
Simple Con
uently Persistent Catenable Lists.(Extended Abstract)Haim Kaplan1, Chris Okasaki2?, and Robert E. Tarjan3??1 AT&T labs, 180 Park Ave, Florham Park, NJ. hkl@research.att.com2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.cokasaki@cs.cmu.edu3 Department of Computer Science, Princeton University, Princeton, NJ 08544 andInterTrust Technologies Corporation, Sunnyvale, CA 94086. ret@cs.princeton.edu.Abstract. We consider the problem of maintaining persistent lists sub-ject to concatenation and to insertions and deletions at both ends. Up-dates to a persistent data structure are nondestructive{each operationproduces a new list incorporating the change while keeping intact the listor lists to which it applies. Although general techniques exist for mak-ing data structures persistent, these techniques fail for structures thatare subject to operations, such as catenation, that combine two or moreversions. In this paper we develop a simple implementation of persistentdouble-ended queues with catenation that supports all deque operationsin constant amortized time.1 IntroductionOver the last �fteen years, there has been considerable development of persistentdata structures, those in which not only the current version, but also older ones,are available for access (partial persistence) or updating (full persistence). Inparticular, Driscoll, Sarnak, Sleator, and Tarjan [5] developed e�cient generalmethods to make pointer-based data structures partially or fully persistent, andDietz [3] developed an e�cient general method to make array-based structuresfully persistent.These general methods support updates that apply to a single version of astructure at a time, but they do not accommodate operations that combine twodi�erent versions of a structure, such as set union or list catenation. Driscoll,Sleator, and Tarjan [4] coined the term con
uently persistent for fully persistentstructures that support such combining operations. An alternative way to ob-tain persistence is to use strictly functional programming (By strictly functionalwe mean that lazy evaluation, memoization, and other such techniques are not? Supported by the Advanced Research Projects Agency CSTO under the title \TheFox Project: Advanced Languages for Systems Software", ARPA Order No. C533,issued by ESC/ENS under Contract No. F19628-95-C-0050.?? Research at Princeton University partially supported by NSF Grant No. CCR-9626862.

allowed). For list-based data structure design, strictly functional programmingamounts to using only the LISP functions car, cons, cdr. Strictly functionaldata structures are automatically persistent, and indeed con
uently persistent.A simple but important problem in data structure design that makes the issueof con
uent persistence concrete is that of implementing persistent double-endedqueues (deques) with catenation. A series of papers [4, 2] culminated in the workof Kaplan and Tarjan [8], who developed a con
uently persistent implementationof deques with catenation that has a worst-case constant time and space boundfor any deque operation, including catenation. The Kaplan-Tarjan data structureand its precursors obtain con
uent persistence by being strictly functional.If all one cares about is persistence, strictly functional programming is un-necessarily restrictive. In particular, Okasaki [12, 11, 13] observed that the use oflazy evaluation in combination with memoization can lead to e�cient functional(but not strictly functional) data structures that are con
uently persistent. Inorder to analyze such structures, Okasaki developed a novel kind of debit-basedamortization. Using these techniques and weakening the time bound from worst-case to amortized, he was able to considerably simplify the Kaplan-Tarjan datastructure, in particular to eliminate its complicated skeleton that encodes a treeextension of a redundant digital numbering system.In this paper we explore the problem of further simplifying the Kaplan-Tarjan result. We obtain a con
uently persistent implementation of deques withcatenation that has a constant amortized time bound per operation. Our struc-ture is substantially simpler than the original Kaplan-Tarjan structure, andeven simpler than Okasaki's structure: whereas Okasaki requires e�cient per-sistent deques without catenation as building blocks, our structure is entirelyself-contained. Furthermore our analysis uses a standard credit-based approach.As compared to Okasaki's method, our method requires an extension of the con-cept of memoization: we allow any expression to be replaced by an equivalentexpression.The remainder of this extended abstract consists of �ve sections. In Section2, we introduce terminology and concepts. In Section 3, we illustrate our ap-proach by developing a persistent implementation of deques without catenation.In Section 4, we develop our solution for deques with catenation. We concludein Section 5 with some remarks and open problems.2 PreliminariesThe objects of our study are lists. As in [8] we allow the following operations onlists:

makelist(x): return a new list containing the single element x.push(x; L): return a new list formed by adding element x to thefront of list L.pop(L): return a pair whose �rst component is the �rst elementon list L and whose second component is a list contain-ing the second through last elements of L.inject(L; x): return a new list formed by adding element x to theback of list L.eject(L): return a pair whose �rst component is a list containingall but the last element of L and whose second compo-nent is the last element of L.catenate(L;R): return a new list formed by catenating L and R, withL �rst.We seek implementations of these operations (or speci�c subsets of them) onpersistent lists: any operation is allowed on any previously constructed list orlists at any time. For discussions of various forms of persistence see [5]. A stackis a list on which only push and pop are allowed. A queue is a list on which onlyinject and pop are allowed. A steque (stack-ended queue) is a list on which onlypush, pop, and inject are allowed. Finally, a deque (double-ended queue) is alist on which all four operations push, pop, inject, and eject are allowed. Forany of these four structures, we may or may not allow catenation. If catenationis allowed, push and inject become redundant, since they are special cases ofcatenation, but it is sometimes convenient to treat them as separate operationsbecause they are easier to implement than general catenation.We say a data structure is strictly functional if it can be built and manipu-lated using the LISP functions car, cons, cdr. That is, the structure consists ofa set of immutable nodes, each either an atom or a node containing two pointersto other nodes, with no cycles of pointers. The nodes we use to build our struc-tures actually contain a �xed number of �elds; reducing our structures to two�elds per node by adding additional nodes is straightforward. Various nodes inour structure represent lists. To obtain our results, we extend strict functionalityby allowing, in addition to car, cons, cdr, the operation of replacing a node ina structure by another node representing the same list. Such a replacement canbe performed in an imperative setting by replacing all the �elds in the node, forinstance in LISP by using replaca and replacd. Replacement can be viewedas a generalization of memoization. In our structures, any node is replaced atmost twice, which means that all our structures can be implemented in a write-once memory. (It is easy to convert an algorithm that overwrites any �eld only a�xed constant number of times into a write-once algorithm, with only a constantfactor loss of e�ciency.)To perform amortized analysis, we use a standard potential-based framework.We assign to each con�guration of the data structure (the totality of nodes cur-rently existing) a potential. We de�ne the amortized cost of an operation tobe its actual cost plus the net increase in potential caused by performing theoperation. In our applications, the potential of an empty structure is zero and

the potential is always non-negative. It follows that, for any sequence of opera-tions starting with an empty structure, the total actual cost of the operations isbounded above by the sum of their amortized costs. See the survey paper [14]for a more complete discussion of amortized analysis.3 Noncatenable DequesIn this section we describe an implementation of persistent noncatenable dequeswith a constant amortized time bound per operation. The structure is based onthe analogous Kaplan-Tarjan structure [8] but is much simpler. The result pre-sented here illustrates our technique for doing amortized analysis of a persistentdata structure. At the end of the section we comment on the relation betweenthe structure proposed here and previously existing solutions.3.1 RepresentationHere and in subsequent sections we say a data structure is over a set A if it storeselements from A. Our representation is recursive. It is built from bounded-sizedeques called bu�ers, each containing at most three elements. Bu�ers are oftwo kinds: pre�xes and su�xes. A nonempty deque d over A is represented byan ordered triple consisting of a pre�x over A, denoted by pr(d); a (possiblyempty) child deque of ordered pairs over A, denoted by c(d); and a su�x over A,denoted by sf(d). Each pair consists of two elements fromA. The child deque c(d),if nonempty, is represented in the same way. We de�ne the set of descendantsfci(d)g of a deque d in the standard way|namely, c0(d) = d and ci+1(d) =c(ci(d)), provided ci(d) and c(ci(d)) exist.The order of elements in a deque is de�ned recursively to be the one consistentwith the order of each triple, each bu�er, each pair, and each child deque. Thus,the order of elements in a deque d is �rst the elements of pr(d), then the elementsof each pair in c(d), and �nally the elements of sf(d).In general the representation of a deque is not unique|the same sequence ofelements may be represented by triples that di�er in the sizes of their pre�xes andsu�xes, as well as in the contents and representations of their descendant deques.Whenever we refer to a deque d we actually mean a particular representation ofd, one that will be clear from the context.The pointer structure for this representation is straightforward: a node rep-resenting a deque d contains pointers to pr(d), c(d), and sf(d). Note that, sincethe node representing ci(d) contains a pointer to ci+1(d), the pointer structureof d is essentially a linked list of its descendants. By overwriting pr(d), c(d), orsf(d) with a new pre�x, child deque, or su�x respectively, we mean assigning anew value to the corresponding pointer �eld in d. As discussed in Section 2, wewill always overwrite �elds in such a way that the sequence of elements storedin d remains the same and the change is only in the representation of d. Byassembling a deque from a pre�x p, a child deque y, and a su�x s, we meancreating a new node with pointers to p, y, and s.

3.2 OperationsWe describe in detail only the implementation of pop; the detailed implemen-tations of the other operations are similar. Each operation on a bu�er is imple-mented by creating an appropriately modi�ed new copy.pop(d): If pr(d) is empty and c(d) is nonempty, then let ((x; y); c0) = pop(c(d))and p0 = inject(y; inject(x; pr(d))). Overwrite pr(d) with p0 and c(d) with c0.Then if pr(d) is nonempty, perform (x; p) = pop(pr(d)), return x as the itemcomponent of the result, and assemble the deque component of the result fromp, c(d), and sf(d). Otherwise, the only part of d that is nonempty is its su�x.Perform (x; s) = pop(sf(d)) and return x together with a deque assembled froman empty pre�x, an empty child deque, and s.Note that the implementation of pop is recursive: pop can call itself once.The implementation of eject is symmetric to the implementation of pop. Theimplementation of push is as follows. Check whether the pre�x contains threeelements; if so, recursively push a pair onto the child deque. Once the pre�xcontains at most two elements, add the new element to the front of the pre�x.inject is symmetric to push.3.3 AnalysisWe call a bu�er red if it contains zero or three elements, and green if it containsone or two elements. A node representing a deque can be in one of three possiblestates: rr, if both of its bu�ers are red; gr, if one bu�er is green and the otherred; and gg, if both bu�ers are green. We de�ne #rr, #gr, and #gg to be thenumbers of nodes in states rr, gr, and gg, respectively. Note that deques canshare descendants. For instance, d and d0 = pop(d) can both contain pointers tothe same child deque. We count each shared node only once, however. We de�nethe potential � of a collection of deques to be 3 � (#rr) + #gr.To analyze the amortized cost of pop, we assume that the actual cost of acall to pop, excluding the recursive call, is one. Thus if a top level pop invokespop recursively k � 1 times, the total actual cost is k.Assume that a top level pop invokes k�1 recursive pops. The ith invocationof pop, for 1 � i � k� 1, overwrites ci�1(d), changing its state from rr to gr orfrom gr to gg. Then it assembles its result, which creates a new node whose state(gr or gg) is identical to the state of ci�1(d) after the overwriting. In summary,the ith recursive call to pop, 1 � i � k � 1, replaces an rr node with two grnodes or a gr node with two gg nodes, and in either case decreases the potentialby one. The last call, pop(ck�1(d)), creates a new node that can be in any state,and so increases the potential by at most three. Altogether, the k invocations ofpop increase the potential by at most 3� (k� 1). Since the actual cost is k, theamortized cost is constant.A similar analysis shows that the amortized cost of push, inject, and ejectis also constant. Thus we obtain the following theorem.

Theorem 1. Each of the operations push, pop, inject, and eject on the datastructure de�ned in this section takes O(1) amortized time.3.4 Related WorkThe structure just described is based on the Kaplan-Tarjan structure of [8, Sec-tion 3], but simpli�es it in three ways. First, the skeleton of our structure (thesequence of descendants) is a stack; in the Kaplan-Tarjan structure, this skele-ton must be partitioned into a stack of stacks in order to support worst-caseconstant-time operations (via a redundant binary counting mechanism). Sec-ond, the recursive changes to the structure to make its nodes green are one-sided,instead of two-sided: in the original structure, the stack-of-stacks mechanism re-quires coordination to keep both sides of the structure in related states. Third,the maximum bu�er size is reduced, from �ve to three. In the special case of asteque, the maximumsize of the su�x can be further reduced, to two. In the spe-cial case of a queue, both the pre�x and the su�x can be reduced to maximumsize two.There is an alternative, much older approach that uses incremental recopyingto obtain persistent deques with worst-case constant-time operations. See [8]for a discussion of this approach. The incremental recopying approach yieldsan arguably simpler structure than the one presented here, but our structuregeneralizes to allow catenation, which no one knows how to implement e�cientlyusing incremental recopying. Also, our structure can be extended to supportaccess, insertion, and deletion d positions away from the end of a list in O(log d)amortized time, by applying the ideas in [9].4 Catenable DequesIn this section we show how to extend our ideas to support catenation. Specif-ically, we describe a data structure for catenable deques that achieves an O(1)amortized time bound for push, pop, inject, eject, and catenate. Our struc-ture is based upon an analogous structure of Okasaki [13], but simpli�ed to useconstant-size bu�ers.4.1 RepresentationWe use three kinds of bu�ers: pre�xes, middles, and su�xes. A nonempty dequed over A is represented either by a su�x sf(d) or by a 5-tuple that consists of apre�x pr(d), a left deque of triples ld(d), a middle md(d), a right deque of triplesrd(d), and a su�x sf(d). A triple consists of a �rst middle bu�er , a deque oftriples, and a last middle bu�er. One of the two middle bu�ers in a triple mustbe nonempty, and in a triple that contains a nonempty deque both middles mustbe nonempty. All bu�ers and triples are over A. A pre�x or su�x in a 5-tuplecontains three to six elements, a su�x in a su�x-only representation contains

one to eight elements, a middle in a 5-tuple contains exactly two elements, anda nonempty middle bu�er in a triple contains two or three elements.The order of elements in a deque is the one consistent with the order of each 5-tuple, each bu�er, each triple, and each recursive deque. The pointer structure isagain straightforward, with the nodes representing 5-tuples or triples containingone pointer for each �eld.4.2 OperationsWe describe only the functions push, pop, and catenate, since inject is sym-metric to push and eject is symmetric to pop. We begin with push.PUSH(x; d):Case 1: Deque d is represented by a 5-tuple.1) If jpr(d)j = 6 then create two new pre�xes p0 and p00 where p0 contains the �rstfour elements of pr(d) and p00 contains the last two elements of pr(d). Overwritepr(d) with p0 and ld(d) with the result of push((p00; ;; ;); ld(d)).2) Let p = push(x; pr(d)) and assemble the result from p, ld(d), md(d), rd(d),and sf(d).Case 2: Deque d is represented by a su�x only.If jsf(d)j = 8, then create a pre�x p containing the �rst three elements of sf(d),a middle m containing the fourth and �fth elements of sf(d) , and a new su�xs containing the last three elements of sf(d). Overwrite pr(d), md(d), and sf(d)with p, m, and s, respectively. Let p0 = push(x; p) and assemble the result fromp0, ;, m, ;, and s. If jsf(d)j < 8, let s0 = push(x; sf(d)) and represent the resultby s0 only.Note that push (and inject) creates a valid deque even when given a dequein which the pre�x (or su�x, respectively) contains only two elements. Suchdeques may exist transiently during a pop (or eject), but are immediatelypassed to push (or inject) and then discarded.CATENATE(d1; d2):Case 1: Both d1 and d2 are represented by 5-tuples.Let y be the �rst element in pr(d2), and let x be the last element in sf(d1). Createa new middlem containing x followed by y. Partition the elements in sf(d1)�fxginto at most two bu�ers s01 and s001 each containing two or three elements in or-der, with s001 possibly empty. Let ld01 = inject((md(d1); rd(d1); s01); ld(d1)). Ifs001 6= ; then Let ld001 = inject((s001 ; ;; ;); ld01); otherwise, let ld001 = ld01. Simi-larly partition the elements in pr(d1) � fyg into at most two pre�xes p02 andp002 each containing two or three elements in order, with p02 possibly empty. Letrd02 = push((p002 ; ld(d2);md(d2)); rd(d2)). If p02 6= ; let rd002 = push((p02; ;; ;); rd02);otherwise, let rd002 = rd02. Assemble the result from pr(d1), ld001 ,m, rd002 , and sf(d2).Case 2: d1 or d2 is represented by a su�x only.Push or inject the elements of the su�x-only deque one by one into the otherdeque.

In order to de�ne the pop operation, we de�ne a n�aive-pop procedure thatsimply pops its argument without making sure that the result is a valid deque.N�AIVE-POP(d): If d is represented by a 5-tuple, let (x; p) = pop(pr(d)) andreturn x together with a deque assembled from p, ld(d), md(d), rd(d), and sf(d).If d consists of a su�x only, let (x; s) = pop(sf(d)) and return x together witha deque represented by s only.POP(d):If deque d is represented by a su�x only, or if jpr(d)j > 3, then perform(x; d0) = n�aive-pop(d) and return (x; d0). Otherwise, carry out the appropri-ate one of the following three cases to increase the size of pr(d); then perform(x; d0) = n�aive-pop(d) and return (x; d0).Case 1: jpr(d)j = 3 and ld(d) 6= ;.Inspect the �rst triple t in ld(d). If either the �rst nonempty middle bu�er int contains 3 elements or t contains a nonempty deque, then perform (t; l) =n�aive-pop(ld(d)); otherwise, perform (t; l) = pop(ld(d)). Let t = (x; d0; y) andw.l.o.g. assume that x is nonempty if t consists of only one nonempty middlebu�er. Apply the appropriate one of the following two subcases.Case 1.1: jxj = 3.Pop the �rst element of x and inject it into pr(d). Let x0 be the bu�er obtainedfrom x after the pop and let p0 be the bu�er obtained from pr(d) after the inject.Overwrite pr(d) with p0 and overwrite ld(d) with the result of push((x0; d0; y); l).Case 1.2: jxj = 2.Inject all the elements from x into pr(d) to obtain p0. Then, if d0 and y are null,overwrite pr(d) with p0 and overwrite ld(d) with l. If on the other hand, d0 andy are not null, let l0 = catenate(d0; push((y; ;; ;); l)), and overwrite pr(d) withp0 and ld(d) with l0.Case 2: jpr(d)j = 3, ld(d) = ;, and rd(d) 6= ;.Inspect the �rst triple t in rd(d). If either the �rst nonempty middle bu�er int contains 3 elements or t contains a nonempty deque, then perform (t; r) =n�aive-pop(rd(d)); otherwise, perform (t; r) = pop(rd(d)). Let t = (x; d0; y) andw.l.o.g. assume that x is nonempty if t consists of only one nonempty middlebu�er. Apply the appropriate one of the following two subcases.Case 2.1: jxj = 3.Pop an element frommd(d) and inject it into pr(d), Let m be the bu�er obtainedfrom md(d) after the pop and p the bu�er obtained from pr(d) after the inject.Pop an element from x and inject it into m to obtain m0. Let x0 be the bu�erobtained from x after the pop, and let r0 = push((x0; d0; y); r). Overwrite pr(d),ld(d), md(d), and rd(d) with p, ;, m0, and r0 respectively.Case 2.2: jxj = 2Inject the two elements in md(d) into pr(d) to obtain p. Overwrite pr(d), md(d),and rd(d) with p, x, and r0, where r0 = r if d0 and y are empty and r0 =catenate(d0; push((y; ;; ;); r)) otherwise.Case 3: jpr(d)j = 3, ld(d) = ;, and rd(d) = ;.If jsf(d)j = 3, then combine pr(d), md(d), and sf(d) into a single bu�er s andoverwrite the representation of d with a su�x-only representation using s. Oth-

erwise, overwrite pr(d), md(d), and sf(d) with the results of shifting one elementfrom the middle to the pre�x, and one element from the su�x to the middle.4.3 AnalysisWe call a pre�x or su�x in a 5-tuple red if it contains either three or six elementsand green otherwise. We call a su�x in a su�x-only representation red if itcontains eight elements and green otherwise. The pre�x of a su�x-only dequeis considered to have the same color as the su�x. A node representing a dequecan be in one of three states: rr, if both the pre�x and su�x are red, gr, if onebu�er is green and the other red, or gg, if both bu�ers are green. We de�nethe potential � of a collection of deques exactly as in the previous section:� = 3 � (#rr) + #gr where #rr and #gr are the numbers of nodes that are instates rr and gr, respectively.The amortized costs of push and inject are O(1) by an argument identicalto that given in the analysis of pop in the previous section. catenate calls pushand inject a constant number of times and assembles a single new node, so itsamortized cost is also O(1).Finally, we analyze pop. Assume that a call to pop recurs to depth k. Byan argument analogous to the one given in the analysis of pop in the previoussection, each of the �rst k � 1 calls to pop pays for itself by decreasing thepotential by one. The last call to pop may invoke push or catenate, andexcluding this invocation has a constant amortized cost. Since the amortizedcost of push and catenate is constant, we conclude that the the amortizedcost of pop is constant.In summary we have proved the following theorem:Theorem 2. Our deque representation supports push, pop, inject, eject,and catenate in O(1) amortized time.4.4 Related WorkThe structure presented in this section is analogous to the structures of [13,Section 8] and [7, Section 9] but simpli�es them as follows. First, the bu�ers areof constant size, whereas in [13] and [7] they are noncatenable deques. Second,the skeleton of the present structure is a binary tree, instead of a tree extensionof a redundant digital numbering system as in [7]. The amortized analysis usesthe standard potential function method of [14] rather than the more complicateddebit mechanism used in [13].For catenable steques (eject is not allowed) we have a simpler structurethat has a stack as its skeleton rather than a binary tree. It is based on the samerecursive decomposition of lists as in [8, Section 4]. Our new structure simpli�esthe structure of [8] because we use constant size bu�ers rather than noncatenablestacks, and our pointer structure de�nes a stack rather than a stack of stacks.We will describe this structure in the full version of the paper.

5 Further Results and Open QuestionsIf the universe A of elements over which deques are constructed has a total order,we can extend the structures described here to support an additional heap orderbased on the order on A. Speci�cally, we can support the additional operationof �nding the minimum element in a deque (but not deleting it) while preserv-ing a constant amortized time bound for every operation, including �nding theminimum. We merely have to store with each bu�er, each deque, and each pairor triple the minimum element in it. For related work see [1, 2, 6, 10].We can also support a
ip operation on deques. A
ip operation reverses thelinear order of the elements in the deque: the ith from the front becomes theith from the back, and vice-versa. For the noncatenable deques of Section 3, weimplement
ip by maintaining a reversal bit that is
ipped by a
ip operation. Ifthe reversal bit is set, a push becomes an inject, a pop becomes an eject, an injectbecomes a push, and an eject becomes a pop. To support catenation as well as
ip we use reversal bits at all levels. We must also symmetrize the de�nition inSection 4 to allow a deque to be represented by a pre�x only, and extend thevarious operations to handle this possibility. The interpretation of reversal bitsis cumulative. That is, if d is a deque and x is a deque inside of d, x is regardedas being reversed if an odd number of reversal bits are set to 1 along the pathof actual pointers in the structure from the node for d to the node for x. Beforeperforming catenation, if the reversal bit of either or both of the two deques is1, we push such bits down by
ipping such a bit of a deque x to 0,
ipping thebits of all the deques to which x points, and swapping the appropriate bu�ersand deques (the pre�x and su�x exchange roles, as do the left deque and rightdeque). We do such push-downs of reversal bits by assembling new deques, notby overwriting the old ones.We have devised an alternative implementation of catenable deques in whichthe sizes of the pre�xes and su�xes are between 3 and 5 instead of 3 and 6.To achieve this we have to use two additional pointers in each node. For anode that represents a deque d, one additional pointer, if not null, points to theresult of pop(d); and the other, if not null, points to the result of eject(d).The implementation of push and catenate is essentially as in Section 4. Thechanges in pop (and eject) are as follows. While popping a deque d with a pre�xof size 3, if the pointer to pop(d) is not null we read the result from there.Otherwise, we carry out a sequence of operations as in Section 4 but instead ofoverwriting the bu�ers of d before creating the result we create the result andrecord it in the additional pointer �eld of the node representing d. Using a morecomplicated potential function than the one used in Section 4 we can show thatthis implementation runs in O(1) amortized time per operation.One direction for future research is to �nd a way to simplify our structuresfurther. Speci�cally, consider the following alternative representation of caten-able deques, which uses a single recursive subdeque rather than two such subd-eques. A nonempty deque d over A is represented by a triple that consists of apre�x pr(d), a (possibly empty) child deque of triples c(d), and a su�x sf(d). Atriple consists of a nonempty pre�x , a deque of triples, and a nonempty su�x,

or just of a nonempty pre�x or su�x. All bu�ers and triples are over A. Theoperations push, pop, inject, and eject have implementations similar to theirimplementations in Section 4. The major di�erence is in the implementation ofcatenate, which for this structure requires a call to pop. Speci�cally, let d1and d2 be two deques to be catenated. catenate pops c(d1) to obtain a triple(p; d0; s) and a new deque c, injects (s; c; sf(d1)) into d0 to obtain d00 and thenpushes (p; d00; pr(d2)) onto c(d2) to obtain c0. The �nal result is assembled frompr(d1), c0, and sf(d2). It is an open question whether this algorithm runs in con-stant amortized time per operation for any constant upper and lower bounds onthe bu�er sizes.Another research direction is to design a con
uently persistent representationof sorted lists such that accesses or updates d positions from an end take O(log d)time, and catenation takes O(1) time. The best structure so far developed for thisproblem has a doubly logarithmic catenation time [9]; it is strictly functional,and the time bounds are worst-case.References1. A. L. Buchsbaum, R. Sundar, and R. E. Tarjan. Data structural bootstrapping,linear path compression, and catenable heap ordered double ended queues. SIAMJ. Computing, 24(6):1190{1206, 1995.2. A. L. Buchsbaum and R. E. Tarjan. Con
uently persistant deques via data struc-tural bootstrapping. J. of Algorithms, 18:513{547, 1995.3. P. F. Dietz. Fully persistent arrays. In Proceedings of the 1989 Workshop onAlgorithms and Data Structures (WADS'89), pages 67{74. Springer, 1995. LNCS382.4. J. Driscoll, D. Sleator, and R. Tarjan. Fully persistent lists with catenation. Journalof the ACM, 41(5):943{959, 1994.5. J. R. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structurespersistent. J. of Computer and System Science, 38:86{124, 1989.6. Hania Gajewska and Robert E. Tarjan. Deques with heap order. InformationProcessing Letters, 12(4):197{200, 1986.7. H. Kaplan. Purely functional lists. PhD thesis, Department of Computer Science,Princeton University, Princeton, NJ 08544, 1997.8. H. Kaplan and R. E. Tarjan. Persistent lists with catenation via recursive slow-down. In Proceedings of the 27th Annual ACM Symposium on Theory of Com-puting (Preliminary Version), pages 93{102. ACM Press, 1995. Complete versionsubmitted to Journal of the ACM.9. H. Kaplan and R. E. Tarjan. Purely functional representations of catenable sortedlists. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing,pages 202{211. ACM Press, 1996.10. S. R. Kosaraju. An optimal RAM implementation of catenable min double-endedqueues. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pages 195{203, 1994.11. C. Okasaki. Amortization, lazy evaluation, and persistence: Lists with catenationvia lazy linking. In Proc. 36th Symposium on Foundations of Computer Science,pages 646{654. IEEE, 1995.

12. C. Okasaki. Simple and e�cient purely functional queues and deques. J. FunctionalProgamming, 5(4):583{592, 1995.13. C. Okasaki. Purely functional data structures. PhD thesis, School of ComputerScience, Carnegie Mellon University, Pittsburgh, PA 15213, 1996.14. R. E. Tarjan. Amortized computational complexity. SIAM J. Algebraic DiscreteMethods, 6(2):306{318, 1985.

