
J. Functional Programming 8(2) 195–199, March 1998. c© 1998 Cambridge University Press 195

FUNCTIONAL PEARLS

Even Higher-Order Functions for Parsing

or

Why Would Anyone Ever Want To Use a

Sixth-Order Function?

CHRIS OKASAKI†

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213

(e-mail: cokasaki@cs.cmu.edu)

1 Introduction

A higher-order function is a function that takes another function as an argument or

returns another function as a result. More specifically, a first-order function takes

and returns base types, such as integers or lists. A kth-order function takes or

returns a function of order k − 1. Currying often artificially inflates the order of a

function, so we will ignore all inessential currying. (Whether a particular instance of

currying is essential or inessential is open to debate, but we expect that our choices

will be uncontroversial.) In addition, when calculating the order of a polymorphic

function, we instantiate all type variables with base types. Under these assumptions,

most common higher-order functions, such as map and foldr, are second-order, so

beginning functional programmers often wonder: What good are functions of order

three or above? We illustrate functions of up to sixth-order with examples taken

from a combinator parsing library.

Combinator parsing is a classic application of functional programming, dating

back to at least Burge (1975). Most combinator parsers are based on Wadler’s list-

of-successes technique (Wadler, 1985). Hutton popularized the idea in his excellent

tutorial Higher-Order Functions for Parsing (Hutton, 1992). In spite of the title,

however, he considered only functions of up to order three.

2 Parsers as Third-Order Functions

Using Wadler’s list-of-successes technique, a parser is represented by a first-order

function that takes a lazy list of tokens and returns a lazy list of partial results.

† This research was sponsored by the Advanced Research Projects Agency CSTO under
the title “The Fox Project: Advanced Languages for Systems Software”, ARPA Order
No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.



196 Chris Okasaki

The laziness in the return value is essential for controlling backtracking. However,

lazy lists are awkward in a strict language like SML (Milner et al., 1990), so we will

instead manage backtracking using explicit success and failure continuations. We

sketch only those details that are relevant to illustrating higher-order functions.

A parser is a function that takes four arguments: a success continuation that is

invoked when the parser succeeds, a failure continuation that is invoked when the

parser fails, a list of tokens, and the current line number (or other error reporting

information). In SML, we can write this type as

type ’a Parser = ’a SuccCont * FailCont * Token list * Line -> Ans

The type ’a represents the result of the current parser, often a fragment of an

abstract syntax tree. We leave the exact forms of Token, Line, and Ans unspecified.

We also leave unspecified the details of managing the current line number.

A failure continuation takes the line number where the failure occurred and

produces an answer.

type FailCont = Line -> Ans

A success continuation is more complicated. At the very least, it takes the result

of the current parser, the list of remaining tokens, and the line number of the next

token. To support full backtracking, however, it must also take the current failure

continuation in case a later failure backtracks to this point.

type ’a SuccCont = ’a * FailCont * Token list * Line -> Ans

Now, failure continuations are first-order. Success continuations take failure contin-

uations as arguments, so they are second-order. Parsers take success continuations

as arguments, so they are third-order.†

Most primitives involving parsers either take or return parsers and are therefore

at least fourth-order. However, there are two primitive parsers that are third-order.

The first is the parser that always fails, the second is the parser that reads the next

token.

(* fail : ’a Parser *)

fun fail (sc,fc,ts,n) = fc n

(* any : Token Parser *)

fun any (sc,fc,[],n) = fc n

| any (sc,fc,t::ts,n) = sc (t,fc,ts,n)

3 Fourth-Order Functions

Most combinators that produce or manipulate parsers are fourth-order. The sim-

plest is the parser that always succeeds, consuming no tokens. This combinator

† Recall that, using the list-of-successes approach, parsers are first-order functions from
lazy lists to lazy lists, so switching to the continuation-passing approach instantly raises
the order of most parsing combinators by at least two orders.



Functional pearls 197

takes an argument that is the value to pass to the success continuation as the result

of the parse.

(* succeed : ’a -> ’a Parser *)

fun succeed x (sc,fc,ts,n) = sc (x,fc,ts,n)

This function is fourth-order because it returns a third-order parser.

In general, fourth-order combinators may both take and return third-order parsers.

For example, here are combinators for sequencing and alternation.

(* seq : ’a Parser * ’b Parser -> (’a * ’b) Parser *)

fun seq (p,q) (sc,fc,ts,n) =

let fun scp (x,fc,ts,n) =

let fun scq (y,fc,ts,n) = sc ((x,y),fc,ts,n)

in q (scq,fc,ts,n) end

in p (scp,fc,ts,n) end

(* alt : ’a Parser * ’a Parser -> ’a Parser *)

fun alt (p,q) (sc,fc,ts,n) =

let fun fcp np =

let fun fcq nq = fc (max (np,nq))

in q (sc,fcq,ts,n) end

in p (sc,fcp,ts,n) end

Note that max is used to combine the line numbers of two failures, under the as-

sumption that the most likely location for an error is at the end of the longest

successful parse.

These functions are rather messy. However, only a handful of combinators need

know the internal representation of parsers—the remaining combinators can be built

from these primitive combinators. In addition, many of the primitive parsers can

be simplified by assuming that the functions representing parsers and the functions

representing success continuations are curried. Then, for instance, the sequencing

combinator can be written

fun seq (p,q) sc = p (fn x => q (fn y => sc (x,y)))

4 Fifth-Order Functions

The above functions are all fourth-order. Can we go higher? Easily. Here is a fifth-

order function, where the result of one parser is used to choose the next parser. For

those readers familiar with monadic programming, this is just the bind operation

from the monad of parsers (Wadler, 1992; Hutton & Meijer, 1996).

(* bind : ’a Parser * (’a -> ’b Parser) -> ’b Parser *)

fun bind (p,f) sc = p (fn x => f x sc)

The function f is fourth-order, so bind is fifth-order. (We have again written this

function assuming that parsers and success continuations are curried.)

The bind combinator is extremely powerful and can be used to define many other

useful combinators. For example, the sequencing combinator can be rewritten as



198 Chris Okasaki

fun seq (p,q) = bind (p,fn x => bind (q,fn y => succeed (x,y)))

This version of seq assumes nothing about the internal representation of parsers.

A more interesting example of bind uses a predicate to filter the results of a

parser.

(* filter : ’a Parser * (’a -> bool) -> ’a Parser *)

fun filter (p,f) = bind (p,fn x => if f x then succeed x else fail)

Another useful fifth-order function is lookahead, which is similar to bind but

restores any tokens consumed by the first parser.

(* lookahead : ’a Parser * (’a -> ’b Parser) -> ’b Parser *)

fun lookahead (p,f) (sc,fc,ts,n) =

let fun scp (x,fc,_,_) = f x (sc,fc,ts,n)

in p (scp,fc,ts,n) end

5 A Sixth-Order Function

Still higher? Here is a sixth-order function—the join operation from the monad of

parsers—where the result of the current parser is itself the next parser to use.

(* promote : ’a Parser Parser -> ’a Parser *)

fun promote p = bind (p,fn q => q)

Why is this sixth-order? The argument p is fifth-order because its success contin-

uation is fourth-order. Its success continuation is fourth-order because it takes an

ordinary (third-order) parser as the result of p.

This combinator is useful in at least two situations. The first is when one parser

returns a value that chooses between several successor parsers in a bind, as in

bind (p,fn x => if x then p1 else p2)

By rewriting p to return p1 or p2 directly instead of true or false, and replacing

the call to bind with

promote p

we can often avoid an extraneous branch.

The second application occurs when parsing a language in which programs include

a prelude that affects how the rest of the program is to be parsed — the result of

parsing the prelude is the parser to be used on the rest of the program. Fixity

declarations constitute a simple example of this phenomenon, but it is easy to

imagine a language that allows even more radical redefinitions of its syntax.

References

Burge, W. H. (1975) Recursive Programming Techniques. Addison-Wesley.

Hutton, G. (1992) Higher-order functions for parsing. Journal of Functional Programming

2(3):323–343.



Functional pearls 199

Hutton, G. and Meijer, E. (1996) Monadic Parsing Combinators. Tech. rept. NOTTCS-
TR-96-4. Department of Computer Science, University of Nottingham.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. The MIT
Press.

Wadler, P. (1985) How to replace failure by a list of successes. Conference on Functional

Programming Languages and Computer Architecture pp. 113–128.

Wadler, P. (1992) The essence of functional programming. ACM Symposium on Principles

of Programming Languages pp. 1–14.


