
LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 57{81, 1994c 1994 Kluwer Academic Publishers { Manufactured in The NetherlandsCall-by-need and Continuation-passing StyleCHRIS OKASAKI (cokasaki@cs.cmu.edu)PETER LEE� (petel@cs.cmu.edu)DAVID TARDITIy (dtarditi@cs.cmu.edu)School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213Keywords: Call-by-need, Continuation-passing Style, Continuations, Lazy Evaluation,Functional ProgrammingAbstract. This paper examines the transformation of call-by-need � terms into continu-ation-passing style (CPS). It begins by presenting a simple transformation of call-by-need� terms into program graphs and a reducer for such graphs. From this, an informal deriva-tion is carried out, resulting in a translation from � terms into self-reducing programgraphs, where the graphs are represented as CPS terms involving storage operations.Though informal, the derivation proceeds in simple steps, and the resulting translationis taken to be our canonical CPS transformation for call-by-need � terms.In order to de�ne the CPS transformation more formally, two alternative presenta-tions are given. The �rst takes the form of a continuation semantics for the call-by-needlanguage. The second presentation follows Danvy and Hatcli� 's two-stage decompositionof the call-by-name CPS transformation, resulting in a similar two-stage CPS transfor-mation for call-by-need.Finally, a number of practical matters are considered, including an improvement toeliminate the so-called administrative redexes, as well as to avoid unnecessary memoiza-tion and take advantage of strictness information. These improvements make it feasibleto consider potential applications in compilers for call-by-need programming languages.1. IntroductionOne of the trends in compiler construction has been the use of � termswritten in continuation-passing style (CPS) as an intermediate representa-tion [1, 19, 25]. Transformations into CPS for call-by-name and call-by-value languages are well known [8, 23, 24], but we are unaware of a similartransformation for languages implemented with a call-by-need evaluationstrategy (also known as \lazy evaluation"). We �nd it natural to considersuch a transformation. After all, one of the motivations for the use of CPS�Supported in part by the National Science Foundation under PYI grant #CCR-9057567, with matching funds from Bell Northern Research.ySupported by an AT&T Ph.D. scholarship.



58 OKASAKI, LEE, AND TARDITIis to expose low-level implementation details in a high-level intermediatelanguage; as such this seems compatible with the e�ciency considerationsthat motivate the call-by-need evaluation strategy.We begin by considering graph reduction, which is a standard techniquefor implementing lazy evaluation. We examine a simple transformation ofcall-by-need � terms into program graphs and a reducer for such graphsinspired by the Spineless G-machine [7]. Both the graphs and the reducerare expressed as ML programs. From this, we informally derive a transla-tion from � terms into self-reducing program graphs, where the graphs arerepresented as CPS ML terms involving storage operations. Though infor-mal, the derivation proceeds in simple steps, and the resulting translationis taken to be our canonical CPS transformation for call-by-need � terms.The graph reducer memoizes the evaluation of subgraphs in order toachieve lazy behavior. Such memoization involves destructive updates ofan underlying graph store; in our canonical CPS transformation such up-dates are expressed by assignments to ML-style mutable references. Inorder to make this mechanism more explicit and formal, we make an alter-native presentation of the CPS transformation in the form of a continuationsemantics. In this way, we provide a complete de�nition of the CPS termsand storage operations.To provide yet another formal account of the call-by-need transforma-tion, we follow Danvy and Hatcli�'s decomposition of the call-by-nameCPS transformation into two simpler transformations [9]. By making asimple extension to Danvy and Hatcli�'s staging to account for memo-ization, we obtain a similar two-stage transformation, and show that thistransformation is equivalent to our canonical transformation.In the remainder of the paper we consider a number of practical matters,including an improvement to the call-by-need transformation to eliminatethe so-called administrative redexes, based on the optimal CPS transforma-tion of Danvy and Filinski [8]. Other optimizations include transformationsto avoid unnecessary memoization and also to take advantage of strictnessinformation. Finally, we conclude with a brief discussion of possible appli-cations and directions for further work.2. Graph Reduction and Continuation-passing StyleIn graph reduction, a program is converted into a directed-graph representa-tion. A graph reducer is then used to evaluate the program. Wadsworth wasperhaps the �rst to use graph reduction to evaluate programs [27]. Turnerpopularized the idea with his implementation based on SK-combinators [26].Many re�nements to the concept have been proposed, including the Spine-



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 59less G-machine [7] which serves as the inspiration for the model of graphreduction used here.2.1. A graph reducerFor our purposes, programs are represented by binary DAGs (binarytrees with shared subgraphs).1 Interior nodes represent applications whileleaves represent functions. (We assume programs have no free variables.)In addition, the roots of (potentially) shared subgraphs are distinguishedby a special marker.To evaluate a graph using the call-by-name strategy, the spine of thegraph (that is, the path from the root to the left-most leaf) is traversed,pushing the arguments onto a stack, until a function is reached. The func-tion is applied by building the graph corresponding to the body of the func-tion, substituting arguments from the stack for occurrences of the function'sparameters. This new graph is then evaluated with the remaining stack.Reduction is complete when a function is reached for which there are notenough arguments on the stack. (A function is considered to take n argu-ments if it is of the form �x1 . . .�xn:M , where M is not a �-abstraction.)To achieve call-by-need evaluation, we must account for the memoizationof shared subgraph evaluations. Memoized evaluation involves saving thecurrent stack and evaluating the subgraph with an empty stack. The rootof the subgraph is then overwritten with the result. Finally, the originalstack is restored and evaluation of the new graph is continued.More concretely, consider the datatype for graphs and the procedurefor evaluating graphs presented in Figure 1 in an ML-like programmingnotation. Note that ML's notation for assignable references is used toimplement the destructive update of graphs.The representation of shared graphs requires a bit of explanation. Thegraph Share (r;m) is essentially an annotation indicating that the graphmis (potentially) shared. r is a self-reference to the annotated graph, whichis used to facilitate its update for the purpose of memoization.Figure 2 presents the transformation G of � terms into ML terms of typeGraphref . G� and F transform shared graphs and functions respectively.Note that �xref r: e is shorthand forlet r = ref hdummyi in r := e; rwhere r may occur in e.1Most graph reducers also use cycles to represent recursion, but we will not considerrecursive programs in this paper.



60 OKASAKI, LEE, AND TARDITIGraph = Clos of ((Stack ! Graph) � Stack)j App of (Graph ref � Graph ref)j Share of (Graph ref � Graph ref)Stack = push of (Graph ref � Stack)j emptyeval : Graph ! Stack ! Grapheval (Clos (f; s0)) s = f (concat s0 s)eval (App (m;n)) s = eval (!m) (push (n; s))eval (Share (r;m)) s = let t = eval (!m) emptyin r := t; eval t sFigure 1: A simple graph reducer based on the Spineless G-machine.Now, to evaluate a � term M , the following ML program is executed:eval (!M 0)emptywhere M 0 = G[M ].Several points are worth mentioning about this graph-reduction scheme.First, the transformation G arranges for all arguments to be shared. Thisis actually overly conservative. A more practical approach is described inSection 7.1. Second, graph reducers typically assume that programs havebeen lambda-lifted [13, 14] prior to conversion into graph form. This greatlysimpli�es the handling of environments, but we make no such assumptionshere. Finally, functions are \compiled" in the sense that a function isconverted into an expression which, when executed, builds the graph of thefunction body and then reduces it. This, in fact, is the key idea of theG-machine [4, 15], one of the �rst practical graph reducers.2.2. From graph reduction to continuation-passing styleWe now informally derive a CPS transformation for call-by-need � termsby incrementally modifying the representation of graphs until graphs arerepresented as CPS terms involving storage operations.The �rst step is to remove the overhead of interpreting graphs by foldingeval into G, G�, and F . In essence, the graphs are represented directly by



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 61G[x] = xG[�x1 . . .�xn:M ] = ref (Clos (F [�x1 . . .�xn:M ];empty ))G[M N ] = ref (App (G[M ];G�[N ]))G�[N ] = �xref r:Share (r;G[N ])F [�x1 . . .�xn:M ] =�x f: �s: case s of push (x1; . . .push (xn; s0))) eval (!G[M ]) s0otherwise )Clos (f; s)Figure 2: Conversion of call-by-need � terms into ML terms of typeGraphref .functions derived from the reducer.2 For instance, application graphs arerepresented as follows:G[M N ] = ref (�s: (!G[M ]) (push (G�[N ]; s)))where G�[N ] = �xref r: �s: let t = (!G[N ])emptyin r := t; t sIn an implementation, such graphs may be represented as closures [22]or, if small enough, directly as sequences of machine code [3, 18]. (Note,however, that the latter approach involves self-modifying code, which isseldom feasible on modern computer architectures.)This folding introduces a rather subtle e�ect on the time at which graphsare constructed. Previously the top-level program graph and the graphsrepresenting the bodies of functions were built \all at once." In otherwords, the ML term produced by G, when executed, built the entire graph.Now, however, graphs are built incrementally|subgraphs are constructedonly when necessary. This occurs because the code for building the sub-components of a graph (speci�cally, G[M ] and G�[N ] in an application) isnow delayed by a � abstraction. In practice, this e�ect can be bene�cial,for instance, when a very complicated argument is never evaluated. If forsome reason such incremental behavior is not desired, the original behaviorcan be regained by \hoisting" the construction of the subgraphs outside2This is comparable to the generation of compilers from interpreters by partial eval-uation [11].



62 OKASAKI, LEE, AND TARDITIthe scope of the abstraction. For instance:G[M N ] = let m = G[M ]n = G�[N ]in ref (�s: (!m) (push (n; s)))However, in all that follows, we will assume that incremental behavior isacceptable.Next, we observe that only shared graphs are ever destructively updated.Thus, we can avoid placing any other graphs in the store.G[M N ] = �s:G[M ] (push (G�[N ]; s))where G�[N ] = let r = �xref r: �s: let t = G[N ]emptyin r := t; t sin �s: (! r) sFinally, we note that the argument stack is, in essence, a representation ofa portion of the current continuation, namely, that part of the continuationarising from function application. More speci�cally, the argument stackpush (n1;push (n2;push (n3; . . .)))is a representation of the continuation(�m1:m1n1(�m2:m2n2(�m3:m3n3(. . .))))Expressing argument stacks as their equivalent continuations and introduc-ing continuations to capture the sequencing implicit in the let-statementsand storage operations leads to the translation shown in Figure 3. Notethat without a stack, we cannot easily consume several arguments at once.Hence, we restrict our attention to single-argument (but higher-order) func-tions. Further, note that the SML storage primitives ref , !, and := havebeen replaced by the continuation-passing style storage primitives new,deref , and assign. These primitives will be de�ned formally in Section 4.However, note that for readability we will often use a semicolon (;) to de-limit the third argument of assign. Thus, there is no di�erence betweenassign r t ; k nand assign r t (k n)



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 63G[x] = xG[�x:M ] = �k: k (�x:G[M ])G[M N ] = �k:G[M ] (�m:new (�r:assign r (�k:G[N ](�n:assign r (�k: k n); k n)) ;m (�k:deref r (�t: t k))k))Figure 3: A CPS graph reducer. This transformation also serves as ourcanonical call-by-need CPS transformation. When viewed from that per-spective, we rename the transformation Cl.Cn[x] = xCn[�x:M ] = �k: k (�x:Cn[M ])Cn[M N ] = �k:Cn[M ] (�m:mCn[N ]k)Figure 4: Plotkin's call-by-name CPS transformation.From one point of view, the �nal transformation shown in Figure 3 servesas a high-level description of a form of graph reduction inspired by theSpineless G-machine. However, in a slight change of perspective, we canalso view this transformation as a call-by-need CPS transformation. Hence,we rename the transformation Cl.It is instructive to compare this with the call-by-name CPS transforma-tion shown in Figure 4. The only di�erence is in the rule for applicationwhere, in the call-by-need transformation, \memoization code" involvingseveral storage operations is wrapped around the argument.3. The Source and Target LanguagesThroughout this paper we present transformations that convert terms ina source language to terms in a target language. These languages, thoughsimilar, may di�er in the intended evaluation strategy and may have dif-ferent nonstandard extensions. In order to avoid confusion, we use thefollowing simple notation for naming the languages.Each language is a variant of Exp, the untyped �-calculus, as given bythe following grammar: M = x j �x:M jM1M2



64 OKASAKI, LEE, AND TARDITIOccasionally, application will be written as@M1M2Variations of Exp are named by subscripts that describe the intended eval-uation strategy and any nonstandard extensions. The possible subscriptsare as follows:Evaluation Orders� call-by-name (N),� call-by-need (L),� call-by-value (V), and� evaluation-order independent (CPS).Non-Standard Extensions� (memoized) suspension primitives (Thunk) and� storage primitives (Store).For example, ExpV+Thunk is a call-by-value �-calculus extended with forceand delay operations for manipulating thunks. (The precise nature of thesenonstandard extensions will be de�ned in the following sections.) Some ofthe languages employ a mixed evaluation strategy. For example, ExpL=Vemploys both call-by-need and call-by-value evaluation (in a manner thatwill be made precise later). Grammars for each of these languages areincluded in the appendix.As shown in Figure 3, our canonical CPS transformation for call-by-need� terms has the following functionality:Cl : ExpL ! ExpCPS+StoreSimilarly, Cn : ExpN ! ExpCPS4. Continuation Semantics of Call-by-need TermsViewing denotational semantics as \a syntax-directed translation from asource language to. . . some version of the lambda-calculus" (Wand [28]),we see that, with the addition of an environment, a CPS transformationcorresponds quite closely to a continuation semantics. Expressing the trans-formation as a continuation semantics yields important insight into the



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 65Ans = . . . answers" 2 Val = Clos expressible valuesClos = Thunk ! Thunk closures� 2 Env = Ide ! Thunk environments� 2 ECont = Val ! Ans expression continuations� 2 Thunk = ECont ! Ans thunksEn : ExpN ! Env ! ThunkEn[x]�� = (�[x])�En[�x:M ] �� = � (��:En[M ]�fx 7! �g)En[M N ]�� = En[M ] � (�": " (En[N ]�)�)Figure 5: A call-by-name continuation semantics corresponding to Cn.meanings of CPS terms and storage operations. The domain equations areparticularly helpful in this respect.To begin with a straightforward example, consider the call-by-name con-tinuation semantics (corresponding to Cn) and domain equations given inFigure 5. We see that the meaning of a transformed term is a thunk whichtakes an expression continuation and produces an answer.Next, we add the domain of stores to obtain the call-by-need continuationsemantics (corresponding to Cl) and domain equations shown in Figure 6.3The semantics of the storage operators are given in Figure 7.From these, we see that the meaning of a transformed term is a thunkwhich takes an expression continuation and produces a command continu-ation, which in turn takes a store and produces an answer. Note that eachcommand continuation corresponds to a storage operation. Informally, wecan think of a thunk as taking an expression continuation and performingall of the reductions up to the next storage operation before invoking thatstorage operation (i.e., command continuation) with the current store.5. A Two-stage Call-by-need CPS TransformationDanvy and Hatcli� [9] demonstrate that the call-by-name CPS transfor-mation Cn can be decomposed into two distinct stages: the introduction of3Of course, in the absence of side-e�ects, call-by-need and call-by-name are denota-tionally indistinguishable. Still, a separate denotational semantics with explicit storesfor call-by-need is useful as a framework for adding side-e�ects such as I/O.



66 OKASAKI, LEE, AND TARDITIAns = . . . answers" 2 Val = Clos expressible valuesClos = Thunk ! Thunk closures� 2 Env = Ide ! Thunk environments� 2 Loc locations� 2 Store = Loc ! Thunk stores� 2 CCont = Store ! Ans command continuations� 2 ECont = Val ! CCont expression continuations� 2 Thunk = ECont ! CCont thunksE : ExpL ! Env ! ThunkEl[x]�� = (�[x])�El[�x:M ] �� = � (��:El[M ]�fx 7! �g)El[M N ]�� = El[M ]� (�":new (��:assign� (��:El[N ]� (�":assign� (��: � ");� ")) ;" (��:deref � (��: � �))�))Figure 6: A call-by-need continuation semantics corresponding to Cl.new : (Loc ! CCont) ! CContnew �l � = �l �� where� 2 free�deref : Loc ! (Thunk ! CCont) ! CContderef ��t � = �t (� �)�assign : Loc ! Thunk ! CCont ! CContassign� � � � = � �f� 7! �gFigure 7: The semantics of the CPS storage operators.



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 67T : ExpN ! ExpV+ThunkT [x] = forcexT [�x:M ] = �x:T [M ]T [M N ] = T [M ] (delay T [N ])Figure 8: A transformationmapping call-by-name terms into a call-by-valuelanguage with explicit thunks.thunks by a \thunkifying" transformation T and the introduction of con-tinuations by the call-by-value CPS transformation Cv (extended to handlethunks). Thus Cn can be written as Cn = Cv � T . We extend this result tocall-by-need by accounting for memoization.First, consider ExpV+Thunk , a call-by-value �-calculus extended withtwo operations on thunks:� delayM to construct a thunk for the term M , and� forceM to evaluate the thunk which is the value of M .Call-by-name terms can be simulated in this language by the \thunkifying"transformation T , shown in Figure 8, which delays each argument andforces each variable.To extend this to call-by-need, we merely replace the rule for applicationwith T [M N ] = T [M ] (delay� T [N ])where delay� is identical to delay, except that its intended semanticsinclude memoization.Now, for Cv , we simply take the usual call-by-value CPS transformationand extend it to handle the operations on thunks. The complete trans-formation is given in Figure 9. The delay and force operators are easilytransformed as follows:Cv [delayM ] = �k: k (Cv[M ])Cv [forceM ] = �k:Cv [M ] (�m:mk)delay� performs memoization in the usual way.Cv [delay�M ] = �k:new (�r:assign r (�k: Cv[M ](�m:assign r (�k: km); km)) ;k (�k:deref r (�t: t k)))



68 OKASAKI, LEE, AND TARDITICv : ExpV+Thunk ! ExpCPS+StoreCv[x] = �k: k xCv[�x:M ] = �k: k (�x:Cv[M ])Cv[M N ] = �k:Cv[M ](�m:Cv[N ](�n:mn k))Cv[forceM ] = �k:Cv[M ] (�m:mk)Cv[delayM ] = �k: k (Cv [M ])Cv[delay� M ] = �k:new (�r:assign r (�k:Cv[M ] (�m:assign r (�k: km); km)) ;k (�k:deref r (�t: t k)))Figure 9: Plotkin's call-by-value CPS transformation extended to treatoperations on thunks.Theorem 1 For any term M in ExpL,Cl[M ] = Cv[T [M ]]Proof: By structural induction. Each case proceeds by expandingthe de�nitions of T and Cv, and reducing as appropriate. The threecases are shown in Figure 10.Less formally, we simply write Cl = Cv � T . Decomposing Cl in thismanner is convenient because many optimizations to the transformationmay be localized to just one of the subcomponents. Improvements to Cv aredescribed in Section 6, while improvements to T are presented in Section 7.Alternatively, it may be useful to factor the description of memoizationinto a third stage M, such thatCl = Cv �M � TIn this approach, M transforms each delay� into appropriate combina-tions of delay's, force's, and call-by-value storage operations. Then Cvis extended to transform the (direct-style) call-by-value storage operationsinto CPS storage operations (but need no longer transform delay�'s). Thedetails of this factorization are left as an exercise for the motivated reader.6. Eliminating Administrative RedexesLiteral implementations of transformations such as Cl introduce many re-dexes that simply manipulate continuations, doing no useful computation.



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 69
Cl[x] = Cv[T [x]]= Cv[forcex]= �k:Cv[x](�m:mk)= �k: x k= xCl[�x:M ] = Cv[T [�x:M ]]= Cv[�x:T [M ]]= �k: k (�x:Cv[T [M ]])= �k: k (�x:Cl[M ])Cl[M N ] = Cv[T [M N ]]= Cv[T [M ] (delay� T [N ])]= �k:Cv[T [M ]](�m:Cv [delay� T [N ]](�n:mn k))= �k:Cv[T [M ]](�m:new (�r:assign r (�k: Cv[T [N ]] (�n:assign r (�k: k n); k n)) ;m (�k:deref r (�t: t k))k))= �k:Cl[M ](�m:new (�r:assign r (�k: Cl[N ] (�n:assign r (�k: k n); k n)) ;m (�k:deref r (�t: t k))k))Figure 10: Derivations in the proof of Cl[M ] = Cv[T [M ]].



70 OKASAKI, LEE, AND TARDITICv : ExpV+Thunk ! ExpCPS+StoreCv[x] =�c:@ c xCv[�x:M ] =�c:@ c (�x:Cv[M ])Cv[M N ] =�c:@ Cv [M ] (�m:@ Cv[N ] (�n:@ (@mn) c))Cv[forceM ] =�c:@ Cv [M ] (�m:@mc)Cv[delayM ] =�c:@ c (Cv[M ])Cv[delay� M ]=�c:new (�r:assign r (�c:@ Cv[M ] (�m:assign r (�c:@ cm)@ cm)) ;@ c (�c:deref r (�t:@ t c)))Cv : ExpV+Thunk ! (ExpCPS+Store ! ExpCPS+Store )! ExpCPS+StoreCv[x] =�k:@ k xCv[�x:M ] =�k:@ k (�x: Cv[M ])Cv[M N ] =�k:@ Cv[M ] (�m:@ Cv[N ] (�n:@ (@mn) (�a:@ k a)))Cv[forceM ] =�k:@ Cv[M ] (�m:@m (�a:@ k a))Cv[delayM ] =�k:@ k (Cv[M ])Cv[delay� M ]=�k:new (�r:assign r (�c:@ Cv[M ] (�m:assign r (�c:@ cm)@ cm)) ;@ k (�c:deref r (�t:@ t c)))Figure 11: A two-level speci�cation of the extended call-by-value CPStransformation.In a compiler, these \administrative" redexes may be eliminated in a post-pass. Alternatively, they may be reduced \on the y" by a well-stagedtransformation in the style of Danvy and Filinski [8], which di�erentiatesbetween administrative redexes (static terms) and abstract-syntax con-structors (dynamic terms). By writing the call-by-value CPS transforma-tion Cv in this form, we obtain a well-staged call-by-need CPS transforma-tion for free via the decomposition Cl = Cv � T .Figure 11 contains the well-staged call-by-value CPS transformation. Itcan be read as a two-level speci�cation [21], where the overlined terms (�'sand @'s) correspond to static (transformation-time) operations, and theunderlined terms (�'s, @'s, and storage operations) correspond to dynamic(run-time) operations. (At transformation-time, the underlined terms are



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 71just abstract-syntax constructors of ExpCPS+Store .) Cv transforms termswith dynamic continuations while Cv transforms terms with static contin-uations. Cv and Cv are related as follows:Lemma 1 For any term M in ExpL, static continuation k, and dynamiccontinuation c, @ Cv[M ]k =�� @ Cv[M ] (�m:@ km)@ Cv[M ] c =�� @ Cv[M ] (�m:@ cm)Proof: By structural induction.Now, let Cl = Cv � T and Cl = Cv � T .Theorem 2 For any term M in ExpL,Cl[M ] =�� Cl[M ]Proof: Proceeds in the same fashion as Theorem 1, but the case forapplication requires one use of Lemma 1.There is one further re�nement we can make to Cv. Note thatCv[force x] = �c:@ Cv[x](�m:@mc)= �c:@ x cwe can eliminate this �-redex by adding the special case.Cv[forcex] = xCv requires no such modi�cation since Cv[forcex] does not produce an �-redex. Simple consequences of this modi�cation are the identitiesCv[delay (forcex)] = Cv[x] and Cv[delay (forcex)] = Cv [x]7. OptimizationsActual implementations of functional programming languages often employa number of optimizations based on compile-time analyses. In this sectionwe consider two such optimizations. Rather than expressing them directlyin Cl, we con�ne our modi�cations to T .



72 OKASAKI, LEE, AND TARDITID : ExpL ! ExpL=ND[x] = xD[�x:M ] = �x:D[M ]D[M N ] = @nD[M ]D[N ] if N = x or N = �x:M 0D[M N ] = @lD[M ]D[N ] if N = M 0N 0Figure 12: A simple dememoization optimizer. Applications whose argu-ments do not require memoization are converted to call-by-name.7.1. Eliminating Unnecessary MemoizationThe transformation presented thus far performs excessive memoization.Every argument is memoized when in fact, for many arguments, memoiza-tion is unnecessary and may be safely elided. Eliding memoization of anargument corresponds to replacing call-by-need application with call-by-name application. We call this optimization dememoization.Consider an intermediate language ExpL=N with both call-by-need andcall-by-name applications, written as @lM N and @nM N respectively.Then, a dememoization optimizerD : ExpL ! ExpL=Nmaps each application M N to @nM N whenever it is safe to do so (i.e.,wheneverN does not require memoization), and to @lM N otherwise. Howcan we tell which arguments require memoization?First of all, neither �-abstractions nor variables require memoization|�-abstractions because they are already in weak head-normal form (i.e.,are not evaluated further) and variables because they are bound to otherarguments, which are themselves memoized as required. A simple versionof D which takes only these two cases into account appears in Figure 12.Next, unshared arguments do not require memoization. An argument isshared if its value is required (i.e., if its thunk is forced) more than once.Conversely, an argument is unshared if its value is required at most once. Ifan unshared argument is ever evaluated, we know that its value will neverbe required again. Therefore, saving that value is pointless. Incorporatinga sharing analysis [12] into D increases its e�ectiveness by allowing furtherdememoization for unshared arguments.Taking advantage of this optimization requires only a slight modi�cationto T to substitute delay for delay� in call-by-name applications. The newtransformation is shown in Figure 13.



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 73T : ExpL=N ! ExpV+ThunkT [x] = force xT [�x:M ] = �x:T [M ]T [@nM N ] = T [M ] (delayT [N ])T [@lM N ] = T [M ] (delay� T [N ])Figure 13: Introducing thunks after dememoization.There are two further points to make about the dememoization of variablearguments. First, such arguments need not even be delayed. However, thespecial case Cv[forcex] = x will ensure that doing so causes no overheadsince Cv[delay (forcex)] = Cv[x]. Second, it may occasionally be usefulto memoize a variable argument. If the sharing analysis can show that anargument is unshared along some paths, it may be worthwhile to memoizethe argument only along those paths where it might be shared. Burn etal. [7] call this dynamic marking of shared thunks dashing. Consider thefollowing application (�x:g x (h x))Mwhere g does not share either of its arguments, but h might share its argu-ment. Then D might produce the term@l(�x:@n(@ng x) (@nh x))D[M ]However, if we further knew that g might use one of its arguments but notboth, D might produce the term@n(�x:@n(@ng x) (@lh x))D[M ]In the �rst case, the argument D[M ] is memoized. In the second case, theargument D[M ] is not memoized until and unless it is passed to h (as thevariable x).7.2. Strictness OptimizationsFor certain functions, known as strict functions, it is safe to use call-by-value even when the program is being evaluated under call-by-need. Sincemodern compiler technology typically generates more e�cient code for call-by-value than for call-by-need, a common optimization is to use call-by-value for those strict functions which are detected by strictness analysis [6,20]. We now demonstrate how to incorporate this optimization into ourtransformation.



74 OKASAKI, LEE, AND TARDITIT : ExpL=V ! ExpV+ThunkT [xl] = forcexT [�xl:M ] = �x:T [M ]T [@lM N ] = T [M ] (delay� T [N ])T [xv] = xT [�xv:M ] = �x:T [M ]T [@v M N ] = T [M ]T [N ]T ["M ] = �x:M (forcex)T [#M ] = �x:M (delay x)Figure 14: Introducing thunks after strictness optimizations.Consider a mixed �-calculus with both call-by-need and call-by-valueterms [2, 10], indicated by subscripts of l and v respectively, as well ascoercions between the two. A grammar for such a language ExpL=V isgiven below.M = xl j �xl:M j @lM1M2 call-by-need termsj xv j �xv:M j @v M1M2 call-by-value termsj "M j #M coercionsIn this framework, a strictness optimizerS : ExpL ! ExpL=Vreplaces call-by-need (lazy) terms with their call-by-value (strict) counter-parts whenever it is provably safe to do so. Of course, this must be donein a consistent manner [10]. For instance, in @lM N , M must be a lazyfunction, while in @v M N , M must be a strict function.Figure 14 gives the modi�cations to T required after strictness optimiza-tions. Call-by-need terms are transformed in the usual way (by addingdelay�'s and force's), while call-by-value terms are unchanged by thetransformation (since the target language is also call-by-value)."M coerces the call-by-value function M into a call-by-need function,while #M does the opposite. A few examples illustrate their use.First, consider the functionf = �g: g (M N)f is strict in its argument g. However, without further information, wemust assume that g is a lazy function, yielding the mixed termS[f ] = �gv:@l gv S[M N ]



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 75Note that although gv is a strict variable, the value to which it is bound isa lazy function.Now, what happens when f appears in a lazy context, for instance, asan argument to itself? We simply insert a coercion.@vS[f ] ("S[f ])The key is that we are not prevented from making f a strict function inspite of the fact that it is used in a lazy context. The e�ect of this sortof coercion is to allow functions to be analyzed and optimized in isolationfrom the contexts in which the functions appear (though, of course, takingthose contexts into account may result in better optimizations).As a second example, consider the functionf = �g: g (�x:M)We could of course transform this asS[f ] = �gv:@l gv S[�x:M ]and coerce any strict functions h to which f is applied (" S[h]). Alterna-tively, we could transform this asS[f ] = �gv:@v gv S[�x:M ]and coerce any lazy functions h to which f is applied (#S[h]). In general,the latter translation is unsafe whenever g might be bound to a lazy functionbecause the argument is always evaluated even though it might not beneeded. Here, however, the argument evaluates trivially (since it is a �-abstraction) so evaluating it does no harm even when it is not needed byg. Other arguments that evaluate trivially, such as strict variables or lazyvariables which are certain to have previously been forced (detectable via apath analysis [5]), may be treated similarly. Which translation is preferabledepends on the functions to which f is applied. If f is usually applied tolazy functions, the �rst translation may be preferable, and vice versa.When combining strictness optimizations with the dememoization opti-mizations of the previous section, the strictness optimizations are performed�rst. Dememoization is then applied, changing some of the remaining call-by-need applications to call-by-name. The reason for this ordering is thatstrictness optimizations can change the sharing behavior of a program,causing some shared arguments to become unshared (and hence candidatesfor dememoization). This is because a thunk which is passed to a strictfunction is forced once, whereas previously it may have been forced many



76 OKASAKI, LEE, AND TARDITItimes. Of course, to be able to apply dememoization after strictness opti-mizations, D must be modi�ed to operate on the appropriate terms, i.e.D : ExpL=V ! ExpL=N=VT must be extended similarly.T : ExpL=N =V ! ExpV+Thunk8. Putting It All TogetherThe complete transformation from ExpL to ExpCPS+Store is now given byCv � T � D � SComposing just the last two stages (Cv and T ) yields the CPS transforma-tion on mixed terms, Cm, shown in Figure 15.Finally, let us point out that the correctness of the complete transfor-mation depends on the correctness of D and S. A proof of this correctnesswould probably follow the lines of Wand [29]. However, note that if D andS are identity transformations (i.e., introduce no call-by-name or call-by-value terms), then the above specializes to Cl.9. Related WorkThis work arose from a desire to give a CPS presentation of graph reduction,particularly of the so-called \tagless" models, in which graphs are directlyexecuted rather than interpreted [22, 18]. Most previous descriptions ofgraph reduction have been presented either informally or as state transitionsystems.Once we developed our �rst, rudimentary call-by-need CPS transforma-tion, the work by Danvy et al. [8, 9, 10] on the call-by-name CPS transfor-mation proved invaluable in guiding its evolution.Three other authors have investigated similar topics involving call-by-need and continuations. Josephs [17] presents a continuation semantics fora lazy functional language, while J�rgensen [16] rewrites an interpreter fora lazy language into CPS to achieve binding-time improvements for thepurpose of partial evaluation. Both of these employ a di�erent memoiza-tion technique from ours, in which an explicit tag distinguishes betweenevaluated and unevaluated expressions. Wang [30] describes several meth-ods for implementing lazy evaluation in Scheme using call/cc to accessthe continuations, including one, which she calls a \status-checking-freeimplementation," that is similar to ours.



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 77Cm : ExpL=N=V ! ExpCPS+StoreCm[xl] = xCm[�xl:M ] = �c:@ c (�x: Cm[M ])Cm[@nM N ] = �c:@ Cm[M ] (�m:@ (@mCm[N ]) c)Cm[@lM N ] = �c:@ Cm[M ] (�m:new (�r:assign r (�c:@ Cm[N ](�n: assign r (�c:@ cn) (@ cn)))(@ (@m (�c:deref r (�t:@ t c)))c)))Cm[xv] = �c:@ c xCm[�xv:M ] = �c:@ c (�x: Cm[M ])Cm[@v M N ] = �c:@ Cm[M ] (�m:@ Cm[N ] (�n:@ (@mn) c))Cm["M ] = �c:@ c (�x: �c:@ Cm[M ] (�m:@ x (�n:@(@mn) c)))Cm[#M ] = �c:@ c (�x: �c:@ Cm[M ] (�m:@ (@m (�c0:@ c0 x)) c))Cm : ExpL=N=V ! (ExpCPS+Store ! ExpCPS+Store )! ExpCPS+StoreCm[xl] = �k:@x (�a:@ k a)Cm[�xl:M ] = �k:@k (�x: Cm[M ])Cm[@nM N ] = �k:@Cm[M ] (�m:@ (@m Cm[N ]) (�a:@k a))Cm[@lM N ] = �k:@Cm[M ] (�m:new (�r:assign r (�c:@ Cm[N ](�n: assign r (�c:@ cn) (@ cn)))(@ (@m (�c:deref r (�t:@ t c))) (�a:@ k a))))Cm[xv] = �k:@k xCm[�xv:M ] = �k:@k (�x: Cm[M ])Cm[@v M N ] = �k:@Cm[M ] (�m:@ Cm[N ] (�n:@ (@mn) (�a:@ k a)))Cm["M ] = �k:@k (�x: �c:@ Cm[M ] (�m:@ x (�n:@ (@mn) c)))Cm[#M ] = �k:@k (�x: �c:@ Cm[M ] (�m:@ (@m (�c0:@ c0 x)) c))Figure 15: The CPS transformation on mixed terms.



78 OKASAKI, LEE, AND TARDITI10. Conclusions and Future WorkIn this paper, we have presented a call-by-need CPS transformation andexplored several of its variations, culminating in one that produces no ad-ministrative redexes and takes advantage of both strictness and sharinginformation. There are a number of possible directions for further work.An obvious application of these ideas is in the area of compiler con-struction. One approach is to use our transformation in the front-end ofa CPS-based compiler for a lazy functional language. One could then usean existing CPS-based back-end that supports storage operations, even oneoriginally developed for a call-by-value language! Our early experience withimplementations of the techniques presented here gives us reason to believethat this approach is viable.A second area for future investigation is the incorporation of other op-timizations and analyses into our transformation. Strictness and sharingoptimizations �t quite cleanly into this framework and it would be inter-esting to see if other optimizations do as well.AcknowledgementsWe are grateful to Mitch Wand, whose keen insight clari�ed much of ourthinking. We also wish to thank Olivier Danvy for his suggestions andencouragement.References1. Appel, Andrew W. and Jim, Trevor. Continuation-passing, closure-passing style. In Sixteenth ACM Symposium on Principles of Pro-gramming Languages (1989) 293{302.2. Asperti, Andrea. Integrating strict and lazy evaluation: the �sl-calculus. In Deransart, P. and Ma luszy�nski, J., editors, ProgrammingLanguage Implementation and Logic Programming, Sweden, Springer-Verlag (1990) 238{254.3. Augusteijn, A. and van der Hoeven, G. Combinatorgraphs as self-reducing programs. (1984). Unpublished workshop presentation.4. Augustsson, Lennart. Compiling Lazy Functional Languages, Part II.PhD thesis, Department of Computer Sciences, Chalmers University ofTechnology (1987).



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 795. Bloss, Adrienne, Hudak, Paul, and Young, Jonathan. Code optimiza-tions for lazy evaluation. Lisp and Symbolic Computation, 1 (1988)147{164.6. Burn, Geo�rey L., Hankin, Chris, and Abramsky, Samson. Strictnessanalysis of higher-order functions. Science of Computer Programming,7 (1986) 249{278.7. Burn, Geo�rey L., Peyton Jones, Simon L., and Robson, John D. TheSpineless G-Machine. In Proceedings of the ACM Conference on Lispand Functional Programming, Snowbird (1988) 244{258.8. Danvy, Olivier and Filinski, Andrzej. Representing control, a study ofthe CPS transformation. Mathematical Structures in Computer Sci-ence, 2, 4 (December 1992) 361{391.9. Danvy, Olivier and Hatcli�, John. Thunks (continued). In Proceedingsof the Workshop on Static Analysis WSA'92, IRISA, Rennes, France,Bordeaux, France (September 1992) 3{11. Extended version availableas Technical Report CIS-92-28, Kansas State University.10. Danvy, Olivier and Hatcli�, John. CPS transformation after strictnessanalysis. ACM Letters on Programming Languages and Systems, 1, 3(1993). To appear.11. Futamura, Yoshihito. Partial evaluation of computation process { anapproach to a compiler-compiler. Systems, Computers, Controls, 2, 5(1971) 45{50.12. Goldberg, Benjamin. Detecting sharing of partial applications in func-tional programs. In Kahn, Gilles, editor, Proceedings of the Confer-ence on Functional Programming and Computer Architecture, Port-land, Springer-Verlag (1987) 408{425.13. Hughes, John. The Design and Implementation of Programming Lan-guages. PhD thesis, Oxford University (1983).14. Johnsson, Thomas. Lambda lifting: transforming programs to recur-sive equations. In Jouannaud, J.-P., editor, Conference on FunctionalProgramming Languages and Computer Architecture, Nancy, Springer-Verlag (September 1985) 190{203.15. Johnsson, Thomas. Compiling Lazy Functional Languages. PhD the-sis, Department of Computer Sciences, Chalmers University of Tech-nology (1987).



80 OKASAKI, LEE, AND TARDITI16. J�rgensen, Jesper. Generating a compiler for a lazy language by partialevaluation. In Symposium on Principles of Programming Languages(January 1992) 258{268.17. Josephs, Mark B. The semantics of lazy functional languages. Theo-retical Computer Science, 68 (1989) 105{111.18. Koopman, Philip J., Lee, Peter, and Siewiorek, Daniel. Cache behaviorof combinator graph reduction. ACM Transactions on ProgrammingLanguages and Systems, 14, 2 (April 1992) 265{297.19. Kranz, David, Kelsey, Richard, Rees, Jonathan, Hudak, Paul, Philbin,James, and Adams, Norman. Orbit: An optimizing compiler forScheme. In Proceedings of the SIGPLAN '86 Symposium on CompilerConstruction (July 1986) 219{233.20. Mycroft, Alan. The theory and practice of transforming call-by-needinto call-by-value. In Proceedings of the 4th International Symposiumon Programming, Springer-Verlag (1980) 269{281.21. Nielson, Flemming and Nielson, Hanne Riis. Two-level semantics andcode generation. Theoretical Computer Science, 56, 1 (January 1988)59{133.22. Peyton Jones, Simon L. Implementing lazy functional languages onstock hardware: the Spineless Tagless G-machine. Journal of FunctionalProgramming, 2, 2 (April 1992) 127{202.23. Plotkin, Gordon D. Call-by-name, call-by-value and the �-calculus.Theoretical Computer Science, 1 (1975) 125{159.24. Reynolds, John C. De�nitional interpreters for higher-order program-ming languages. In Proceedings of the ACM National Conference, NewYork, New York (1972) 717{740.25. Steele Jr., Guy L. Rabbit: a compiler for Scheme. Technical Report AI-TR-474, MIT (1978).26. Turner, David A. A new implementation technique for applicative lan-guages. Software | Practice and Experience, 9, 1 (January 1979) 31{49.27. Wadsworth, Christopher P. Semantics and Pragmatics of The LambdaCalculus. PhD thesis, University of Oxford (1971).28. Wand, Mitchell. A short proof of the lexical addressing algorithm.Information Processing Letters, 35 (1990) 1{5.



CALL-BY-NEED AND CONTINUATION-PASSING STYLE 8129. Wand, Mitchell. Specifying the correctness of binding-time analysis. InSymposium on Principles of Programming Languages (January 1993)137{143.30. Wang, Ching-lin. Obtaining lazy evaluation with continuations inScheme. Information Processing Letters, 35 (1990) 93{97.A. GrammarsExpL;ExpN ;ExpV ;ExpCPS :M = x j �x:M j M1M2ExpL=N :M = x j �x:M j @lM1M2 j @n M1M2ExpL=V :M = xl j �xl:M j @lM1M2j xv j �xv:M j @v M1M2j "M j #MExpL=N =V :M = xl j �xl:M j @lM1M2 j @n M1M2j xv j �xv:M j @v M1M2j "M j #MExpV+Thunk :M = x j �x:M j M1M2j forceM j delayM j delay�MExpCPS+Store :M = x j �x:M j M1M2j newM j deref xM j assign xM1M2


