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Abstract

In Standard ML, as in many other languages, programmers are often confronted with an un-
pleasant choice between pattern matching and abstraction. Because pattern matching can only
be performed on concrete datatypes, programmers must often sacrifice either the convenience
of pattern matching or the engineering benefits of abstraction. Views relieve this tension by
allowing pattern matching on abstract datatypes. We propose a modest extension of Standard
ML with views and define its semantics via a source-to-source translation back into Standard
ML without views. We claim no particular technical innovation; rather, we have attempted to
engineer a solution that blends as seamlessly as possible with the rest of the language, including
the module system and the stateful features of the language.

1 Introduction

The convenience of pattern matching is one of the most seductive aspects of languages like Standard
ML [6]. Not until the newcomer tries to write large programs does she encounter the Achilles’ heel of
this language feature: it can only be performed on concrete datatypes. Our intrepid programmer
is faced with a dilemma worthy of Hobson. She can have the convenience of pattern matching,
or the engineering benefits of abstraction, but not both. She can choose to hide the internal
representations of her datatypes, usually resulting in code littered with predicates such as null

and selection functions such as head and tail. Or she can expose these internal representations,
allowing pattern matching on these datatypes but also allowing clients to construct possibly ill-
formed values and making changes to her datatypes a nightmare.

Views offer a way out of this dilemma. They expose an abstract representation of a datatype
to clients and allow pattern matching on that abstract representation, without making any com-
mitment to a particular concrete representation. Furthermore, the exposed representation can be
used for pattern matching only, not for the construction of values, so a client cannot create his own
values using the exposed representation.

We begin by illustrating the features of our proposal through a series of examples, paying
particular attention to the behavior of views in the presence of stateful computations. Next, we
formally define our language extension via a source-to-source translation back into Standard ML
without views. Finally, we discuss related work and conclude.

2 Examples

As an example of the use of views, consider a sequence ADT defined by the signature in Figure 1.
The signature declares an abstract type
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signature SEQUENCE =

sig

type ’a Seq

viewtype ’a Seq = Empty | Cons of ’a * ’a Seq

val empty : ’a Seq

val cons : ’a * ’a Seq -> ’a Seq

val append : ’a Seq * ’a Seq -> ’a Seq

end

Figure 1: A signature including a viewtype.

structure MyList :> SEQUENCE =

struct

datatype ’a Seq = Empty | Cons of ’a * ’a Seq

val empty = Empty

val cons = Cons

fun append (Empty, ys) = ys

| append (Cons (x, xs), ys) = Cons (x, append (xs, ys))

end

Figure 2: An example where the viewtype in the signature is matched by a datatype.

type ’a Seq

and then declares a view over that type

viewtype ’a Seq = Empty | Cons of ’a * ’a Seq

This view states that values of the existing type ’a Seq can be pattern matched as if they were
built with the constructors Empty and Cons. A client of such a sequence module might thus write
code such as

fun map f Empty = empty

| map f (Cons (x,xs)) = cons (f x,map f xs)

Of course, a real sequence implementation would include its own map function, but this example
shows that the convenient style of defining functions by pattern matching has been retained, even
though the concrete representation is now hidden. The only difference between writing this map
function over the usual concrete type versus over the abstract type is that the values empty and
cons are used on the right-hand side to construct new sequences, rather than the constructors Empty
and Cons.

The sequence implementation in Figure 2 shows that a datatype can be partially exported as
a viewtype when the constructors of the datatype and the viewtype match. This has the very
important benefit that clients of this module can use the constructors Empty and Cons only in
patterns, not to construct new sequences. If the client wishes to construct a sequence, he must use
the values that have been exported for that purpose: empty, cons, and append.

The next implementation, in Figure 3, shows that the concrete representation of a type can
be completely different from its viewtype. The programmer must then include with the viewtype
definition a function—called the view transformation—mapping the concrete representation to the
abstract representation.

viewtype ’a Seq = Empty | Cons of ’a * ’a Seq

where Nil => Empty

| One x => Cons (x, Nil)

| App (Cons (x, xs), ys) => Cons (x, append (xs, ys))
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structure JoinList :> SEQUENCE =

struct

datatype ’a Seq = Nil | One of ’a | App of ’a Seq * ’a Seq

(* Invariant: Nil never child of App *)

val empty = Nil

fun cons (x, xs) = append (One x, xs)

fun append (xs, Nil) = xs

| append (Nil, ys) = ys

| append (xs, ys) = App (xs, ys)

viewtype ’a Seq = Empty | Cons of ’a * ’a Seq

where Nil => Empty

| One x => Cons (x, Nil)

| App (Cons (x, xs), ys) => Cons (x, append (xs, ys))

end

Figure 3: An implementation of sequences with a non-trivial viewtype transformation.

The view transformation is implicitly invoked whenever constructors of the viewtype appear in
a pattern. Within the body of the transformation, the constructors of the viewtype are used to
construct values of the abstract type. This is the only place where these constructors can appear in
an expression, rather than a pattern. Note that, even though this function is anonymous, it can be
invoked recursively by pattern matching against one of the view constructors, as in the App clause.

The One clause also illustrates an interesting point. It would be easy to mistakenly write
the right-hand side of that clause as Cons (x, Empty) rather than Cons (x, Nil). However, this
mistake would be caught by the typechecker since the second argument of Cons must have type
’a Seq, and Empty does not have this type! Although the pattern Empty can be treated as if it has
type ’a Seq, the expression Empty has some deliberately unnamed type that exists only within the
view transformation.

Figure 4 illustrates most of the remaining features of views. The most interesting of these is
the last: views are allowed to match less polymorphic signatures. In this regard, views are more
like functions than datatypes.

3 Memoization of View Transformations

In Standard ML, functions can both depend on and affect the current state. Therefore, it is
crucial to define exactly when each view transformation is called. We defer the formal definition
to Section 4, but discuss some of the options here.

Consider the following views:

viewtype int = C of int

viewtype int = D of int

where the view transformations for C and D are functions that may manipulate state.
We begin with an easy decision. In the expression

case e of 0 => 0

| C 1 => 1

| D x => x

when should the view transformations for C and D be called? Although other choices are conceivable,
such as calling both at the beginning of the match, the only reasonable choice is to call the view
transformation for C if and when the match against 0 fails, and to call the view transformation for
D if and when the match against C 1 fails.
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• A single type may have multiple views.

viewtype ’a Seq = EmptyC | Cons of ’a * ’a Seq

viewtype ’a Seq = EmptyS | Snoc of ’a Seq * ’a

• Views may be written for arbitrary types.

viewtype ’a = And of ’a * ’a

where x => And (x,x)

viewtype ’’a * ’’a = Same of ’’a | Diff of ’’a * ’’a

where (x,y) => if x = y then Same x else Diff (x,y)

viewtype int * int = MinMax of int * int

where (x,y) => if x < y then MinMax (x,y) else MinMax (y,x)

• View transformations may be mutually recursive with ordinary functions.

viewtype ’a list = Last of ’a | NoLast

where [] => NoLast

| xs => Last (last xs)

withfun last [] = raise LastExn

| last (x :: NoLast) = x

| last (x :: Last y) = y

• View transformations may be mutually recursive with other view transformations.

viewtype ’a Seq = LastEven of ’a | NoLastEven

where Empty => NoLastEven

| Cons (x, NoLastOdd) => LastEven x

| Cons (x, LastOdd y) => LastEven y

and ’a Seq = LastOdd of ’a | NoLastOdd

where Cons (x, LastEven y) => LastOdd y

| _ => NoLastOdd

• Views can match less polymorphic signatures.

structure S : sig viewtype int list = Head of int | NoHead end =

struct

viewtype ’a list = Head of ’a | NoHead

where (x::xs) => Head x

| [] => NoHead

end

Figure 4: More examples of views.
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Now, in the expression

case e of C 0 => 0

| C 1 => 1

| D 2 => 2

| D 3 => 3

| C 4 => 4

| C 5 => 5

| D 6 => 6

| D x => x

how many times should the view transformations for C and D each be called? There are three rea-
sonable choices: at most four times, at most twice, and at most once. These correspond respectively
to calling a view transformation whenever any constructor from the view is matched, whenever any
contiguous block of constructors from the view is matched, or only when the first constructor from
the view is matched. We choose the last interpretation, which essentially memoizes applications
of a view transformation within a single match, not only on the grounds of efficiency, but because
it corresponds most closely with our intuitions about exhaustiveness and redundancy in matches.
For example, given the views

viewtype int = F of bool

viewtype int = G of bool

the match

case e of F true => 0

| G true => 1

| F false => 2

is not necessarily exhaustive under either of the other interpretations, even though the F clauses
appear to cover all possible cases, because the view transformation for F might initially return false,
but later return true (possibly because of an assignment made by the view transformation for G).
Similarly, in the match

case e of F true => 0

| G true => 1

| F true => 2

the third clause is not necessarily redundant with the first. Under the memoizing interpretation,
both examples obey our intuitions—the first match is exhaustive and the second match is redundant.

Note that memoization only applies to constructors that appear in the same position. For
example, both of the following matches call the view transformation for C twice:

case e of (C x,C y) => x+y

case e of C (C x) => x

4 Syntax and Semantics

Next, we formally define the syntax and semantics of views. The new syntax required to support
views is minimal. We add two new keywords (viewtype and withfun) and three new productions
to the syntax described in The Definition of Standard ML (Revised) [6].

spec ::= viewtype ty = condesc
dec ::= viewtype viewbind 〈withfun fvalbind〉
viewbind ::= ty = conbind where match 〈and viewbind〉
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We define the static and dynamic semantics of the new language constructs implicitly via a
set of rewrite rules back into Standard ML without views. These rules fire in any order until no
more rules apply. Some of the rules are context-sensitive in that they need to know whether a
given identifier is a constructor defined by a view (and if so, which view). We could implement
this explicitly by parameterizing the rewrite rules with an environment, but we choose to leave the
environment implicit.

Many of the rules generate new identifiers. These are not fresh identifiers per se. They are
guaranteed not to clash with any user identifiers, but are chosen to be consistent with each other.
For example, each view constructor is renamed from C to C ′. The exact form of C ′ does not matter,
as long as every occurrence of the same C is renamed to the same C ′. We assume that the rules
can distinguish between user identifiers and identifiers generated by other rules.

For brevity, we show the rules for only a subset of the language. For example, we ignore nullary
constructors, records, and tuples larger than two. Extending these rules to cover the full language
is straightforward.

Viewtypes Inside signatures, each view specification is expanded into a datatype specification
and a function specification.

(view-spec)

viewtype ty = C1 of ty1 | · · · |Ck of tyk

=⇒
datatype (α1, . . . , αk) V = C ′

1
of α1 | · · · |C

′

k of αk

val viewV : ty → (ty1, . . . , tyk) V

The new identifiers V and viewV are generated from C1 . . . Ck; the new identifier C ′

i is generated
from Ci.

Each view declaration expands into a datatype declaration and a function declaration. This is
quite similar to the rule for view specifications, except for the need to deal with recursion between
view transformations and ordinary functions.

(view-dec)

viewtype ty1 = C1,1 of ty1,1 | · · · |C1,k1 of ty1,k1 where match1

and . . .

and tyn = Cn,1 of tyn,1 | · · · |Cn,kn of tyn,kn where matchk

withfun fvalbind
=⇒
datatype (α1,1, . . . , α1,k1) V1 = C ′

1,1 of α1,1 | · · · |C
′

1,k1
of α1,k1

...
datatype (αn,1, . . . , αn,kn) Vn = C ′

n,1 of αn,1 | · · · |C
′

n,kn
of αn,kn

val rec viewV 1 : ty1 → (ty1,1, . . . , ty1,k1
) V1 = fn match1

...
and viewV n : tyn → (tyn,1, . . . , tyn,kn

) Vn = fn matchn

and fvalbind ′

where fvalbind ′ is fvalbind desugared from fun-style into val rec-style.
The seemingly bizarre form of the datatypes generated by these rules is so that a view declaration

can match a less polymorphic view specification. Functions currently have this property, whereas
datatypes are required to match exactly. Hence, we generalize the datatype as much as possible
and rely on the type assigned to the view transformation to determine whether a view declaration
and specification are compatible.
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Also, note that both of these rules assume that the constructors of a view are first sorted into
some canonical order. Otherwise, viewtype specifications and declarations would fail to match
whenever they list constructors in different orders. Datatype definitions in Standard ML are cur-
rently insensitive to the order in which constructors are written, and we want that property for
viewtype definitions as well.

Datatypes Each datatype expands into two datatypes and a function. The first datatype is a
verbatim copy of the original. The other datatype and the function are for when a datatype is used
as a view of itself.

(data-spec)

datatype tyvarseq T = C1 of ty1 | · · · |Ck of tyk
=⇒
datatype tyvarseq T = C1 of ty1 | · · · |Ck of tyk
datatype (α1, . . . ,αk) V = C ′

1
of α1 | · · · |C

′

k of αk

val viewV : tyvarseq T → (ty1, . . . ,tyk) V

(data-dec)

datatype tyvarseq T = C1 of ty1 | · · · |Ck of tyk
=⇒
datatype tyvarseq T = C1 of ty1 | · · · |Ck of tyk
datatype (α1, . . . ,αk) V = C ′

1
of α1 | · · · |C

′

k of αk

val viewV : tyvarseq T → (ty1, . . . ,tyk) V = fn C1 x1 ⇒ C ′

1
x1 | · · · |Ck xk ⇒ C ′

k xk

Of course, the full rules must allow for mutually recursive datatypes.

View constructors in expressions Constructors introduced by views can be used as expres-
sions only within the view transformation for that view. Any use outside the view transformation
produces a static error.

(viewcon-exp)

C =⇒

{

C ′ if occurs within own view transformation
error otherwise

Case expressions Not surprisingly, the majority of the rewrite rules deal with pattern matching.
Pattern matching can occur in several places in Standard ML, but we give the rules only for explicit
case expressions.

Figure 5 describes the rules for rewriting case expressions. The basic strategy is first to expand
each case expression into a series of nested case expressions, each of which tests at most a single
constructor; then to insert calls to the appropriate view transformation for each occurrence of a
view constructor; and finally to merge identical calls to view transformations.1 For this merging
phase to work properly, it is important that new identifiers naming intermediate values be generated
consistently. The dot operator v.id deterministically combines two identifiers into a new identifier.
(There will never be any confusion with dots indicating selection from a structure.)

Many of the rules introduce new bindings using let x = e in e′ as shorthand for (fn x ⇒ e′) e.
This prevents any confusion over unwarranted generalization of type variables, as might occur if
we used let expressions instead.

Note that these rewrite rules are intended to define the semantics of pattern matching with
views, not to suggest an implementation. They are horribly inefficient, in at least two respects.

1These rules are similar in spirit to the formal semantics of pattern matching presented in the Haskell report [5].
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(case-begin)

case e of match =⇒ let v = e in case v of match | ⇒ raise Match

{v fresh, e not some generated identifier v′}

(case-seq)

case v of match |match ′ | ⇒ e =⇒ case v of match | ⇒ (case v of match ′ | ⇒ e)

(case-as)

case v of x as p ⇒ e | ⇒ e′ =⇒ case v of p ⇒ (let x = v in e) | ⇒ e′

(case-con)

case v of C p ⇒ e | ⇒ e′ =⇒ case v of C v.C ⇒ (case v.C of p ⇒ e | ⇒ e′) | ⇒ e′

{p not generated identifier v′}

(case-tup)

case v of (p1, p2) ⇒ e | ⇒ e′ =⇒ case v of (v.1, v.2) ⇒
(case v.1 of p1 ⇒ (case v.2 of p2 ⇒ e | ⇒ e′) | ⇒ e′)

(case-view)

case v of C v.C ⇒ e | ⇒ e′ =⇒ let v′ = viewV v in case v′ of C ′ v.C ⇒ e | ⇒ e′

{C a view constructor with transformation viewV , v′ = v.viewV }

(view-memo)

let v′ = viewV v in . . . (let v′ = viewV v in e) . . .
=⇒ let v′ = viewV v in . . . e . . .

Figure 5: Rules for rewriting case expressions.

First, rule case-seq sequentializes each match, preventing many of the optimizations possible for
parallel matches. Second, rules case-con and case-tup duplicate code, resulting in potentially
exponential increases in code size.

Both problems can be reduced by running backward variants of rules case-seq, case-as,
case-con, and case-tup in a postpass recombining sequentialized matches into parallel matches
whenever possible. This will usually be successful, failing only when calls to view transformations
intervene, when switching from matching constructors of one viewtype (or datatype) to another, or
when a particular view transformation is memoized in one occurrence of duplicated code, but not
in another. The explosion in code size can be further alleviated by ensuring that any duplicated
code is small to be begin with, for example by replacing large expressions on the right-hand sides
of clauses with function calls.

Ref patterns In the rules for rewriting case expressions, we have ignored patterns involving the
ref constructor. This is not an oversight; rather, we propose eliminating this controversial language
feature in favor of the following view on reference cells:

viewtype ’a ref = Ref of ’a

where r => Ref (!r)

Then ref can be demoted from a constructor to a value.
If ref is left as a constructor, then its behavior in patterns should be identical to the above

view. In particular, the dereference should occur the first time the ref pattern is encountered, and
it should occur only once. This can be accomplished by the rules in Figure 6.
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(case-ref)

case v of ref v.ref ⇒ e | ⇒ e′ =⇒ let v.ref = !v in e

(ref-memo)

let v′ = !v in . . . (let v′ = !v in e) . . . =⇒ let v′ = !v in . . . e . . .

Figure 6: Rules for rewriting ref patterns.

5 Efficiency

One argument that is sometimes used against views is that pattern matching involving views
is less efficient than pattern matching against concrete datatypes. However, this should not be
surprising since abstraction usually carries a performance penalty.2 As long as code not using views
is not adversely affected, and as long as code using views is at least comparable in efficiency to
code accessing abstract datatypes in other ways (such as through null, head, and tail functions),
questions of efficiency should be much less of a concern than questions such as ease of reading,
writing, and maintaining programs.

A related argument against views is that, because pattern matching is usually very fast, pro-
grammers might be misled by views into writing very inefficient programs, whereas if they were
required to make the function calls explicit, they would be more careful. If this is a major concern,
then it would be easy to adopt a naming convention that distinguishes view constructors from
datatype constructors as a reminder that view constructors in patterns indicate function calls.

6 Related Work

Wadler introduced views in [9]. He allowed view constructors to appear in both patterns and
expressions, and therefore required two view transformations—one mapping from the concrete
type to the abstract type (to be used in patterns) and one mapping from the abstract type to the
concrete type (to be used in expressions). Unfortunately, this dual role played by view constructors
proved problematic for equational reasoning.

Burton and Cameron [2] solve the problems with equational reasoning by forbidding the use of
view constructors in expressions. This also eliminates the need for the inverse view transformation.
However, for the sake of efficient compilation, they forbid mixing constructors from different views
within a single match.

Palao et al. [7] and Erwig [4] allow the mixing of arbitrary view constructors, but effectively limit
each view type to a single constructor. This is only feasible because their view transformations are
all partial—a match failure in the view transformation does not cause an error, but rather causes the
pattern that invoked the view transformation to fail. A major drawback of this single-constructor
approach is that related constructors cannot share work during the view transformation.

The proposal most similar to ours is that of Burton et al. [3]. However, since their proposal
was for Haskell, they do not consider issues such as interactions with state or with Standard ML’s
module system.

Aitken and Reppy [1] considered a different solution to the problem of pattern matching on
abstract datatypes. Their proposal for abstract value constructors allows patterns to be named.
Then an occurrence of an abstract constructor expands into the named pattern. This proposal

2When the concrete representation and view transformation are known to the compiler, pattern matching involving
views can often be optimized into pattern matching against the concrete type [7, 4]. However, in the common case
that the view is received as a functor argument, these optimizations will usually not apply.
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supports very efficient compilation, but has much more limited applicability. For example, because
the named patterns have a fixed shape, and do not allow any computation to occur, it is impossible
to write an abstract value constructor that matches the last element of an arbitrary list.

Peyton Jones’s pattern guards [8] offer another alternative to views. Pattern guards allow
bindings within the guard of a pattern to be visible within the right-hand side of the clause. If
a pattern within the guard fails to match, then the guard fails. Views and pattern guards solve
many of the same problems, but there are problems for which views are much more convenient
than pattern guards, and vice versa. Pattern guards are extremely attractive in Haskell, which
already supports the components out of which pattern guards are built, namely guards and list
comprehension syntax. However, they are less attractive in Standard ML, which currently supports
neither.

7 Conclusions

A large part of Standard ML’s appeal is the way the module system encourages the kinds of
abstractions that are necessary for building large systems. Unfortunately, the restriction of pattern
matching to concrete datatypes discourages such abstractions. By allowing pattern matching on
abstract datatypes, views eliminate this disincentive. We sincerely hope that some solution to this
problem is adopted soon, even if not the one described here.
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