: Invert this program to obtain a function that lists the elements of a

Braun tree in O(n) time. 2

References

Bird, R. S. (1996) Functional algorithm design. Science of Computer Programming 26(1–
3):15–31.

Braun, W. and Rem, M. (1983) A logarithmic implementation of flexible arrays. Memo-
randum MR83/4. Eindhoven University of Technology.

Hoogerwoord, R. R. (1992) A logarithmic implementation of flexible arrays. Conference

on Mathematics of Program Construction pp. 191–207.

Paulson, L. C. (1996) ML for the Working Programmer, 2nd edition. Cambridge University
Press.

