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The Sputtering Problem 
James A Glackin, James V. Matheson 
 
 
 I propose to consider first the various elements of the subject, next its 
various parts or sections, and finally the whole in its internal structure.  In other 
words, I shall proceed from the simple to the complex. 
       Carl Von Clausewitz 
 
Introduction 

 
Gun tubes produced for Army weapons systems, 
such as tanks and artillery pieces, are designed 
to fire a specific number of rounds before they are 
considered unsafe and must be replaced.  The 
exact round count for a gun tube is so critical that 
detailed records are kept for each tube in every 

Armor and Artillery unit in the Army.  Frequent replacement of gun tubes is 
undesirable not only for obvious fiscal reasons, but also due to the manpower 
and firepower drain it places on a unit in combat.  One method of increasing the 
number of rounds a gun tube can safely fire is to place a metal lining inside the 
tube.  One of the techniques for placing a lining inside a gun tube is called 
sputtering. 
 
Sputtering is a process where a cylindrical metal bar is inserted inside a gun 
tube, centered, anchored in place, and connected to a power source.  The tube 
and rod are placed inside a chamber where all air is evacuated and replaced 
with a noble gas.  When electricity is run through the source rod, a magnetic 
field develops and atoms from the metal source rod are broken away and literally 
fly across the gap from the source rod to the inside of the gun tube.  During 
flight, the metal atoms collide with atoms of the noble gas that separate the 
source rod from the inside wall of the gun tube.  Each collision with a noble gas 
atom causes the metal atom to change the direction of its flight and lose energy.  
In developing the sputtering process, the Army used three mathematical models 
to create computer simulations of the sputtering process. 
 
The computer simulations were used to quickly and inexpensively predict the 
effects of different materials and experimental conditions on the sputtering 
results.  One model was used to simulate initial direction and energy of a 
sputtered atom.   A second model was used to analyze the effects of an atom 
colliding with the inside of the gun tube wall.  This chapter deals with the third 
mathematical model, which was developed to analyze the flight of a metal atom 
from the source rod to the inside of the gun tube. 
  
In order to model this portion of the problem, it is necessary to analyze the flight 
of an atom from the source rod (cathode) to the inside of the gun tube (anode) in 
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small steps.  Each step represents an important event in the flight.  The first 
event is when the atom breaks away from the cathode.  The initial velocity vector 
of the atom as a result of this event is given as an initial condition.  The second 
event is determining the location of the sputtered atom’s collision with a neutral 
gas atom.  Locating a collision site involves determining a free path length for 
the atom and applying the free path length along the direction of the initial 
velocity vector.  The third step is examining the effects of the collision on the 
energy and flight path of the sputtered atom.  To simplify this step, the collision 
is examined in a center of mass frame of reference.  The fourth and final step in 
the process involves determining the location and energy of the metal atom 
when it impacts with the inside wall of the gun tube (anode).  Because a 
sputtered atom might collide with multiple neutral gas atoms during its flight from 
the source rod to the wall of the gun tube, steps two and three may be repeated 
several times for each atom before calculating the terminal effects in step four. 
 
Geometry 
 
We begin with an explanation of the geometry of our model.  The gun tube will 
be treated as a hollow right circular cylinder with a  radius equal to R.  The 
source rod is also a right circular cylinder with a radius equal to r.  Both 
cylinders are centered on the z axis so that the straight line distance from the 
source rod to the inside of the gun tube is equal to R-r. (See Figure 1)

  
 

Figure 1
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Step 1 - Initial Velocity Vector 
 
We will use vectors in spherical coordinates to describe the flight of the 
sputtered metal atom.  We use the angle θ  to describe the rotational angle in 
the x,y plane and the angle φ to describe the elevation of the atom above the x,y 
plane.  Thus a unit direction vector for the sputtered atom will be of the form: 
 

)cos(,)sin()sin(,)sin()cos( φφθφθ ⋅⋅=Direction  

   
 
     Figure 2 
 
The unit direction vector is then multiplied by the initial speed to generate an 
initial velocity vector for the atom.  
 
Step 2 - Locating Collision Sites 
 
The location of an atom’s collision is determined by moving a specific distance 
along the direction of its velocity vector.  The distance moved is called the free 
path length.  The free path length changes for each atom after each collision.  
The free path length is based on a distribution about an atom’s mean free path 
length.  The mean free path length for an atom is the average distance that the 
atom will travel before it has a collision with a neutral gas atom.  The mean free 
path length for all sputtered atoms of the same element remains constant as 
long as the density of the neutral gas remains unchanged. 
 
The mean free path length is calculated by examining the relation between the 
density of the neutral gas and the distance a sputtered atom would travel in a 
unit of time if it were allowed to travel unimpeded.  The radius of the sputtered 
atom and the distance it travels in a unit of time are used to create a cylinder 
through which an atom travels during the unit of time.  The volume of the 
cylinder is calculated and multiplied by the density of the neutral gas to 
determine the average number of atoms that occupy a cylinder of that size.  The 
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length of the cylinder is then divided by the number of atoms that occupy the 
cylinder and the result is a reasonable approximation for the length of the mean 
free path (See Figure 3).1 

                                   

    
      

Figure 3 
 
 
 

 This method yields the following equation:  L
D

r
=

π ρ 2  .  Where L is the mean 

free path length, D is the distance traveled, ρ  is the density of the neutral gas, 
and r is the radius of the sputtered metal atom. 
 
Once the mean free path is determined, the graph in figure 4 is created using 

the equation  
n
N

e
x

L=
−

 to define the curve. 2  The ratio 
n
N

 represents the 

percentage of free path lengths that are at least as long as the corresponding 
number of mean free path lengths from the graph.  In the graph, free path length 
is measured in terms of the number of mean free path lengths a sputtered atom 
will travel prior to a collision (DIST/L).  
 

 
             Figure 4 

 
The free path length for a specific atom at a specific moment in time is then 
created by applying a uniform distribution to the n/N axis (randomly choosing a 
number between 0 and 1) and then finding the corresponding DIST/L coordinate 



 91

on the graph in figure 4.  The DIST/L term is multiplied by the atom’s mean free 
path length to yield the distance to the atom’s next collision. 
 
Now that the distance to the collision has been determined, the actual location of 
the collision is found by multiplying distance to collision by a unit vector in the 
direction of the sputtered atom’s velocity vector and adding the resulting vector 
to the sputtered atom’s old position vector. 
 
 
Step 3 - Effects of a collision 
 
Moving to a Center of Mass Frame of Reference 
 
When a sputtered atom collides with a neutral gas atom, the sputtered atom will 
change direction and speed.  The analysis of a collision is best made in a center 
of mass frame of reference.  A center of mass frame of reference means that the 
origin of the coordinate system used in making calculations is fixed on the center 
of mass of the two atoms involved in the collision.  Thus the center of mass does 
not move (as it would in the laboratory frame of reference).  Using the center of 
mass frame of reference makes the calculation of the changes in direction and 
speed of the sputtered atom less complicated because the changes are 
measured against a “stationary” point. 
 
 
Change in direction  

 
Since we are working in spherical coordinates, the direction change forced upon 
a sputtered atom as the result of a collision with a neutral gas atom is best 
examined in terms of an angle of rotation and an angle of deflection.  The angle 
of rotation is determined by examining the collision from directly behind the 
sputtered atom.  The key to the collision effects is the relative positions of the 
centers of mass of the sputtered atom and the neutral gas atom at the moment of 
impact. In figure 5, we see that a circle of radius equal to the sum of the radii of 
the neutral gas atom and the sputtered metal atom (bmax) can be drawn centered 
on the neutral gas atom.  In order for a collision to occur, the center of mass of 
the sputtered metal atom must be located within the circle of radius bmax.  
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Figure 5 
      
 
We will assume that the relative positions of the centers of mass at the moment 
of collision are completely random.  Therefore, we need only apply a uniform 
distribution over the circle of radius bmax to randomly determine the locations of 
the centers of mass of the two atoms.  Measuring the angle of rotation, rθ , then 
becomes a simple trigonometry problem.  
 
Calculation of the angle of deflection, χ , is made by examining the collision in 
two dimensions as viewed from a position  orthogonal to both the pre collision 
and post collision velocity vectors of the sputtered atom (figure 6).  

 
    

Figure 6 (pre collision) 
 

 
    The distance, b  (measured in the previous step) is the controlling parameter 
in the determination of χ . Using trigonometry, the incoming angle for the 

collision, θm  , is defined by the equation θm

b
b

=






−sin

max

1 . 
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The angle of interest, χ , is equal to π minus two times θm  in the center of mass 
frame of reference.3 

  
     Figure 7 (post collision) 
 
Once the angles θr  and χ  are determined, spherical coordinates are used to 
create a unit vector for the direction of the sputtered atom in the revised new 
system.  The unit direction vector is: )cos(,)sin()sin(,)cos()sin( rrr θθχθχ . 
The unit direction vector must then undergo a linear transformation (rotation 
about origin) so that it can be used in the standard coordinate system in the 
center of mass frame of reference.  The revised coordinate system is aligned so 
that its z axis is on the pre-collision path.  As a result, the parameters for the 
transformation, α  and β , come from measuring the angles of the pre-collision 
direction of the sputtered atom in the standard system of coordinates  (Figure 8).  
 

 
Figure 8 
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The linear transformation aligns the pre collision path of the sputtered atom with 
the standard z axis and thus brings the post collision direction vector into the 
standard system of coordinates.  The matrix for this transformation is: 
 
















−

−
=

)cos()sin()sin()cos()sin(
0)cos()sin(

)sin()sin()cos()cos()cos(

αβαβα
ββ

αβαβα
C  

  
 

The post collision direction vector in the revised system of coordinates is 
multiplied by C to yield the post collision direction vector in the standard 
coordinate system.4,5 

x y z C x y zrevised revised revised, , , ,⋅ =  
 

Change in Speed 
 
The outgoing speed of a sputtered atom equals the incoming speed of the 
sputtered atom in the center of mass frame of reference.  The laws of 
conservation of momentum and conservation of energy can used to demonstrate 
why this is true.  The proof of this concept is left as an exercise for the reader. 
See exercise 2. 

 
Returning to a Normal Frame of Reference 

 
Now that the speed and direction for the post collision sputtered atom have been 
determined, the post collision unit direction vector for the sputtered atom is 
multiplied by the post collision speed of the sputtered atom to find a new velocity 
vector in the standard coordinate system in the center of mass frame of 
reference.  To find the post collision velocity vector in the laboratory frame of 
reference, the vector vcm is added to the post collision velocity vector in the 
center of mass frame of reference.  
 
 

 
 

Figure 9 
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      Figure 9 represents the view of the collision in the center of mass frame of 
reference.  The speed of the sputtered metal atom remains unchanged and 
therefore, the velocity vectors before and after collision are of the same 
magnitude.  Thus the collision in the center of mass frame of reference effects 
only the direction of the sputtered metal atom. The loss of velocity is accounted 
for when the system is moved back to the laboratory frame of reference.  
Movement from the center of mass frame of reference to the laboratory frame of 
reference is accomplished by adding the velocity vector for the center of mass 
(VCM) to the post collision velocity vector as depicted in Figure 10.  

 
 

Figure 10 
 

 
Step 4 - Determining the Impact Location and Energy of a Sputtered Atom 
 
Determining the location where an atom impacts the inside wall of the gun tube 
is done by keeping track of its position vector throughout its multiple movements 
and collisions.  When the radial movement of the atom equals the inside radius 
of the gun tube, its position vector coordinates are used to plot its location on the 
gun tube wall.  The height of the atom as it strikes the gun tube is equal to its z 
coordinate at the time of impact.  The radial location is calculated using the 
equation: 
 

 Radial location
x coordinate

gun tube radius
=







−cos 1  

 
 
The kinetic energy of the atom at the moment of impact with the gun tube is 

calculated using 
1
2

2mass speed⋅( )  where the speed is equal to the magnitude of 

the velocity vector at the moment of impact. 
 
 
Example:  The flight of one atom 
 
     In this example we will follow the flight of one atom from the source rod (r = 
10 mm) to the inside of the gun tube wall (R = 50 mm) and compute the terminal 
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effects of the atom at the gun tube wall.  We will assume several conditions that 
would actually be computed using random numbers and probabilistic models.   
 
Step one is to find an initial velocity vector.  The initial speed is estimated based 
on the energy and mass of the metal atom.  Let’s start with an initial speed of 
20,000,000 mm/sec.  Assume initial launch angles of oo 80,25 == φθ .  This 
yields an initial velocity vector of  
 

)80cos(),80sin()25sin(),80sin()25cos(20000000 ooooo  

or 
667 10473.3,10324.8,10785.1 ×××=V mm/sec 

 
Step two is to find the location of a collision.  The collision location is based on 
an initial location of 2000,0,10 mm  (this location will place the atom on the 
outside wall of the source rod).  We randomly generate a free path length based 
on the exponential distribution of free path lengths, figure 4.  Assuming a free 
path length of 30 mm we can compute the time it takes until a collision. 
 

sec105.1
20000000

30 6−×===
speed
disttime  

 
Now we can easily determine the location of the collision using vectors.  
 

Collision location = initial location + velocity(time) 
 

Collision location = 2005,49.12,78.36  
 

Looking at the x and y components of the collision location vector, we can 
determine if our collision would be outside the gun tube wall 
 

mmradius 84.3849.1278.36 22 =+=  
 

Our inside gun tube radius was 50 mm, thus this collision is before we reach the 
gun tube wall. 
 
Step three is to determine the velocity of the center of mass and the effects of 
the collision in the center of mass frame of reference.   When determining the 
velocity of the center of mass, our model only considers the sputtered atom to be 
moving.  Therefore, the velocity of the center of mass is in the same direction as 
the velocity vector, but has a different speed.  If the neutral gas atom has a mass 
of 50 Atomic Mass Units (AMU) and the sputtered atom has a mass of 200 AMU 
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)()(
)(

gasneutralmasssputteredmass
sputteredmassVVcm +

⋅=
vv

 

 
For our example we have  
 

667 10778.2,10659.6,10428.1
20050

200 ×××=
+

⋅= VVcm

vv
 

 
We now determine the effects of the collision.  Assume collision parameters of 

oo 1510 == χθ andr .  The pre collision velocity vector of the sputtered atom, as 
seen in the center of mass frame of reference, is cmVV

vv
− .  The post collision 

velocity vector has the same magnitude(speed), but it’s direction is determined 
using spherical coordinates and a coordinate system oriented with the z axis 
pointing parallel to our velocity vector. 
 

66

56

66

10864.3)15sin(104)cos('

10798.1)10sin()15sin(104)sin()sin('

10020.1)10cos()15sin(104)cos()sin('

×=×==
×=×==
×=×==

o

oo

oo

χ
θχ
θχ

speedV

speedV

speedV

z

ry

rx

 

 
We must now perform a rotation about the origin to move us to the standard x-y-
z axis.  The angles we rotate are determined from our velocity vector,  
 





=

cm

cm

Vofmagnitude
Vofcomponentz
v
v

arccosα                 



=

cm

cm

Vofcomponentx
Vofcomponenty
v
v

arctanβ  

 
For our example we have: 
 

radians396.1
104

10946.6
arccos 6

5

=





×
×=α     radians4363.0

10570.3
10665.1

arctan
6

6

=





×
×=β  

 
Now to complete the rotation we multiply the vector 'V

v
 by the direction cosine 

matrix.  The direction cosine matrix, C, is determined by taking the cosine of the 
angle between the standard x-y-z axis and the new axis (z-axis pointing in the 
direction of V

v
).   
















−

−
=

)cos()sin()sin()cos()sin(
0)cos()sin(

)sin()sin()cos()cos()cos(

αβαβα
ββ

αβαβα
C  

 
Thus we have   
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














−

−
×××

396.1cos4363.0sin396.1sin4363.0cos396.1sin
04363.0cos4363.0sin

396.1sin4363.0sin396.1cos4363.0cos396.1cos
10864.3,10798.1,10020.1 656

  

= 566 10331.3,10846.1,10533.3 ×−××  

 
This is our post collision velocity vector in the center of mass frame of reference 
in the standard x-y-z coordinate system.  Now to return to the laboratory frame of 
reference we simply add cmV

v
.   

 
+×−×× 566 10331.3,10846.1,10533.3 667 10778.2,10659.6,10428.1 ×××  

= 667 10445.2,10505.8,10781.1 ×××  

 
Repeat step two.  We must now find the time until our next collision.  We again 
randomly generate a free path length, say 43 mm for this iteration.   We find the 
time until our next collision.  Our post collision speed is 710986.1 × mm/sec.  
 

sec10162.2
10986.1

43 6
7

−×=
×

==
speed
disttime  

 
We now determine the location of the 2nd collision using vectors.  
 

2nd Collision location = 1st Collision location + velocity(time) 
 

Collision location = 2010,87.30,28.75  
 

Looking at the x and y components of this we can determine if our collision 
would be outside the gun tube wall 
 

mmradius 37.8187.3028.75 22 =+=  
Since our inside gun tube radius was 50 mm, this collision cannot occur because 
the atom will impact the inside of the gun tube wall prior to reaching the collision 
location.   
 
Step four is to calculate the terminal effects.  We have already determined the  
arrival velocity 667 10445.2,10505.8,10781.1 ×××  and speed 

710986.1 × mm/sec. Now we must determine the arrival energy. 
 

Energy = =2

2
1 mv 410.1 EV 
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Exercises 
 
1. Using dimensional analysis, find the conversion factor used to convert the 

terminal energy of the sputtered atom from 
2

sec





mm

AMU to electron volts. 

 

      
2. We have stated that in the center of mass frame of reference the pre-collision 
speed and the post collision speed are equal.  Prove this statement using 
conservation of energy and conservation of momentum. 
 
Hint:  Momentum is conserved as a vector quantity.  Note: the momentum in the 
y component was zero prior to the collision and therefore must be zero after the 
collision.  In this sketch u1 is the pre collision speed of the metal atom in the 
laboratory frame of reference.  v1 and v2 are the post collision speeds of mass 1 
and 2 respectively. 

 

 
 
 

3. Verify the transformation matrix 















−

−
=

)cos()sin()sin()cos()sin(
0)cos()sin(

)sin()sin()cos()cos()cos(

αβαβα
ββ

αβαβα
C by  

breaking the transformation into two steps.  A rotation of angle α  and a rotation 
of angle β .  These two transformation matrices A and B are then multiplied to 
yield C.  Discuss the difference if any caused by the order of performing the 
rotations (What is the relationship between AB and BA). 
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4.  Write an algorithm to find the impact location of the metal atom against the 
gun tube wall. 
 
5.  Construct the flight of an atom from launch to wall impact.  Use the following  
parameters. 
 

oo

oo

oo

75215

2030

100
50

32,54,25
7520

sec/000,000,20
100
10

==
==

=
=

=
==

=
=
=

χθ
χθ

φθ

parametersCollision

AMUgasMetal
AMUgasNeutral

andlengthpathfree
angleslaunch

mmspeedinitial
mmR

mmr
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