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Tank Munitions and Vector Calculus 
Richard Jardine 
 
  
Introduction 
 
Success in a tank battle is often determined by the superiority of the weaponry 
involved.  The increased lethality of modern tanks is due to the effectiveness of 
armor piercing projectiles, such as that shown in Figure 1.  Army research 
laboratories continue to improve performance of armor penetrators.  At the 
foundation of the research are mathematical models involving vector calculus. 
 

 
 

Figure 1.  Tank round travelling in excess of 1500 meters per second, 
photo courtesy of Army Research Laboratories (ARL) 

 
In this chapter, we describe the use of vector calculus to model armor piercing 
tank rounds.  Along the way, we review mathematical operations with vectors, as 
familiarity with the mathematics is prerequisite to understanding the application.  
Mathematical coverage begins with the basic operations of vector arithmetic and 
continues with exercises applying the dot product, cross product, and gradient.  
Vector calculus is specifically applied to the modeling of sabot rounds, a type of 
tank ammunition described in the following paragraphs.  In order to discover the 
connection between the mathematics and the application, it is important that you 
do the Exercise Sets. You may have to refer to your multivariable calculus text to 
do the exercises.  For this reason, keeping your textbooks for future references 
is probably a good idea. 
 
To penetrate the massive armor plating protecting the crew of modern tanks, a 
projectile must be fast-moving, aerodynamic, and have massive momentum.  
The sabot round pictured in Figure 2 is such a projectile.  Do not let the slim 
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profile mislead.  The projectile is made of extremely dense materials and 
propelled to achieve incredible speeds, giving the penetrator the momentum 
necessary to puncture protective armor tens of centimeters thick.   
 

 
Figure 2.  Computer model of penetrator with sabot, courtesy of ARL. 

 
The slender penetrator must be guided down the greater diameter tank main gun 
barrel.   The guiding sleeve, or sabot, consists of petals which break apart upon 
exit from the gun tube, as in Figure 3.  Optimal design of the sabot round must 
ensure the sleeve separates from the penetrator without interfering with the flight 
dynamics of the penetrator, which will speed to a target. Testing the design by 
repeated firing of the very expensive rounds is cost ineffective.  Computer 
simulations are an efficient alternative to the destructive and costly trial-and-
error methods. Programmed into the simulations are algorithms implementing 
applications of the vector calculus. 
 

 
 

Figure 3.  Model of sabot petal separation, courtesy of ARL 
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The computer models are quite sophisticated and well-developed.  Finite 
element (meshing) methods are used to discretize and model the sabot round, 
as shown in Figure 4.  Each of the apparent rectangles are in fact quadrilaterals.  
Each quadrilateral is the external face of a finite element brick.   The bricks are 
the building blocks of the model of the sabot round.  Depending on the details 
required in the simulations, the sabot round model can be divided into thousands 
of these bricks (meshes) by computer. 
 
The Model 
 
In the milliseconds after the explosion which propels the sabot round out the 
tube of the tank cannon, the round is subject to intense heat and pressure.  In 
order to model the influence of the heat and fluid pressure on the flight dynamics 
of the projectile, millions of computations are performed in the process of the 
computer simulation.  The effects of heat and pressure on the blocks are 
simulated using vectors. 

 
Figure 4.  Discretized model of sabot round, graphic courtesy of ARL. 

 
  
The pressure field affecting the sabot round is modeled with a vector-valued 
function.  As an example, the function 
 
  kjip ),,(),,(),,(),,( 121 zyxpzyxpzyxpzyx ++=  
 
represents the pressure field that exists in the gun tube. The component of the 
pressure in the x, y and z directions are p1, p2 and p3, respectively.  To be specific 
with an example, suppose kjip yxzxyzyx 32),,( ++=  is the pressure field 
function.  Then the pressure in the tube at the point A(1,2,3) would be 

kjip 534),,( ++=zyx . Obviously, this pressure field has an influence on the 
motion of the projectile.  With mathematical models of the pressure influence, 
engineers can determine the flight characteristics of the penetrator. 
 
One mathematical tool used to model the influence of the pressure field on the 
sabot round is to apply the dot product operation. By calculating the dot product 
of the pressure field with a unit vector normal to the surface of the projectile, we 
can pinpoint the pressure at that point on the sabot round.  Figure 5 is a vector 
representation of the dot product computation.  Prior to doing that calculation, 
we review the process of finding a unit vector normal to a surface and the 
process of evaluating the dot product. 
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Figure 5.  Dot product of p and n is the influence of the vector p on the planar 
surface. 
 
Let's begin by working toward finding the vector normal to the surface of the 
projectile.  Before we do the three-dimensional problem, we start with the 
simplest two-dimensional case:  finding the normal vector to a line.  One 
representation of a line 1l  is the equation 0=++ cbyax .  Recall the slope-

intercept form of the equation of the line, 
b
cx

b
ay −−= . From this form we see 

that the slope 1m of 1l  is  
b
am −=1 .  A second line, 2l , perpendicular to 1l  would 

have slope 
a
bm =2 , the negative reciprocal of 1m . 

 
 EXERCISE SET 1:  Given the line 1l : 3x + 2y + 4 = 0, 
 
  a.  Plot the line 
  
  b.  Find the slope of the line 1l . 
  
  c. Find the slope of a line 2l  perpendicular to 1l . 
 
  d. Plot the line 2l  on the same graph as 1l . 
 
 A vector v coincident with (or parallel to) the line 1l  has components 

jiv ab −= . Of course, this is not the only vector parallel to 1l , as any scalar 
multiple of v will be parallel to v and 1l  .  Unit vectors are used to standardize 



 57

operations with vectors.  A unit vector has length one.  For example, the unit 

vector for v is the vector jiu
2222 ba

a

ba

b

+

−+
+

= . 

 
 EXERCISE SET 2:  Given the line  1l : 0423 =++ yx , 

a. Use jiv ab −=  to find a vector parallel to 1l  and sketch that  
vector on 1l . 

 
  b.  Find a unit vector u parallel to 1l . 
 

c. Find a unit vector n normal (perpendicular) to 1l  and sketch that   
     vector on 1l . 

 
From the last exercise, note that a vector n normal to v has components 

jin ba += .   A general way to obtain that result is to use the gradient operator , 

kji
z
f

y
f

x
ff

∂
∂+

∂
∂+

∂
∂=∇ . You may recall that role of the vector from the 

multivariable calculus. By evaluating the gradient of the linear function 
cbyaxyxf ++=),( , we obtain the normal vector to the line 1l .  This result can be 

generalized not only to functions other than linear functions, but to surfaces in 
three dimensions.  In doing the following exercises you will rediscover that 
application of the gradient. 
 
 EXERCISE SET 3:  
 
  a.  Use the gradient operator to find a vector perpendicular to the  
  line 0423 =++ yx . 
 

b.  Find a vector normal to the line 0627 =+− yx , then sketch the 
line and the normal vector to the line at the point P(0,3). 

 
c.  Plot the parabola 0752 =−+ yxx  and the unit normal vector at 
the point P(2,2). 

 
  d.  Plot the outward unit normal to the circle of radius 3 at the 

   point 





2
23

,
2
23

P . 

 
e.  Sketch the plane 10523 =++ zyx  and the unit normal to the 
plane at the point )1,1,1(P .  Note that just as jin ba +=  was normal 
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to the line 0=++ cbyax , kjin cba ++= is normal to the plane 
0=+++ dczbyax . 

 
f.  Sketch the cylinder z x2 2 9+ = and find the outward unit normal 

at the point P
3 2

2
2

3 2
2

, ,






 . 

 
A significant portion of the sabot can be modeled with a cylinder, such as that in 
the last exercise.  To find the influence of the pressure field on the cylinder, we 
use the dot product vector operation.  By calculating the dot product of the 
vector pressure field with the normal vector to the surface, we obtain the scalar 
projection of the vector field on the unit normal vector.  That projection 
represents the scalar pressure at that point on the surface of the cylinder.  
Knowing the pressure on the surface of the projectile, engineers can make 
predictions about the flight dynamics of the sabot round. 
 
 EXERCISE SET 4: 
 

a.  Find the dot product of the vectors kjiu 323 ++=  and 
kjiv 456 +−= . 

 
b.  Find a unit vector of kjiu ++= 22 , then evaluate the dot 
product of the unit vector with the vector function 

kjif y2z3xy2)zy,x,( ++= . 
 

c.  A circular ring of diameter 6 exists in a field modeled by the 
vector function  f i j( )x, y xy x= −2 3 .  Find the effect of the field at 

the point  





2
23

,
2
23

P . 

d.  The fin of a sabot round is modeled by a portion of the plane 
032 =− zx .  Given a pressure field modeled by  

P i j k( )x, y,z
xy
2

xy yz= − −6 2 , find the pressure at the  point 

)2,1,3(A . 
 

e.  The nose of the penetrator can be modeled by a cone.  Develop 
the model of a cone with cross section shown in the sketch below.  

Find the pressure at the point B
2
3

1
2
3

, ,



  on the nose of the 

penetrator in the field P i j k( )x, y,z
xy
2

xy yz= − −6 2 . 
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f. A computer program discretizes the penetrator into 

quadrilateral finite element blocks.  The output of the 
discretization program (Table 1) identifies the coordinates of 
the four corners of the external face of one block.  

 
Node Coordinates 
1 (2,1,1) 
2 (3,4,1) 
3 (1,5,2) 
4 (0,1,2) 

 
Table 1 

 
(1) Find the pressure of each corner of the face in the 

pressure field P i j k( )x, y,z
xy
2

xy yz= − −6 2 .   Use the 

cross product to find a vector normal to the plane 
passing through 3 of the points, or find the equation of 
the plane passing through 3 of the points and use the 
gradient to find the normal. Then evaluate the dot 
product of the pressure vector with the normal to the 
plane at each point of interest. How might the pressure 
on that portion of the projectile (on the entire finite 
element block) be represented?   

 
 

(2) Is there a better method to represent the pressure on the 
element?  For example, consider evaluating the pressure 
at the centroid of the element face. 

 
g.  A fin of the penetrator is shown in the sketch below.  The 
temperature affecting the fin is modeled with the function 

9743),,( 22 −++= zyxzyxT .  The resistance to heat flow 
determines the distribution of the composite materials that 
comprise the fin.  Sketch the isotherms (curves of constant 
temperature) on the fin. Then find the direction of maximum 
temperature change from the point C( , )11 .  Plot a unit vector in that 
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direction.  What portion of the fin should be composed of the most 
heat resistant materials? 

 
Conclusion 

 
The last exercise and this chapter 
have demonstrated the applicability of 
elementary vector calculus operations 
in understanding modern tank 
munitions from an engineer’s 
perspective. Engineers at the 
Weapons Technology Directorate of 
the Army Research Laboratory design 
and test prototype projectiles using sophisticated supercomputing facilities. 
Vector calculus computations are coded into those computer simulations; 
programs used to design and evaluate present and proposed penetrators. 
Cadets and faculty from the United States Military Academy have participated in 
the research effort in conjunction with the ARL scientists.  The success of future 
weapons development is contingent on the ability of civilian and military 
researchers to effectively use mathematical tools.   
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