LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 57-81, 1994
© 1994 Kluwer Academic Publishers — Manufactured in The Netherlands

Call-by-need and Continuation-passing Style

CHRIS OKASAKI (cokasaki@cs.cmu.edu)
PETER LEE* (petel@cs.cmu. edu)
DAVID TARDITI]L (dtarditi@cs.cmu.edu)

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Keywords: Call-by-need, Continuation-passing Style, Continuations, Lazy Evaluation,
Functional Programming

Abstract. This paper examines the transformation of call-by-need A terms into continu-
ation-passing style (CPS). It begins by presenting a simple transformation of call-by-need
A terms into program graphs and a reducer for such graphs. From this, an informal deriva-
tion is carried out, resulting in a translation from A terms into self-reducing program
graphs, where the graphs are represented as CPS terms involving storage operations.
Though informal, the derivation proceeds in simple steps, and the resulting translation
is taken to be our canonical CPS transformation for call-by-need A terms.

In order to define the CPS transformation more formally, two alternative presenta-
tions are given. The first takes the form of a continuation semantics for the call-by-need
language. The second presentation follows Danvy and Hatcliff’s two-stage decomposition
of the call-by-name CPS transformation, resulting in a similar two-stage CPS transfor-
mation for call-by-need.

Finally, a number of practical matters are considered, including an improvement to
eliminate the so-called administrative redexes, as well as to avoid unnecessary memoiza-
tion and take advantage of strictness information. These improvements make it feasible
to consider potential applications in compilers for call-by-need programming languages.

1. Introduction

One of the trends in compiler construction has been the use of A terms
written in continuation-passing style (CPS) as an intermediate representa-
tion [1, 19, 25]. Transformations into CPS for call-by-name and call-by-
value languages are well known [8, 23, 24], but we are unaware of a similar
transformation for languages implemented with a call-by-need evaluation
strategy (also known as “lazy evaluation”). We find it natural to consider
such a transformation. After all, one of the motivations for the use of CPS

*Supported in part by the National Science Foundation under PYT grant #CCR-
9057567, with matching funds from Bell Northern Research.

TSupported by an AT&T Ph.D. scholarship.

58 OKASAKI, LEE, AND TARDITI

is to expose low-level implementation details in a high-level intermediate
language; as such this seems compatible with the efficiency considerations
that motivate the call-by-need evaluation strategy.

We begin by considering graph reduction, which is a standard technique
for implementing lazy evaluation. We examine a simple transformation of
call-by-need A terms into program graphs and a reducer for such graphs
inspired by the Spineless G-machine [7]. Both the graphs and the reducer
are expressed as ML programs. From this, we informally derive a transla-
tion from A terms into self-reducing program graphs, where the graphs are
represented as CPS ML terms involving storage operations. Though infor-
mal, the derivation proceeds in simple steps, and the resulting translation
is taken to be our canonical CPS transformation for call-by-need A terms.

The graph reducer memoizes the evaluation of subgraphs in order to
achieve lazy behavior. Such memoization involves destructive updates of
an underlying graph store; in our canonical CPS transformation such up-
dates are expressed by assignments to ML-style mutable references. In
order to make this mechanism more explicit and formal, we make an alter-
native presentation of the CPS transformation in the form of a continuation
semantics. In this way, we provide a complete definition of the CPS terms
and storage operations.

To provide yet another formal account of the call-by-need transforma-
tion, we follow Danvy and Hatcliff’s decomposition of the call-by-name
CPS transformation into two simpler transformations [9]. By making a
simple extension to Danvy and Hatcliff’s staging to account for memo-
ization, we obtain a similar two-stage transformation, and show that this
transformation is equivalent to our canonical transformation.

In the remainder of the paper we consider a number of practical matters,
including an improvement to the call-by-need transformation to eliminate
the so-called administrative redexes, based on the optimal CPS transforma-
tion of Danvy and Filinski [8]. Other optimizations include transformations
to avoid unnecessary memoization and also to take advantage of strictness
information. Finally, we conclude with a brief discussion of possible appli-
cations and directions for further work.

2. Graph Reduction and Continuation-passing Style

In graph reduction, a program is converted into a directed-graph representa-
tion. A graph reducer is then used to evaluate the program. Wadsworth was
perhaps the first to use graph reduction to evaluate programs [27]. Turner
popularized the idea with his implementation based on SK-combinators [26].
Many refinements to the concept have been proposed, including the Spine-

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 59

less G-machine [7] which serves as the inspiration for the model of graph
reduction used here.

2.1. A graph reducer

For our purposes, programs are represented by binary DAGs (binary
trees with shared subgraphs).! Interior nodes represent applications while
leaves represent functions. (We assume programs have no free variables.)
In addition, the roots of (potentially) shared subgraphs are distinguished
by a special marker.

To evaluate a graph using the call-by-name strategy, the spine of the
graph (that is, the path from the root to the left-most leaf) is traversed,
pushing the arguments onto a stack, until a function is reached. The func-
tion is applied by building the graph corresponding to the body of the func-
tion, substituting arguments from the stack for occurrences of the function’s
parameters. This new graph is then evaluated with the remaining stack.
Reduction is complete when a function is reached for which there are not
enough arguments on the stack. (A function is considered to take n argu-
ments if it is of the form Azq...Az,. M, where M is not a A-abstraction.)

To achieve call-by-need evaluation, we must account for the memoization
of shared subgraph evaluations. Memoized evaluation involves saving the
current stack and evaluating the subgraph with an empty stack. The root
of the subgraph is then overwritten with the result. Finally, the original
stack is restored and evaluation of the new graph is continued.

More concretely, consider the datatype for graphs and the procedure
for evaluating graphs presented in Figure 1 in an ML-like programming
notation. Note that ML’s notation for assignable references is used to
implement the destructive update of graphs.

The representation of shared graphs requires a bit of explanation. The
graph Share (r,m) is essentially an annotation indicating that the graph m
is (potentially) shared. r is a self-reference to the annotated graph, which
is used to facilitate its update for the purpose of memoization.

Figure 2 presents the transformation G of A terms into ML terms of type
Graphref. G* and F transform shared graphs and functions respectively.
Note that fixref r. e is shorthand for

let r = ref (dummy)inr :=e; r

where r may occur in e.

1 . . .
Most graph reducers also use cycles to represent recursion, but we will not consider
recursive programs in this paper.

60 OKASAKI, LEE, AND TARDITI

Graph = Clos of ((Stack — Graph) x Stack)
| App of (Graphref x Graph ref)
| Share of (Graph ref x Graph ref)

Stack = push of (Graphref x Stack)
| empty

eval : Graph — Stack — Graph

eval(Clos (f,s'))s = f(concats's)
eval(App(m,n))s = eval(!m)(push(n,s))
eval(Share(r,m))s = lett=eval(!m)empty

inr:=t; evalts
Figure 1: A simple graph reducer based on the Spineless G-machine.

Now, to evaluate a A term M, the following ML program is executed:
eval (IM') empty

where M’ = G[M].

Several points are worth mentioning about this graph-reduction scheme.
First, the transformation G arranges for all arguments to be shared. This
is actually overly conservative. A more practical approach is described in
Section 7.1. Second, graph reducers typically assume that programs have
been lambda-lifted [13, 14] prior to conversion into graph form. This greatly
simplifies the handling of environments, but we make no such assumptions
here. Finally, functions are “compiled” in the sense that a function is
converted into an expression which, when executed, builds the graph of the
function body and then reduces it. This, in fact, is the key idea of the
G-machine [4, 15], one of the first practical graph reducers.

2.2. From graph reduction to continuation-passing style

We now informally derive a CPS transformation for call-by-need A terms
by incrementally modifying the representation of graphs until graphs are
represented as CPS terms involving storage operations.

The first step is to remove the overhead of interpreting graphs by folding
eval into G, G*, and F. In essence, the graphs are represented directly by

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 61

fef(Clos (FlAz1... &, M],empty))
ref (App (G[M],G*[N]))
fixref r. Share (r,G[N])

Glz

GlAzy... Az, M
G[M N]

G[N]
Flrer ... Az, M] =

fix f. As.case sof push (2y,...push(z,,s))=eval (G[M]) s
otherwise = Clos(f,s)

Figure 2: Conversion of call-by-need A terms into ML terms of type
Graphref .

functions derived from the reducer.?

represented as follows:

GIM N]| = ref (As.(!G[M]) (push (G*[N],s)))

For instance, application graphs are

where
G*[N] = fixref r. As.let t = (!G[N]) empty

inr:=t ts

In an implementation, such graphs may be represented as closures [22]
or, if small enough, directly as sequences of machine code [3, 18]. (Note,
however, that the latter approach involves self-modifying code, which is
seldom feasible on modern computer architectures.)

This folding introduces a rather subtle effect on the time at which graphs
are constructed. Previously the top-level program graph and the graphs
representing the bodies of functions were built “all at once.” In other
words, the ML term produced by G, when executed, built the entire graph.
Now, however, graphs are built incrementally—subgraphs are constructed
only when necessary. This occurs because the code for building the sub-
components of a graph (specifically, G[M] and G*[N] in an application) is
now delayed by a A abstraction. In practice, this effect can be beneficial,
for instance, when a very complicated argument is never evaluated. If for
some reason such incremental behavior is not desired, the original behavior
can be regained by “hoisting” the construction of the subgraphs outside

2This is comparable to the generation of compilers from interpreters by partial eval-
uation [11].

62 OKASAKI, LEE, AND TARDITI

the scope of the abstraction. For instance:

G[M N] = let m = G[M]
n = G*[N]
in ref (As.(!m) (push(n,s)))

However, in all that follows, we will assume that incremental behavior is
acceptable.

Next, we observe that only shared graphs are ever destructively updated.
Thus, we can avoid placing any other graphs in the store.

GIM N] = As.G[M] (push (G[N], s))

where
G*[N] = let r = fixref r. As.let t = G[N]empty
inr:=t ts
in As.(1r) s

Finally, we note that the argument stack is, in essence, a representation of
a portion of the current continuation, namely, that part of the continuation
arising from function application. More specifically, the argument stack

push (nq, push (nz,push(ns,...)))
is a representation of the continuation
(/\ml. mlnl(Amg. mzng(Amg. m3n3(. .))))

Expressing argument stacks as their equivalent continuations and introduc-
ing continuations to capture the sequencing implicit in the let-statements
and storage operations leads to the translation shown in Figure 3. Note
that without a stack, we cannot easily consume several arguments at once.
Hence, we restrict our attention to single-argument (but higher-order) func-
tions. Further, note that the SML storage primitives ref, !, and := have
been replaced by the continuation-passing style storage primitives new,
deref, and assign. These primitives will be defined formally in Section 4.
However, note that for readability we will often use a semicolon (;) to de-
limit the third argument of assign. Thus, there is no difference between

assignrit;kn

and
assignrt(kn)

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 63

Glz] = 2z
G e. M] = Me.k(Ax.G[M])
GIMN] = Xk.G[M](Am.new (Ar.

assignr (Ak.G[N](An.assignr (Ak.kn); kn));
m (Ak.derefr (At.tk))k))

Figure 3: A CPS graph reducer. This transformation also serves as our
canonical call-by-need CPS transformation. When viewed from that per-
spective, we rename the transformation C;.

C.lx = =z
Cn{/\]x.M] = Ak k(Aa.C,[M])
C.JM N] = Ak.Co[M](Am.mC,[N]k)

Figure 4: Plotkin’s call-by-name CPS transformation.

From one point of view, the final transformation shown in Figure 3 serves
as a high-level description of a form of graph reduction inspired by the
Spineless G-machine. However, in a slight change of perspective, we can
also view this transformation as a call-by-need CPS transformation. Hence,
we rename the transformation C;.

It is instructive to compare this with the call-by-name CPS transforma-
tion shown in Figure 4. The only difference is in the rule for application
where, in the call-by-need transformation, “memoization code” involving
several storage operations is wrapped around the argument.

3. The Source and Target Languages

Throughout this paper we present transformations that convert terms in
a source language to terms in a target language. These languages, though
similar, may differ in the intended evaluation strategy and may have dif-
ferent nonstandard extensions. In order to avoid confusion, we use the
following simple notation for naming the languages.

Each language is a variant of Exp, the untyped A-calculus, as given by
the following grammar:

M = x| Ax.M | My M,

64 OKASAKI, LEE, AND TARDITI

Occasionally, application will be written as
@ My My

Variations of Exp are named by subscripts that describe the intended eval-
uation strategy and any nonstandard extensions. The possible subscripts
are as follows:

Evaluation Orders

e call-by-name (N),

e call-by-need (L),

e call-by-value (V), and

e evaluation-order independent (CPY).

Non-Standard Extensions

¢ (memoized) suspension primitives (Thunk) and

e storage primitives (Store).

For example, EXpy | 7,4, is a call-by-value A-calculus extended with force
and delay operations for manipulating thunks. (The precise nature of these
nonstandard extensions will be defined in the following sections.) Some of
the languages employ a mixed evaluation strategy. For example, Expy,y
employs both call-by-need and call-by-value evaluation (in a manner that
will be made precise later). Grammars for each of these languages are
included in the appendix.

As shown in Figure 3, our canonical CPS transformation for call-by-need
A terms has the following functionality:

Cl : EXpL - EXpCPS—I—Store

Similarly,
Cn : Expy — Exppg

4. Continuation Semantics of Call-by-need Terms

Viewing denotational semantics as “a syntax-directed translation from a
source language to...some version of the lambda-calculus” (Wand [28]),
we see that, with the addition of an environment, a CPS transformation
corresponds quite closely to a continuation semantics. Expressing the trans-
formation as a continuation semantics yields important insight into the

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 65

Ans =... answers
¢ € Val = Clos expressible values
Clos = Thunk — Thunk closures
p€ Env = Ide — Thunk environments
k € ECont = Val — Ans expression continuations

7€ Thunk = ECont — Ans thunks

&, ¢+ Expy — Env — Thunk

Enla]pr = (ple])w

En[Az, M]pm = KAT.E[M]p{z — T})
EM N]pr = E[M]p(Ae.c(Ea[N]p) k)

Figure 5: A call-by-name continuation semantics corresponding to C,.

meanings of CPS terms and storage operations. The domain equations are
particularly helpful in this respect.

To begin with a straightforward example, consider the call-by-name con-
tinuation semantics (corresponding to C,,) and domain equations given in
Figure 5. We see that the meaning of a transformed term is a thunk which
takes an expression continuation and produces an answer.

Next, we add the domain of stores to obtain the call-by-need continuation
semantics (corresponding to C;) and domain equations shown in Figure 6.3
The semantics of the storage operators are given in Figure 7.

From these, we see that the meaning of a transformed term is a thunk
which takes an expression continuation and produces a command continu-
ation, which in turn takes a store and produces an answer. Note that each
command continuation corresponds to a storage operation. Informally, we
can think of a thunk as taking an expression continuation and performing
all of the reductions up to the next storage operation before invoking that
storage operation (i.e., command continuation) with the current store.

5. A Two-stage Call-by-need CPS Transformation

Danvy and Hatcliff [9] demonstrate that the call-by-name CPS transfor-
mation C,, can be decomposed into two distinct stages: the introduction of

2Of course, in the absence of side-effects, call-by-need and call-by-name are denota-
tionally indistinguishable. Still, a separate denotational semantics with explicit stores
for call-by-need is useful as a framework for adding side-effects such as I/O.

OKASAKI, LEE, AND TARDITI

Ans =... answers
¢ € Val = Clos expressible values
Clos = Thunk — Thunk closures
p€ Env = Ide — Thunk environments
a € Loc locations
c € Store = Loc — Thunk stores
¢ CCont = Store — Ans command continuations
k € ECont = Val — CCont expression continuations

7€ Thunk = ECont — CCont thunks

¢ : Exp; — Env — Thunk

Glx]pr = (plz])r
S[Ae.M)pr = w(AT.E[M]p{a— T})
S[M Nlpr = &[M]p(Ae.new (Aa.

assign a (Ak. E[N]p(Ae.assigna (Ak.ke);

Ke))s
e (Ak.derefa (AT.7K))K))

Figure 6: A call-by-need continuation semantics corresponding to C;.

new : (Loc — CCont) — CCont

new K; o = KQo where a € freeo

deref : Loc — (Thunk — CCont) — CCont

derefar,o0 = ki(oca)o

assign : Loc — Thunk — CCont — CCont

assignatloc = fOo{a— T}

Figure 7: The semantics of the CPS storage operators.

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 67

T : Expy — EXpyyum

T[] = forcex
TAx. M] = Xe.T[M]
TIMN] = T[M](delay T[N])

Figure 8: A transformation mapping call-by-name terms into a call-by-value
language with explicit thunks.

thunks by a “thunkifying” transformation 7 and the introduction of con-
tinuations by the call-by-value CPS transformation C, (extended to handle
thunks). Thus C,, can be written as C,, = C, o 7. We extend this result to
call-by-need by accounting for memoization.

First, consider Expyy 7y, @ call-by-value A-calculus extended with
two operations on thunks:

e delay M to construct a thunk for the term M, and

o force M to evaluate the thunk which is the value of M.

Call-by-name terms can be simulated in this language by the “thunkifying”
transformation 7, shown in Figure 8, which delays each argument and
forces each variable.

To extend this to call-by-need, we merely replace the rule for application
with
TIM N]=T[M](delay™ T[N])

where delay® is identical to delay, except that its intended semantics
include memoization.

Now, for C,, we simply take the usual call-by-value CPS transformation
and extend it to handle the operations on thunks. The complete trans-
formation is given in Figure 9. The delay and force operators are easily
transformed as follows:

C,[delay M|
C,[force M|

Ak k(Cy[M))
Ak.Cy[M](Am.m k)

delay® performs memoization in the usual way.

C,[delay™ M| = Ak.new (Ar.
assignr (Ak.Cy[M](Am.assignr (Ak.km); km));
k(Ak.deref r(At.tk)))

68 OKASAKI, LEE, AND TARDITI

Co : EXPyygpunr — EXPepsisior

Col2] — ek

Code. M] = Mok (Ae.C[M])

C.,[M N] = Ae.Co[M](Am.C,[N](An.mn k))
Co[force M] = Ak.C,[M](Am.mk)

Cy[delay M| = Ak. k(C,[M])

C,[delay™ M| = Ak.new (Ar.

assignr (Ak.Cy[M](Am.assignr (Ak.km); km));
k(Ak.deref r (At.tk)))

Figure 9: Plotkin’s call-by-value CPS transformation extended to treat
operations on thunks.

Theorem 1 For any term M in Expy,
Ci[M] = C,[T[M]]

Proof: By structural induction. Each case proceeds by expanding
the definitions of 7 and C,, and reducing as appropriate. The three
cases are shown in Figure 10. |

Less formally, we simply write C; = C, o 7. Decomposing C; in this
manner is convenient because many optimizations to the transformation
may be localized to just one of the subcomponents. Improvements to C, are
described in Section 6, while improvements to 7 are presented in Section 7.

Alternatively, it may be useful to factor the description of memoization
into a third stage M, such that

Ci=C,oMoT

In this approach, M transforms each delay™ into appropriate combina-
tions of delay’s, force’s, and call-by-value storage operations. Then C,
is extended to transform the (direct-style) call-by-value storage operations
into CPS storage operations (but need no longer transform delay*’s). The
details of this factorization are left as an exercise for the motivated reader.

6. Eliminating Administrative Redexes

Literal implementations of transformations such as C; introduce many re-
dexes that simply manipulate continuations, doing no useful computation.

CALL-BY-NEED AND CONTINUATION-PASSING STYLE

Cilz]

Ci[\z. M]

Ci[M N]

C.[T(a]]
C,[force z]
Ak.Cylz](Am.mk)
Ak ak

C.[T[Ae. M]]

Cola T[M]]

Ak k(Ax.C,[T[M])
Ak k(Ax.Ci[M])
Co[T[M NJ]
C.(T[11)(delay” 7[)
A

v

——

.
k.C, [’T[JI(Am.new (Ar.

assignr (Ak.C,[T[N]] (An.assignr (Ak.kn); kn));

m (Ak.derefr (At.1k))k))
Ak.Ci[M](Am.new (Ar.

Co[T[M])(Am.C,[delay™ T[N]|(An.mn k))

assignr (Ak.C/[N](An.assignr (Ak.kn); kn));

m (Ak.derefr (At.1k))k))

Figure 10: Derivations in the proof of C;[M]

= C,[T[M]].

69

70 OKASAKI, LEE, AND TARDITI

Co * EXPyvygpunr — EXPepsisior

C[x] =)Xc.Qcux

Cjhe. M) =Ae.@ec(Ae.C[M])

Cy[M N =Ac. @CH[M] (Am. @C[N] (An. @ (@mn)c))
C,[force M] = \e.@Cy[M](Am.@mc)

Cy[delay M] = Ac.@c(Cy[M])

C;[delay* M]=Ae. M(_AT-

assign r (Ac. @ Cz[M] (Am. assign r (Ac. @ cm)
Qem));
@ c(Ac.derefr (At.Qtc)))

Cz : Exp V4 Thunk (EXPCPS-I—Store - EXPCPS-l—Store) - EXPCPS-I—Store

Col 7] =M. Qkzx

Colde. M) =Xk. @k (Az.Cy [M])

Cy[M N =M. @CxM](Am. QCz[N](An. @ (@mn) (Aa. @k a)))
Co{force M] =Mk.QC[M](Am.@m (Aa. @k a))

Coldelay M] =Xk. @k (C,[M])

Co[delay™ M] = \k.new (Ar.

assign 7 (Ac. @ C5[M] (Am.assignr (Ac. @ em)
Qem));
@Fk(Ac.derefr(At.Qtc)))

Figure 11: A two-level specification of the extended call-by-value CPS
transformation.

In a compiler, these “administrative” redexes may be eliminated in a post-
pass. Alternatively, they may be reduced “on the fly” by a well-staged
transformation in the style of Danvy and Filinski [8], which differentiates
between administrative redexes (static terms) and abstract-syntax con-
structors (dynamic terms). By writing the call-by-value CPS transforma-
tion C, in this form, we obtain a well-staged call-by-need CPS transforma-
tion for free via the decomposition C; = C, 0 7.

Figure 11 contains the well-staged call-by-value CPS transformation. It
can be read as a two-level specification [21], where the overlined terms (A’s
and @’s) correspond to static (transformation-time) operations, and the
underlined terms (A’s, @’s, and storage operations) correspond to dynamic
(run-time) operations. (At transformation-time, the underlined terms are

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 71

just abstract-syntax constructors of EXpcpg i siore-) Co transforms terms
with dynamic continuations while Cy transforms terms with static contin-
uations. C, and Cy are related as follows:

Lemma 1 For any term M in Exp;, static continuation k, and dynamic
continuation c,

Q[Mk =p, QCIM](Am. @ km)
QC,[M]c =g, QC5[M](Am.@cm)
Proof: By structural induction. |

Now,let C; =Cy o7 and C;=Czo0 7.

Theorem 2 For any term M in Expy,
Ci[M] =g, Ci[M]

Proof: Proceeds in the same fashion as Theorem 1, but the case for
application requires one use of Lemma 1. JJ

There is one further refinement we can make to C,. Note that

Cylforcez] = Ac.@QCzz](Am.@mec)
= Xc.@Quze

we can eliminate this n-redex by adding the special case.
Cylforcez] = z

Cy requires no such modification since Cy[force z] does not produce an 7-
redex. Simple consequences of this modification are the identities

Cy[delay (forcez)] = C,[x] and Crdelay (force z)] = Cylx]

7. Optimizations

Actual implementations of functional programming languages often employ
a number of optimizations based on compile-time analyses. In this section
we consider two such optimizations. Rather than expressing them directly
in C;, we confine our modifications to 7.

72 OKASAKI, LEE, AND TARDITI

D

DL\w.M] = Ax.D[M]

DIMN] = @,D[M]D[N] if N =z or N = \e. M’
DIMN] = @D[M]D[N] if N=M'N'

Figure 12: A simple dememoization optimizer. Applications whose argu-
ments do not require memoization are converted to call-by-name.

7.1. Eliminating Unnecessary Memoization

The transformation presented thus far performs excessive memoization.
Every argument is memoized when in fact, for many arguments, memoiza-
tion is unnecessary and may be safely elided. Eliding memoization of an
argument corresponds to replacing call-by-need application with call-by-
name application. We call this optimization dememoization.

Consider an intermediate language Expy/y with both call-by-need and
call-by-name applications, written as @; M N and @, M N respectively.
Then, a dememoization optimizer

D : Exp; — Exppy

maps each application M N to @, M N whenever it is safe to do so (i.e.,
whenever N does not require memoization), and to @; M N otherwise. How
can we tell which arguments require memoization?

First of all, neither A-abstractions nor variables require memoization—
A-abstractions because they are already in weak head-normal form (i.e.,
are not evaluated further) and variables because they are bound to other
arguments, which are themselves memoized as required. A simple version
of D which takes only these two cases into account appears in Figure 12.

Next, unshared arguments do not require memoization. An argument is
shared if its value is required (i.e., if its thunk is forced) more than once.
Conversely, an argument is unshared if its value is required at most once. If
an unshared argument is ever evaluated, we know that its value will never
be required again. Therefore, saving that value is pointless. Incorporating
a sharing analysis [12] into D increases its effectiveness by allowing further
dememoization for unshared arguments.

Taking advantage of this optimization requires only a slight modification
to 7 to substitute delay for delay™ in call-by-name applications. The new
transformation is shown in Figure 13.

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 73

T[] = forcex

T[Ax. M] = Aa.T[M]

7@, M N] = T[M](delay 7[N])
TQ MN] = T[M](delay”T[N])

Figure 13: Introducing thunks after dememoization.

There are two further points to make about the dememoization of variable
arguments. First, such arguments need not even be delayed. However, the
special case C,[forcez] = 2 will ensure that doing so causes no overhead
since Cy[delay (forcez)] = C3[z]. Second, it may occasionally be useful
to memoize a variable argument. If the sharing analysis can show that an
argument is unshared along some paths, it may be worthwhile to memoize
the argument only along those paths where it might be shared. Burn et
al. [7] call this dynamic marking of shared thunks dashing. Consider the
following application

(Az.gz(hz)) M

where g does not share either of its arguments, but /& might share its argu-
ment. Then D might produce the term

@;(Az.Q,(Q,gz)(Q,hx))D[M]

However, if we further knew that ¢ might use one of its arguments but not
both, D might produce the term

@,(Az.Q,(Q,gz)(Qhaz))DM]

In the first case, the argument D[M] is memoized. In the second case, the
argument D[M] is not memoized until and unless it is passed to h (as the
variable z).

7.2. Strictness Optimizations

For certain functions, known as strict functions, it is safe to use call-by-
value even when the program is being evaluated under call-by-need. Since
modern compiler technology typically generates more efficient code for call-
by-value than for call-by-need, a common optimization is to use call-by-
value for those strict functions which are detected by strictness analysis [6,
20]. We now demonstrate how to incorporate this optimization into our
transformation.

74 OKASAKI, LEE, AND TARDITI

7[= forcex

T[Ae. M] = Ae.T[M]
T@MN] = 7[M](delay” 7T[N])
Tlxy] =

T[Ax,. M] = Ae.T[M]

T@, M N] = 7T[M]T[N]

T M] = Az.M (forcez)

Tl M] = Az.M (delay z)

Figure 14: Introducing thunks after strictness optimizations.

Consider a mixed A-calculus with both call-by-need and call-by-value
terms [2, 10], indicated by subscripts of [and v respectively, as well as
coercions between the two. A grammar for such a language Expy v is
given below.

M= x| Ax;. M | @ My M, call-by-need terms
| x| Axy. M | @, My Mo call-by-value terms
| TM| | M coercions

In this framework, a strictness optimizer

S : Exp; — Expyy

replaces call-by-need (lazy) terms with their call-by-value (strict) counter-
parts whenever it is provably safe to do so. Of course, this must be done
in a consistent manner [10]. For instance, in @; M N, M must be a lazy
function, while in @, M N, M must be a strict function.

Figure 14 gives the modifications to 7 required after strictness optimiza-
tions. Call-by-need terms are transformed in the usual way (by adding
delay™’s and force’s), while call-by-value terms are unchanged by the
transformation (since the target language is also call-by-value).

1 M coerces the call-by-value function M into a call-by-need function,
while | M does the opposite. A few examples illustrate their use.

First, consider the function
f = 2g.9(MN)

[is strict in its argument ¢g. However, without further information, we
must assume that ¢ is a lazy function, yielding the mixed term

S[f] = /\gv-@lgvS[MN]

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 75

Note that although g, is a strict variable, the value to which it is bound is
a lazy function.

Now, what happens when f appears in a lazy context, for instance, as
an argument to itself? We simply insert a coercion.

@, SIS

The key is that we are not prevented from making f a strict function in
spite of the fact that it is used in a lazy context. The effect of this sort
of coercion is to allow functions to be analyzed and optimized in isolation
from the contexts in which the functions appear (though, of course, taking
those contexts into account may result in better optimizations).

As a second example, consider the function
f=Xg.9g(Aa. M)
We could of course transform this as
S/ = Agw- Qi g, S[Ax. M]

and coerce any strict functions h to which f is applied (] S[h]). Alterna-
tively, we could transform this as

S[f] = Agv- @, g, S[Ax. M]

and coerce any lazy functions h to which f is applied (] S[h]). In general,
the latter translation is unsafe whenever g might be bound to a lazy function
because the argument is always evaluated even though it might not be
needed. Here, however, the argument evaluates trivially (since it is a A-
abstraction) so evaluating it does no harm even when it is not needed by
g. Other arguments that evaluate trivially, such as strict variables or lazy
variables which are certain to have previously been forced (detectable via a
path analysis [5]), may be treated similarly. Which translation is preferable
depends on the functions to which f is applied. If f is usually applied to
lazy functions, the first translation may be preferable, and vice versa.

When combining strictness optimizations with the dememoization opti-
mizations of the previous section, the strictness optimizations are performed
first. Dememoization is then applied, changing some of the remaining call-
by-need applications to call-by-name. The reason for this ordering is that
strictness optimizations can change the sharing behavior of a program,
causing some shared arguments to become unshared (and hence candidates
for dememoization). This is because a thunk which is passed to a strict
function is forced once, whereas previously it may have been forced many

76 OKASAKI, LEE, AND TARDITI

times. Of course, to be able to apply dememoization after strictness opti-
mizations, D must be modified to operate on the appropriate terms, ¢.e.

D : Expyy — Expp/n/v

7T must be extended similarly.

T : Exprn/v — EXPvirhunk

8. Putting It All Together

The complete transformation from Expj to EXpcpg g, 18 now given by
ChboToDoS

Composing just the last two stages (C, and 7) yields the CPS transforma-
tion on mixed terms, C,,, shown in Figure 15.

Finally, let us point out that the correctness of the complete transfor-
mation depends on the correctness of D and §. A proof of this correctness
would probably follow the lines of Wand [29]. However, note that if D and
S are identity transformations (i.e., introduce no call-by-name or call-by-
value terms), then the above specializes to C;.

9. Related Work

This work arose from a desire to give a CPS presentation of graph reduction,
particularly of the so-called “tagless” models, in which graphs are directly
executed rather than interpreted [22, 18]. Most previous descriptions of
graph reduction have been presented either informally or as state transition
systems.

Once we developed our first, rudimentary call-by-need CPS transforma-
tion, the work by Danvy et al. [8, 9, 10] on the call-by-name CPS transfor-
mation proved invaluable in guiding its evolution.

Three other authors have investigated similar topics involving call-by-
need and continuations. Josephs [17] presents a continuation semantics for
a lazy functional language, while Jgrgensen [16] rewrites an interpreter for
a lazy language into CPS to achieve binding-time improvements for the
purpose of partial evaluation. Both of these employ a different memoiza-
tion technique from ours, in which an explicit tag distinguishes between
evaluated and unevaluated expressions. Wang [30] describes several meth-
ods for implementing lazy evaluation in Scheme using call/cc to access
the continuations, including one, which she calls a “status-checking-free
implementation,” that is similar to ours.

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 77

Co + Expp/n/v — EXPopsisiore
Cra[21] =
Cp[Aei. M] = Ac.Qe(Ax.Cp[M])
Cm[@, M N] = Xe.QCm[M](Am.Q(@mCyu[N])c)
Cnl@ M N] = Ac.@QCwm[M](Am.new (Ar.
assign 7 (Ac. @ C[N](An. assignr (Ac. @ cn) (Qcn)))
(Q(@m(Ac.derefr (At.Qtc)))c)))
Con[y] Ae.Qez
Cp[Azy. M] = Ac.@Qe(Ax.Cp[M])
Crnl@, M N] = Ac.QCw[M](Am.QCH[N](An.Q(@mn)c)
Cr [T M] = A.@c(Az. Ae. QCH[M](Am.Qz (An. @(Q@mn)c)))
Cr[l M] = d.@c(Az. Ae. QCH[M](Am.Q (@m (M. @' 2))c))
Cm - EXPL/N/V - (EXPCPS-I—Store - EXPCPS-l—Store) — EXpopsysiore
Crrlzi] = M.Qz(Aa.@ka)
Calde. M) = Me.@k(Ax.Cp[M])
Cwl@, M N] = M. QCHM](Am.Q(QmCy[N])(Aa. @k a))
C[@; M N] = Xk.QCrm[M](Am.new (Ar.
assignr (Ac. @ Cx[N](An. assignr (Ac. @en) (Qcen)))
(@(@m(Ac.deref r (At. @t c)))(Aa. @k a))))
Crl o] Ae. @k
Crl Ay M| M. @k (M. Cp[M])
C[@, M N] = Me.@QCm[M](Am.QC#H[N](An.@(Q@mn)(Aa.Qka)))
Crl1 M] = M. @Kk (A7. Ae. @CH[M] (Am. Q2 (An. @ (@ mn)c)))
Cl] M] Me. @Kk (Az. Ae. QCr[M] (Am. @ (@ m (Ac'. @' 2)) e))

Figure 15: The CPS transformation on mixed terms.

78 OKASAKI, LEE, AND TARDITI

10. Conclusions and Future Work

In this paper, we have presented a call-by-need CPS transformation and
explored several of its variations, culminating in one that produces no ad-
ministrative redexes and takes advantage of both strictness and sharing
information. There are a number of possible directions for further work.

An obvious application of these ideas is in the area of compiler con-
struction. One approach is to use our transformation in the front-end of
a CPS-based compiler for a lazy functional language. One could then use
an existing CPS-based back-end that supports storage operations, even one
originally developed for a call-by-value language! Our early experience with
implementations of the techniques presented here gives us reason to believe
that this approach is viable.

A second area for future investigation is the incorporation of other op-
timizations and analyses into our transformation. Strictness and sharing
optimizations fit quite cleanly into this framework and it would be inter-
esting to see if other optimizations do as well.

Acknowledgements

We are grateful to Mitch Wand, whose keen insight clarified much of our
thinking. We also wish to thank Olivier Danvy for his suggestions and
encouragement.

References

1. Appel, Andrew W. and Jim, Trevor. Continuation-passing, closure-
passing style. In Sixteenth ACM Symposium on Principles of Pro-
gramming Languages (1989) 293-302.

2. Asperti, Andrea. Integrating strict and lazy evaluation: the Ag-
calculus. In Deransart, P. and Maluszynski, J., editors, Programming
Language Implementation and Logic Programming, Sweden, Springer-
Verlag (1990) 238-254.

3. Augusteijn, A. and van der Hoeven, G. Combinatorgraphs as self-
reducing programs. (1984). Unpublished workshop presentation.

4. Augustsson, Lennart. Compiling Lazy Functional Languages, Part I1.
PhD thesis, Department of Computer Sciences, Chalmers University of
Technology (1987).

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 79

10.

11.

12.

13.

14.

15.

. Bloss, Adrienne, Hudak, Paul, and Young, Jonathan. Code optimiza-

tions for lazy evaluation. Lisp and Symbolic Computation, 1 (1988)
147-164.

Burn, Geoffrey L., Hankin, Chris, and Abramsky, Samson. Strictness
analysis of higher-order functions. Science of Computer Programming,
7 (1986) 249-278.

. Burn, Geoffrey L., Peyton Jones, Simon L., and Robson, John D. The

Spineless G-Machine. In Proceedings of the ACM Conference on Lisp
and Functional Programming, Snowbird (1988) 244-258.

. Danvy, Olivier and Filinski, Andrzej. Representing control, a study of

the CPS transformation. Mathematical Structures in Computer Sci-
ence, 2, 4 (December 1992) 361-391.

. Danvy, Olivier and Hatcliff, John. Thunks (continued). In Proceedings

of the Workshop on Static Analysis WSA’92, IRISA, Rennes, France,
Bordeaux, France (September 1992) 3-11. Extended version available
as Technical Report CIS-92-28, Kansas State University.

Danvy, Olivier and Hatcliff, John. CPS transformation after strictness
analysis. ACM Letters on Programming Languages and Systems, 1, 3
(1993). To appear.

Futamura, Yoshihito. Partial evaluation of computation process — an
approach to a compiler-compiler. Systems, Computers, Controls, 2, 5
(1971) 45-50.

Goldberg, Benjamin. Detecting sharing of partial applications in func-
tional programs. In Kahn, Gilles, editor, Proceedings of the Confer-
ence on Functional Programming and Computer Architecture, Port-
land, Springer-Verlag (1987) 408-425.

Hughes, John. The Design and Implementation of Programming Lan-
guages. PhD thesis, Oxford University (1983).

Johnsson, Thomas. Lambda lifting: transforming programs to recur-
sive equations. In Jouannaud, J.-P., editor, Conference on Functional
Programming Languages and Computer Architecture, Nancy, Springer-
Verlag (September 1985) 190-203.

Johnsson, Thomas. Compiling Lazy Functional Languages. PhD the-
sis, Department of Computer Sciences, Chalmers University of Tech-
nology (1987).

80

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

OKASAKI, LEE, AND TARDITI

Jorgensen, Jesper. Generating a compiler for a lazy language by partial
evaluation. In Symposium on Principles of Programming Languages
(January 1992) 258-268.

Josephs, Mark B. The semantics of lazy functional languages. Theo-
retical Computer Science, 68 (1989) 105-111.

Koopman, Philip J., Lee, Peter, and Siewiorek, Daniel. Cache behavior
of combinator graph reduction. ACM Transactions on Programming
Languages and Systems, 14, 2 (April 1992) 265-297.

Kranz, David, Kelsey, Richard, Rees, Jonathan, Hudak, Paul, Philbin,
James, and Adams, Norman. Orbit: An optimizing compiler for
Scheme. In Proceedings of the SIGPLAN ’86 Symposium on Compiler
Construction (July 1986) 219-233.

Mycroft, Alan. The theory and practice of transforming call-by-need
into call-by-value. In Proceedings of the 4th International Symposium
on Programming, Springer-Verlag (1980) 269-281.

Nielson, Flemming and Nielson, Hanne Riis. Two-level semantics and
code generation. Theoretical Computer Science, 56, 1 (January 1988)
59-133.

Peyton Jones, Simon L. Implementing lazy functional languages on
stock hardware: the Spineless Tagless G-machine. Journal of Functional
Programming, 2, 2 (April 1992) 127-202.

Plotkin, Gordon D. Call-by-name, call-by-value and the A-calculus.
Theoretical Computer Science, 1 (1975) 125-159.

Reynolds, John C. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM National Conference, New
York, New York (1972) 717-740.

Steele Jr., Guy L. Rabbit: a compiler for Scheme. Technical Report Al-
TR-474, MIT (1978).

Turner, David A. A new implementation technique for applicative lan-
guages. Software — Practice and Experience, 9, 1 (January 1979) 31—
49.

Wadsworth, Christopher P. Semantics and Pragmatics of The Lambda
Calculus. PhD thesis, University of Oxford (1971).

Wand, Mitchell. A short proof of the lexical addressing algorithm.
Information Processing Letters, 35 (1990) 1-5.

CALL-BY-NEED AND CONTINUATION-PASSING STYLE 81

29. Wand, Mitchell. Specifying the correctness of binding-time analysis. In
Symposium on Principles of Programming Languages (January 1993)
137-143.

30. Wang, Ching-lin. Obtaining lazy evaluation with continuations in
Scheme. Information Processing Letters, 35 (1990) 93-97.

A. Grammars

Exp;,Expy, Expy, Exppg :

ExpL/N:
M = $|A$M|@[M1M2|@HM1M2
Expp, vy
M = $1|A$[.M|@[M1M2
| $U|A$U.M|@UM1M2
| TM M
Expr/n/v

M = $[|A$[.M|@[M1M2|@HM1M2
| Ty | A$UM | @UMlMQ
| TM | M

EXPy 4 thunk
M= |\e.M| M M,
| force M |delay M | delay™ M

EXp cps i siore
| new M | deref « M | assign a My M,

