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Introduction 
 
Three important considerations in every flight 
operation are the altitude (possibly variable) 
at which to travel, the velocity (possibly 
variable) at which to travel, and the amount of 
lift that we choose to generate (at the expense 
of fuel consumption – again possibly variable) 
during the flight.  It turns out that when 
planning a flight operation, one cannot just 
choose any desired value for each of these 
three quantities; they are dependent upon one another.  We can relate these 
three quantities through a set of equations known as the Breguet (pronounced 
bre-ga′) Range Equations.  These equations are derived in Appendix A.  
Deriving these equations shows that once we decide to choose constant values 
for any two of altitude, lift coefficient, and velocity, the third is automatically 
determined.  Thus there are three basic independent flight strategies: constant 
altitude/constant lift coefficient, constant velocity/constant altitude, and constant 
velocity/constant lift coefficient.  Exercise 1 asks you to analyze how the third 
quantity must vary under each of these flight strategies. 
 
Commercial flight operations are generally conducted at constant 
velocity/constant lift coefficient in order to save fuel.  In military operations, 
however, there are often other considerations that override cost efficiency, and 
thus dictate the choice of a different flight strategy.  Surveillance/reconnaissance 
flights generally dictate flying at constant velocity/constant altitude in order to 
best gather required intelligence.  Phased air operations are sometimes better 
coordinated when restricted to constant velocity.  When several sorties are in 
the air at the same time, especially both outbound and inbound, safe airspace 
management often dictates flights at constant specified altitudes.  Exercise 2 
asks you to more closely analyze which flight strategy may be most appropriate 
for which military mission.  Thus unlike most commercial operations, the military 
planner must be prepared to operate under any of several different flight 
strategies. 
 
The following scenarios demonstrate how different techniques of single variable 
calculus can assist in analyzing the governing equations to yield important 
information about flight operations.  Concepts covered include modeling with 
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derivatives, numerical integration, analytic integration, and graphical analysis (of 
range strategies).   
Scenario:  A-10 Close Air Support 
 
You are the pilot on an A-10 Thunderbolt, Close Air Support (CAS) aircraft.  
Among the many things for which you are responsible, some of the particular 
aspects are to determine within what radius your plane can safely service CAS 
targets, how long it can "loiter" in a target area, and when it must return for 
refueling.    
 
Now, an interesting aspect of your job is that, at times, some of the instruments 
malfunction.  This forces you to double-check your instruments' accuracy 
through other means, or to rely on these other means to plan your plane's flight.  
In this project you are going to answer several questions about the flight of your 
craft based primarily on your plane's fuel consumption.  (Your fuel gauge is 
known to be working). 

 
Figure 1: The A-10B Thunderbolt 
 
Strategy 1: Flying at Constant Velocity/Constant Lift Coefficient 
 
Range Equation: 
You can answer questions regarding how far the plane can travel by relating the 
distance traveled by the plane to the weight of fuel that it consumes.  Assume 
that you fly at constant velocity and with a constant coefficient of lift (thus, you 
increase altitude over time as your plane gets progressively lighter).  From our 
knowledge of fluid dynamics, we have the following relationship (this and all 
following relationships are derived in Appendix A): 
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Example 1: You take off weighing 40,434 lbs (this weight includes fuel, 
armament, and ordnance) and you travel at V = 347.5 mi/hr.  You arrive at the 
target area weighing 36,434 lbs.   By use of a numerical integration technique, 
with an increment size of 1000 lbs in your partition, estimate the distance you 
have traveled.  Does your answer depend on your increment size? 
 

Solution:  This requires us to numerically evaluate the integral ∫−
434,36
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8.3605
W
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which we rewrite as ∫
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to evaluate the integral, with WWf 1)( =  and 1000=∆W .  Substituting for f  
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, where iW  

is the value of W in the thi'  subinterval (equal to 
)434,35434,40(*)1(434,35 −−+= iWi ).  This technique is implemented in the 

following spreadsheet: 

 
 

Initial W: 36434
Final W: 40434
Intervals: 4
Delta W: 1000 Distance: 375.6537
W f(W) Partial Sum

36434 2.74469E-05 0.013723
37434 2.67137E-05 0.040437
38434 2.60186E-05 0.066456
39434 2.53588E-05 0.091815
40434 2.47317E-05 0.10418
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This yields a distance traveled of 375.6 miles.  We look to the next example to 
better answer the question “is the calculated range a function of increment 
size?” 
 
Example 2: Refine your estimate by increasing the number of partitions.  What 
appears to be the limit as the number of partitions increases without bound? 
 
Solution:  Repeating the above process for differing numbers of subintervals 
yields the following sequence of values for the distance traveled: 
 

 
 
The calculated range appears to be a monotonically decreasing function of the 
number of subintervals (or conversely, a monotonically increasing function of 
increment size).  This also appears to be a convergent sequence with a limit of 
approximately 375.6 miles.  Note how few terms are required (in this case) to 
converge very close to the apparent limit of the numerical integration scheme. 
 
Example 3: Now evaluate the definite integral to find the distance traveled. 
 
Solution:  Evaluating the definite integral, which is easy to do for this simple 

integrand, yields 6112.375|)ln(*8.36058.3605 434,40
434,36

434,40

434,35

==∫ W
W
dW

 miles.  This is in 

excellent agreement with the numerical solution above. 
 
 
Endurance Equation 
 
To determine how long you can loiter in the target area with a given amount of 
fuel, we need to relate the time t to the fuel consumption.  With the help of some 
equations from our fluid dynamics background, we find that, if we assume that 
we are loitering at a constant velocity, V, and a constant lift coefficient LC , we 
have 
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Thus, t, the loiter time, is given by: 
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Example 4: 
You arrived at the target weighing 36,434 lbs.  The S-3 (Air) directs you to 
reconnoiter the target for 15 minutes (0.2500 hour).  How much fuel will you 
have for your return trip assuming that the plane weighs 29,784 lbs with its 
armament and ordnance but no fuel?   
 
Solution:  Substituting into the endurance equation yields 

∫−=
finalW

W
dW

434,36

3757.102500.0 , which we rewrite as ∫=
434,36

3757.102500.0
finalW W

dW .  

Evaluating yields )ln()434,36(ln(3757.102500.0 finalW−= .  Solving for finalW  yields 
6.566,35=finalW lb.  This means that we will have 35,566.6 - 29,784 = 5782.6 lbs 

of fuel remaining when we are ready to return. 
 
 
Strategy 2: Flying at Constant Velocity/Constant Altitude 
 
For tactical reasons, you are required to return home at constant velocity and 
constant altitude.  You must, therefore, decrease your lift as your plane lightens 
by decreasing your lift coefficient.  It turns out, after some work, that we can 
derive the relationship 
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area of the wing),   and c = 0.3700 lbs of fuel/hr/lb thrust.  Thus, the distance 
traveled, in miles, is given by: 
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Example 5:   
You have expended all your ordnance, your mission is complete, and you find 
yourself 478.0 miles away from the airfield.  You will return to the field at a 
constant velocity, V = 460.4 mi/hr, and at a constant altitude.  Can you make it 
home on 4500 lbs of fuel?  If so, then how much fuel do you have remaining 
when you do arrive?  If not, then how much additional fuel would you need?  
Your craft weighs 24,959 lbs when empty of both fuel and ordnance. 
 
Solution:  Substituting into the constant velocity/constant altitude equation 

yields ∫ −×+
−=

959,24

459,29
211 )10330.21(

12265.
W

dWx .  Note that we have the freedom here 

to choose any integration technique (numerical, analytic, Computer Algebra 
System (CAS)) that we desire.  A little experimentation shows that this integral is 
not going to yield to any of the analytic integration techniques that we (at least 
most of us) have studied so far.  We turn next to our favorite Computer Algebra 
System (MathCad, Derive, etc… ), and find symbolically that 

959,24
459,29

1112/111 |)10330.2(tan)10330.2(12265. Wx −−−− ××−= , or evaluating numerically 
that 546.542=x  miles.  Therefore we will make it home with 542.5 - 478.0 = 64.5 
miles to spare. 
 
 
Strategy 3: Flying at Constant Altitude/Constant Lift Coefficient 
 
We have discussed two flight strategies, namely flight at constant 
velocity/constant lift coefficient, and flight at constant velocity/constant altitude.  
A third strategy is constant altitude/constant lift coefficient.  Now, constant lift 
coefficient will require you to slow down over time as your plane lightens 
(otherwise your plane will climb).  It turns out for this strategy that we can derive 
the relationship 
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where  002377.0=ρ  slug/ft3 (air density) and 
CL

CD
 = 9.997.  

Exercise 4 asks you to compare this strategy to the two already presented.  
(Hint:  You may find that a graphical approach yields the most satisfactory 
comparison when trying to answer “Does it ever happen that … ” type questions.) 
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Exercises 
 
1.  Use the Breguet range equations in Appendix A to determine the following.  
In each case, explain why your answer is intuitively plausible. 

a. For a constant altitude/constant lift coefficient flight operation, how must 
the velocity of the aircraft vary during the flight?   

b. For a constant velocity/constant altitude flight operation, how must the lift 
coefficient of the aircraft vary during the flight? 

c. For a constant velocity/constant lift coefficient flight operation, how must 
the altitude of the aircraft vary during the flight? 

 
2. For each mission, decide which flight strategy may be best.  Explain your 
reasoning. 

a. Mission:  A surveillance/reconnaissance flight conducted at night, 
designed to gather intelligence about a point target. 

b. Mission:  A routine transportation flight, charged with delivering troops 
and equipment to a designated training area. 

c. Mission:  A high priority intercept mission to head off unidentified 
incoming aircraft and maintain maximum standoff from an aircraft 
battle group in a hostile theater. 

d. Mission:  Routine flight operations in the vicinity of a very busy CONUS 
airfield. 

 
3. If we have only a limited amount of fuel on board, which of the three flight 
strategies allows you to travel the furthest?  Is any one of the three always best?  
Is any one of the three always the worst? 
 
4.  The Voyager was the first aircraft successfully flown non-stop around the 
world.  How do you think the Breguet equations (along with other design 
considerations) played a role in the design of this unique aircraft for this very 
specialized mission? 
 
5.  Repeat Requirements 1 through 3 for the F-15E Eagle, using the aircraft data 
found in Appendix B. 
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APPENDIX A: DERIVATION OF THE BREGUET RANGE AND ENDURANCE 
EQUATIONS 

 
1. Mathematical Model:   

Lift (L) = Weight of the aircraft (W)  (by Newton’s second law, assuming no or 
negligible vertical acceleration) 

Thrust (T) = Drag on the aircraft (D)  (by Newton’s second law, assuming no 
or negligible horizontal acceleration) 

Velocity (V) = dx/dt  (where x is the position of the plane at time t) 
-dW/dt = cT  (loss of weight, all due to fuel consumption, is directly 

proportional to the thrust produced; c is the specific fuel 
consumption in units of lbs fuel/(hr x lbs thrust)) 

 
2. Definitions:   

Coefficient of lift:  
Sq
LCL =  

 Coefficient of drag:  
Sq

DCD =  

 2
0 LDD KCCC += , where 2

2
1 Vq ρ= , =ρ air density, S =wing area, 

and 
0DC and K  are constants. 

 
3. Derived Relationships:  
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4. Range Equation for Constant Altitude ( ρ  constant) and constant LC : 

 cT
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5. Range Equation for Constant Velocity and Constant LC : 
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6. Range Equation for Constant Velocity and Constant Altitude: 

 
cD
V

cT
V

dW
dx −=−=  

 Substituting for Drag, where )( 2
0 LDD KCCSqSCqD +== and 

Sq
WCL =  yields: 

 
)1(

1

)(
22

0

0

aWSCqc
V

Sq
KW

SCqc

V
dW
dx

D
D

+
−=

+
−= , where 

0

22
DCSq

Ka = . 

 
7. Endurance Equation for a Jet Aircraft at Constant LC : 
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APPENDIX B: AIRCRAFT DATA FOR THE F-15E EAGLE 
 
Fuel consumption (lb/hr/lb)  0.9 

DL CC     6.193 

Take Off Weight (lb)   62,323 
Arrival Weight (lb)   58,323 
Flight Velocity (mi/hr)  347.5 
Aircraft Weight (no fuel,   49,200 
             with ordnance)  
a  (1/lb2)    5.866E-11 

0DC      0.026 

q   (lb2/ft2)    518.503 

S  (ft2)     608 
Aircraft Empty Weight (lb)  31,700 
Flight Velocity (mi/hr)  347.5 
Distance (mi)    325 

DL CC     13.928 

 
 


