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The Chase Problem (Part 1) 
David C. Arney 
 
 

We build systems like the Wright brothers built airplanes— build the 
whole thing, push it off a cliff, let it crash, and start all over again. 

                                                                    --- R. M. Graham [1970] 
 
Introduction 
 

There are many situations where 
one thing, person, animal, or 
machine, chases another.  Some of 
the applications of this kind of 
chasing in the military are: missiles 
intercepting planes (or other 
missiles), smart munitions seeking 
targets (i.e. anti-tank rounds seeking 
a tank), a unit or soldier pursuing 
and closing with an enemy unit or 
soldier, ships closing in on other 
ships, and torpedoes tracking and 
exploding on enemy ships. Of 
course, there are many non-military 
applications of chasing as well.  
Some of these are dogs running 
after cats, tacklers chasing and 

tackling ball carriers in football, hunters after their quarry (predators after prey), 
and children playing tag.  All of these applications are three-dimensional (they 
occur in our three-dimensional world), but some are more easily, and possibly 
better, modeled in two dimensions because one dimension, like height, is not 
very significant.  In this section, we will model these kinds of chase problems.  
We’ll start in two dimensions, then refine our model to handle three dimensions. 
 
Our problem is to determine the movement path for the chaser, given we know 
the location of the target.  We will start with the assumption that the chaser has 
complete vision of the target and knows the target’s position exactly.  The 
chaser’s position will be represented in two-dimensional Cartesian coordinates 
by (x0(t), y0(t)).     Let’s also start with assumptions that the chaser moves at a 
constant speed (given by s) and the target’s position in two dimensions is given 
by the parametric relationship (x1(t), y1(t)).  One technique to use for the chase 
model is to have the chaser move directly towards the target.  This means that 
the chaser receives information as to the exact location of the target and heads 
in that direction.  As the location of the target changes, the chaser adjusts its 
path to continue to move directly toward the target. 
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We can model this procedure through a discrete event model of time periods 
(intervals or timesteps) of length ∆ t.   We use n to indicate the number of the 
time step in the model.  Our generic modeling process for a time changing event 
is to set up a relationship that expresses the future state as the present state 
plus the change that occurs during the time interval.  We will call this change our 
hypothesis for the change since we usually don’t know before-hand exactly what 
will happen during the time interval.  Figure 1 shows a schematic of this process 
using a generic function f(t) as the variable of interest. 
 
 

  FUTURE          =    PRESENT        +          CHANGE 
 

  ttfttf ∆+=∆+ )()(  (hypothesis) 
 

time (t)
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•
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              difference equation:    f(n+1) = f(n) +  ∆  per period 
 
Figure 1:  Modeling change of a discrete time event simulation. 
 
 
The last step in the diagram of Figure 1, shows a difference equation of the form 
 
                       y(n+1) = y(n) +   ∆  per time period                                             (1) 
 
We will try to get our model for the movement of the chaser in this form to 
produce a simulation of the chase.  Let’s draw a diagram of what happens during 
a time interval ∆ t.  Figure 2 shows the locations of the chaser and the target at 
some time t.  The movement made by the chaser over that interval is indicated 
with the bold arrow.  The final position of the chaser is given by (x0(t+ ∆ t), 
y0(t+ ∆ t)).   
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Figure 2:  Movement by the chaser during the time interval t  to  ∆ t . 
 
Our model needs to be a bit more sophisticated than the generic one shown in 
Figure 1.  We need to keep track of two variables of interest, since we have a 
two-dimensional model.  Our two changing variables of interest are the position 
components x0(t)  and  y0(t).  Let’s convert these two functions of the continuous 
variable t to discrete functions of our discrete time interval n.  If we use the 
generic relation that  t = n ∆ t , then, without explicitly showing the ∆ t in the 
discrete functions, we can represent x0(t) by x0(n),  y0(t) by y0(n),  x0(t+ ∆ t) by 
x0(n+1),  and  y0(t+ ∆ t) by y0(n+1). Next we’ll try to relate these variables in the 
form of Equation (1) to obtain our mathematical model for this chasing process.   
 
Let’s visualize our relationships again.  This time we carefully label the critical 
parts of our diagram, the points (x0(n), y0(n)), (x0(n+1), y0(n+1)), (x1(n), y1(n)) and 
the change in location of the chaser in each direction ∆ x0 =(x0(n+1)- (x0(n)), and 
∆ y0.= (y0(n+1)- (y0(n)).  This new visual model is given in Figure 3.   
 

(xo(n+1 ), yo(n+1 ))

(x1(n), y1(n))

(xo(n), yo(n))

∆yo

∆xo  
Figure 3: Movement by the chaser during the discrete time interval n  to  n+1. 
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We find two similar triangles in Figure 3.  It’s the relation between these similar 
right triangles that will enable us to write our model.  Recall that we can set up 
proportional equations relating the sides of the triangles with the hypotenuse of 
the triangles.  First let’s determine formulas for each of the sides of our two 
triangles.  The larger triangle in Figure 3 has its horizontal side of length (x1(n)- 
x0(n)).    The vertical side has length   (y1(n)- y0(n)).    Therefore, by the 
Pythagorean Theorem the hypotenuse has length  

( ( ) ( )) ( ( ) ( ))x n x n y n y n1 0
2

1 0
2− + − .  The smaller triangle has sides  ∆ x0  and 

∆ y0 .  We need to determine the length of the hypotenuse in terms of  values 
other than ∆ x0  and ∆ y0 .  We also know that the chaser moves at speed s over 
the time of the interval ∆ t.  Therefore, the length of the hypotenuse represents 
the distance moved over the interval s ∆ t.  Now, we can display our results 
geometrically, as we do in Figure 4.  
 

x 1 (n ) -  x o (n )

y 1 (n ) -  y o (n )

x o (n + 1 ) -  x o (n )

y o (n + 1 ) -  y o (n )
s∆ t

( ) ( )2
01

2
01 )()()()( nynynxnx −+−

 
 
Figure 4:  Similar triangles from Figure 3 with sides labeled with distances. 
 
 
Our next step is to write out the equations relating the sides of the triangles with 
the hypotenuse of the triangles.  First the horizontal side and hypotenuse of both 
triangles produce the relationship: 
 

                     
x n x n

s t
x n x n

x n x n y n y n
0 0 1 0

1 0
2

1 0
2

1( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

+ − = −
− + −∆

                   (2) 

 
The vertical sides and hypotenuse produce:  
 

                     
y n y n

s t
y n y n

x n x n y n y n
0 0 1 0

1 0
2

1 0
2

1( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

+ − = −
− + −∆

                   (3) 

 
We can clean up Equations (2) and (3) to create a system of two nonlinear 
difference equations for the unknowns x0(n+1) and  y0(n+1), where both of these 
equations of our model are in the form of Equation (1): 
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                  x n x n
s t x n x n

x n x n y n y n
0 0

1 0

1 0
2

1 0
2

1( ) ( )
( ( ) ( ))

( ( ) ( )) ( ( ) ( ))
+ = + −

− + −
∆

                       (4) 

 

                 y n y n
s t y n y n

x n x n y n y n
0 0

1 0

1 0
2

1 0
2

1( ) ( )
( ( ) ( ))

( ( ) ( )) ( ( ) ( ))
+ = + −

− + −
∆

                        (5) 

 
This is our model, which will provide a means of determining the movement of 
the chaser, when we know the movement of the target.  This system of 
difference equations is nonlinear and must be solved numerically by iteration.  
However, for any reasonable chase, we will need a computational tool, computer 
or calculator, to perform the iterations to determine the path of the chase.   
Remember our assumptions:  the chaser moves at a constant speed, the chaser 
moves in a set direction over the time interval, and the chaser always sees the 
target.  Let’s look at an example. 
 

Example 1:  Target moving in a straight line. 
 
In this example, where the target moves in a straight line, we need to 
have the starting coordinates and speed for the chaser and the 
parametric equations for the movement of the target.  Let’s start the 
chaser at the point (-3,0).  We will use the following parametric 
equations for the target’s movement: 
 
                               x t t1 3 3( ) = +     and      y t t1 4( ) = .                            (6) 
 
Therefore, at t=0, the target is located at the point (3,0).   The target’s 
speed is determined by  the magnitude formula for its velocity.  For 
Equation (6), the calculations for the speed use derivatives and simplify 
to 3 4 52 2+ = .  We model our chaser  with speed 7, so we should 
eventually catch the target, and our time interval set to ∆t = 0 1. .  We 
convert our continuous parametric equations of Equation (6) to the 
following discrete equations: 
 
                            x n n t1 3 3( ) = + ∆     and      y n n t1 4( ) = ∆ .                      (7) 
 
Now we can use our model in Equations (4) and (5) to solve for the 
movement of the chaser. Substituting the proper values and functions 
into Equations (4) and (5) we obtain:  
 

                   x n x n
n x n

n x n n y n
0 0

0

0
2

0
2

1
7 0 1 3 3 01

3 3 01 4 0 1
( ) ( )

( . )( ( . ) ( ))
( ( . ) ( )) ( ( . ) ( ))

+ = + + −
+ − + −
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                   y n y n
n y n

n x n n y n
0 0

0

0
2

0
2

1
7 0 1 4 0 1

3 3 0 1 4 0 1
( ) ( )

( . )( ( . ) ( ))

( ( . ) ( )) ( ( . ) ( ))
+ = + −

+ − + −
 

 
A little algebraic clean up gives us the following equations: 
 

                 x n x n
n x n

n x n n y n
0 0

0

0
2

0
2

1
0 7 3 0 3

3 0 3 0
( ) ( )

. ( . ( ))

( . ( )) ( .4 ( ))
+ = + + −

+ − + −
        (8) 

 

                   y n y n
n y n

n x n n y n
0 0

0

0
2

0
2

1
0 7 0

3 0 3 0
( ) ( )

. ( .4 ( ))

( . ( )) ( .4 ( ))
+ = + −

+ − + −
      (9) 

 
with the initial condition that x0(0) = -3  and y0(0) = 0.  
 
Now we can iterate Equations (8) and (9) to determine the path of the 
chaser.  We’ll do one by hand here, but continuing this work is very 
tedious and time consuming.  We’ll need to get more computational help 
to perform more iteration.  We begin by substituting 0 for n in Equation 
(8) to get 
 

               x x
x

x y
0 0

0

0
2

0
2

0 1 0
0 7 3 0 3 0 0

3 0 3 0 0 0 0 0
( ) ( )

. ( . ( ) ( ))

( . ( ) ( )) ( .4( ) ( ))
+ = + + −

+ − + −
 

 
Then we simplify, substitute the initial conditions, and perform more 
simplifying to obtain: 
 

                       x0 2 2
1 3

0 7 3 3

3 3
3

0 7 6

6
3

4 2
6

2 3( )
. ( ( ))

( ( ))

. ( ) .
.= − + − −

− −
= − + = − + = −  

 
We do the same for Equation (9), where many parts of the equation 
evaluate to 0 and disappear in the calculations to obtain: 
 

                               y y0 0 2
1 0

0 7 0 0

3 3
0 0 0( ) ( )

. ( )

( ( ))
= + −

− −
= + =  

 
Therefore, the chaser moves to the point (-2.3,0) during the first 
timestep of the chase.  We continue this procedure for  n = 1,2,3,...,10 to 
produce the iterates given in Table 1.  We determined these values 
using a computer to perform all the tedious, but necessary 
computations. 
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n x0(n) y0(n 
0 -3 0 
1 -2.3 0 
2 -1.6 0.05 
3 -0.91 0.15 
4 -0.23 0.30 
5 0.45 0.50 
6 1.10 0.74 
7 1.74 1.03 
8 2.36 1.35 
9 2.96 1.72 

10 3.54 2.11 
 
Table 1.  Iterates for Equations (8) and (9), providing the path for the 
chaser. 
 

When do we stop our iteration?  There is no need to continue after the chaser 
has caught the target.  We need to refine our model to include a stopping criteria 
for the iteration that reflects “catching” the target.  This does not mean that the 
location of the chaser and the target have to be exactly the same at the end of a 
time interval.  This would be extremely difficult or impossible to achieve.  Since 
we don’t have a continuous function for location, we don’t have an easy 
mechanism to check locations during the time interval.  Therefore, we will 
assume that “catching” the target means just being “close enough” at the end of 
a timestep.  First, we need to determine what is “close enough.”  If the chaser is 
an explosive munition with a large “kill radius,” then we might use that radius to 
determine “close enough.”  If we need an impact of the chaser and the target, we 
may say “close enough” is a very small radius.  We usually call this “close 
enough” distance or the radius of kill, the tolerance of the stopping criteria and 
denote it by ε .   
 
We have numerous choices for determining this tolerance value.  It could be a 
fixed value, like the radius of kill.  It could be a function of the speed s and time 
interval ∆ t.  We know that in our discrete model the chaser moves a distance 
s ∆ t over each timestep.  Even more sophisticated models combining these two 
criteria and others are possible.  For our example, we will use the distance  
ε = 0 5. ( )s t∆ .  This mean that our iteration will stop when the chaser and the 
target are within half the distance traveled by the chaser in a timestep.  Let’s 
return  to our problem to complete the calculations we started in Example 1. 
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Example 2: Revisit of Example 1 (Target moving in a straight line). 
 
We implement stopping criteria in our model by determining the distance, 
denoted d(n), between the chaser and target after each iteration.  The value of 
d(n) is determined by the distance formula between two points,  
 
                                  d n x n x n y n y n( ) ( ( ) ( )) ( ( ) ( ))= − + −0 1

2
0 1

2                        (10) 
 
In this example, we’ve decided to stop the iteration when   d n s t( ) . ( )≤ =ε 0 5 ∆ .  
Since we are using s=7 and ∆ t=0.1, we have ε =0.35.  We redo our iteration, 
now showing d(n), x1(n), and  y1(n),  in addition to n, x0(n), and y0(n).  These new 
data are given in Table 2 with two decimal points of accuracy.  As we see in 
Table 2, when n = 24, we achieve our stopping criteria since d(24) = 0.26 < 0.3 = 
ε .  The chaser has “caught” the target near the point (10, 9.5).  The graphs of 
the actual paths of the chaser and the target are given in Figure 5. 

 
n x0(n) y0(n) x1(n) y1(n) d(n) 
0 -3 0 3 0 6 
1 -2.3 0 3.3 0.4 5.61 
2 -1.60 0.05 3.6 0.8 5.26 
3 -0.91 0.15 3.9 1.2 4.92 
4 -0.23 0.30 4.2 1.6 4.61 
5 0.45 0.50 4.5 2 4.32 
6 1.10 0.74 4.8 2.4 4.05 
7 1.74 1.03 5.1 2.8 3.80 
8 2.36 1.35 5.4 3.2 3.56 
9 2.96 1.72 5.7 3.6 3.33 
10 3.54 2.11 6.0 4.0 3.10 
11 4.09 2.54 6.3 4.4 2.89 
12 4.63 2.99 6.6 4.8 2.68 
13 5.14 3.46 6.9 5.2 2.47 
14 5.64 3.96 7.2 5.6 2.27 
15 6.12 4.46 7.5 6.0 2.06 
16 6.59 4.99 7.8 6.4 1.86 
17 7.04 5.52 8.1 6.8 1.66 
18 7.49 6.06 8.4 7.2 1.46 
19 7.93 6.60 8.7 7.6 1.26 
20 8.36 7.16 9.0 8.0 1.06 
21 8.78 7.71 9.3 8.4 0.86 
22 9.20 8.27 9.6 8.8 0.66 
23 9.62 8.83 9.9 9.2 0.46 
24 10.04 9.39 10.2 9.6 0.26 

    
Table 2.  Iterates and distances between the paths for  the chaser and 
target. 
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Figure 5.  Graphs of the paths of the chaser and target, from the start 
of the chase to the “catch” at approximately the point (10, 9.5). 
 

Does our solution make sense?  Does the chaser move in an efficient path 
toward the target?  Does the chaser stop when the stopping criteria is achieved?   
In general the answers to these questions are “yes”.  It appears we have a good 
model, but it may not be the best.  More work will need to be done to determine 
better  models. 
 
Let’s review our application of the modeling process to this chase problem.  We 
started by understanding and analyzing our situation and needs of the problem.  
We defined our problem to be the determination of a path for the chaser, given a 
prescribed path for the target.  We made assumptions and used the 
assumptions and our understanding of the process to build a model (the system 
of difference equations given by (8) and (9) and the stopping criteria established 
in (10)).  Finally, we solved our model in Example 2 by iterating and plotting 
graphs of the paths of the chaser and target.   
 
In our discussion of the model, we briefly mentioned the concepts of discrete 
and continuous models.  These two concepts represent an important dichotomy 
in mathematics.  We will view our modeling process with these two concepts in 
mind.  Our behavior of interest, the movement of the chaser, is continuous in 
nature.  At any value of time, the chaser’s movement can be determined and the 
chaser moves smoothly, with no jumps or discontinuities.  However, we modeled 
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this movement as being discrete.  We only determine the chaser’s location at 
discrete values of time, ∆ t apart.  Our solution, the sequence of location points 
given in Table 2, is also discrete.  We finally convert the discrete sequence of 
the path to a continuous path by connecting the points in the graphs of Figure 5.  
We show this interplay between discrete and continuous representations in our 
modeling process in Figure 6.   
 
        Behavior            Model    Solution Method    Verification Method 
           (movement            (difference                       (iteration)       (graph in figures) 
              of  chaser)             equation) 
  
            
            
            
            
 
 
Figure 6.  Interplay between discrete and continuous in the modeling process of 
the chase algorithm. 
 
 
In general, this kind of interplay between discrete and continuous can occur in 
any phase of the modeling process.  A schematic diagram of possible paths 
through the modeling process is given in Figure 7. 
 
        Behavior        Model    Solution Method    Verification Method 
 
 
 
            
            
            
            
            
             
Figure 7.  Interplay between discrete and continuous.  
 
 
Let’s do another example which shows more sophistication in the movements of 
the target and chaser.  Let’s see what happens when a tracking torpedo is 
launched at a ship. 
 

continuous 

discrete 

continuous 

discrete 

continuous 

discrete discrete discrete discrete 

continuous continuous continuous 



 119

Example 3: Torpedo attack. 
 
An attack submarine located at point (0,-10) launches a tracking torpedo with 
speed 6 at a target ship at time t = 0 following a circular course given by the 
following parametric equations: 
 
                            x t t1 8 0 5( ) cos( . )= −    and   y t t1 8 0 5( ) sin( . )=                             (11) 
 
We will determine the torpedo’s path based on its seeker using our tracking 
model of moving directly toward the target ship over each time interval of length 
∆ t=0.2.  We assume the ship maintains its given course until the torpedo is 
detected at a distance of 3 units from the ship.  Therefore, our stopping criteria 

for the first phase of the 
torpedo movement is  ε =3.   
 
First, let’s determine the 
ship’s speed.  This is 

calculated by finding the magnitude of the velocity vector in the two component 
directions, x and y.  The formula for this calculation uses the derivatives of our 
two parametric equations in (11).  The general formula for speed, denoted by 

s1(t), is  2
1

2
11 )()()( ′+′= yxts .  Taking the derivatives in Equation (11), we get 

 

                                   )5.0sin(4)(1 ttx =′     and   )5.0cos(4)(1 tty =′  .                 (12) 
 
Substituting into our speed formula gives the ship’s speed as 
 
s t t t t t( ) ( sin( . )) ( cos( . )) (cos ( . ) sin ( . ))= + = + = =4 0 5 4 0 5 16 0 5 0 5 16 42 2 2 2 . 
 
This means that the ship is traveling in a circular arc at a constant speed of 4, 
which is slower than the torpedo traveling at a speed of 6.   If this situation 
continues, the torpedo will definitely be able to catch the ship and impact on its 
hull.  Substituting the know values and functions into our model, Equations (4) 
and (5), produces 
 

     
2

0
2

0

0
00

))())2.0(5.0sin(8())())2.0(5.0cos(8(

))())2.0(5.0cos(8)(2.0(6
)()1(

nynnxn

nxn
nxnx

−+−−
−−+=+     (13) 

 

     
2

0
2

0

0
00

))())2.0(5.0sin(8())())2.0(5.0cos(8(

))()2.0(5.0sin(8)(2.0(6
)()1(

nynnxn

nyn
nyny

−+−−
−+=+   (14) 

 
Starting with our initial condition, x0(0) = 0  and y0(0) = -10,  we iterate (13) and 
(14) until we achieve our stopping criteria d(n) < ε =3.   This produces the 
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solution in the form of the sequence of points given in Table 3.  We also show 
the target location (x1(n), y1(n)) and d(n) in Table 3. 
 
 
 

n x0(n) y0(n) x1(n) y1(n) d(n) 
0 0 -10 -8 0 12.81 
1 -0.75 -9.06 -7.96 0.80 12.22 
2 -1.46 -8.09 -7.84 1.59 11.60 
3 -2.19 -7.09 -7.64 2.36 10.95 
4 -2.72 -6.05 -7.37 3.12 10.28 
5 -3.27 -4.99 -7.02 3.84 9.59 
6 -3.74 -3.88 -6.60 4.52 8.87 
7 -4.12 -2.75 -6.12 5.15 8.15 
8 -4.42 -1.58 -5.57 5.74 7.41 
9 -4.60 -0.40 -4.97 6.27 6.67 

10 -4.67 0.80 -4.32 6.73 5.94 
11 -4.60 2.00 -3.63 7.12 5.22 
12 -4.38 3.18 -2.90 7.46 4.53 
13 -3.99 4.31 -2.14 7.71 3.87 
14 -3.41 5.37 -1.36 7.88 3.25 
15 -2.65 6.30 -0.56 7.98 2.68 

 
Table 3.  Iterates of the paths of the torpedo and the ship and the distance 
between them, d(n).   
 
 
The graphs of the paths of the torpedo and ship for the first 15 timesteps are 
given in Figure 8.  After 15 timesteps of length ∆ t=0.2 (t=3), the torpedo is only 
2.68 units from the ship. 
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Figure 8.  Graph of the paths of the torpedo and the ship, from launch (t=0) to 
detection of the torpedo at t=3. 
 
 
In this case, the ship’s evasive maneuver when it detects a torpedo, is to move 
directly away from the torpedo at the ship’s maximum speed of 5.  If we assume 
this maneuver is possible during the next timestep, we need to determine the 
parametric equations for the ship’s new path, starting at n=15 and t=n ∆ t  = 
15(0.2)=3.   The data in Table 3 show the ship at (-0.57, 7.98) and the torpedo at 
(-2.65, 6.30).  The direction vector between the two is (-0.57-(-2.65), 7.98-6.30) 
= (2.08, 1.68).  The unit vector in that direction is 

( . , . )

. .

( . , . )
.

( . , . )
2 081 68

2 08 1 68

2 081 68
2 6737

0 778 0 628
2 2+

= = .  Using the point (-0.57,7.98) as the 

start point when t = 3, we can use the point-direction parametric form of a 
straight line to represent the evasive path of the ship.   Therefore, the new 
parametric equations for the ship’s movement are written as  
 
  x t t1 0 57 5 0 778 3( ) . ( . )( )= − + −     and    y t t1 7 98 5 0 628 3( ) . ( . )( )= + − .                  (15) 
 
Now writing the equations in (15) in terms of the discrete independent variable n, 
we obtain the new formulas: 
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x n n1 0 57 5 0 778 0 2 3( ) . ( . )( . )= − + −     and    y n n1 7 98 5 0 628 0 2 3( ) . ( . )( . )= + − .                                    
 
These can be simplified to the forms  
 

x n n1 0 778 12 24( ) . .= −     and    y n n1 0 628 1( ) . .44= − . 
 
Assuming a kill radius for the torpedo of 0.1, we now establish a new stopping 
criteria and new target path for the second phase of the chase and continue our 
iterating at n = 15.  The results of these iterations for the evasive movement of 
the ship and pursuit by the torpedo are given in Table 4.  According to our 
calculations, the ship would be hit by the torpedo at n=28 or t=5.6, unless this 
distance exceeds he torpedo’s effective range.   
 
 

n x0(n) y0(n) x1(n) y1(n) d(n) 
15 -2.65 6.30 -0.56 7.98 2.68 
16 -1.72 7.05 0.21 8.61 2.47 
17 -0.78 7.81 0.99 9.23 2.27 
18 0.15 8.56 1.76 9.86 2.07 
19 1.08 9.31 2.54 10.49 1.87 
20 2.01 10.06 3.32 11.12 1.67 
21 2.95 10.82 4.09 11.75 1.47 
22 3.88 11.57 4.87 12.37 1.27 
23 4.82 12.33 5.65 13.00 1.07 
24 5.75 13.08 6.43 13.63 0.87 
25 6.69 13.84 7.21 14.26 0.67 
26 7.62 14.59 7.99 14.89 0.47 
27 8.55 15.35 8.77 15.51 0.27 
28 9.49 16.10 9.54 16.14 0.07 

 
Table 4.  Iterates of the paths of torpedo and ship during the evasive movement 
phase of the ship. 
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Figure 9.  Graph of the path of the torpedo from launch (t=0) to impact with the 
ship at t=5.6. 
 
 
3-Dimensional Model 
 
We now extend our model to three dimensions so we can use it in situations 
where all three dimensions are significant, like the aerial pursuit of missiles after 
planes and other missiles.  The extension is quite simple.  The hypotenuse of 
the triangle now lies in three dimensions and can be projected onto the three 
coordinate planes. If we use z for our third coordinate (height above the xy-
plane), the chaser’s coordinates in the discrete variable become (x0(n), 
y0(n,),z0(n)) and the target’s coordinates are (x1(n), y1(n),z1(n)).  The hypotenuse 
of the triangle has length 
 

  ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))x n x n y n y n z n z n1 0
2

1 0
2

1 0
2− + − + − .   

 
We make the necessary changes to Equations (4) and (5) and add our third 
equation to get the following 3-dimensional model for movement of the chaser: 
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      x n x n
s t x n x n

x n x n y n y n z n z n
0 0

1 0

1 0
2

1 0
2

1 0
2

1( ) ( )
( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
+ = + −

− + − + −
∆

      (16) 

 

      y n y n
s t y n y n

x n x n y n y n z n z n
0 0

1 0

1 0
2

1 0
2

1 0
2

1( ) ( )
( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
+ = + −

− + − + −
∆

       

(17) 
 

      z n z n
s t z n z n

x n x n y n y n z n z n
0 0

1 0

1 0
2

1 0
2

1 0
2

1( ) ( )
( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
+ = + −

− + − + −
∆

       (18) 

 
Our stopping criteria is achieved by iterating until 
 
         d n x n x n y n y n z n z n( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))= − + − + − ≤0 1

2
0 1

2
1 0

2 ε                  (19) 
 
Example 4.  Patriot intercepts Scud 
 
A Scud missile is launched 
from location (0,0,0) at its 
intended target at point 
(150,200,0), with a trajectory 
given by x t t1 4( ) = ,  y t t1 3( ) = ,  
and   z t t t1

210 0 2( ) .= − .                               
 
A Patriot missile with constant 
speed 15 is launched from 
coordinates (100,0,0) at t=15 
(after the launch of the Scud) 
and tracks the Scud using our 
chase model with a timestep 
of ∆t = 0 5. .   It takes the Patriot tracking radars this much time to identify and lock 
in on the Scud.   The Patriot has a kill radius of 2, but only safely destroys the 
target if the impact occurs at least 20 units high above the ground (z>20).  
Substituting the values and functions into Equations (16-19) produces the 
following system of difference equations: 
 

   x n x n
n x n

n x n n y n n n z n
0 0

0

0
2

0
2 2

0
2

1
7 5 2

2 15 5 0 05
( ) ( )

. ( ( ))

( ( )) ( . ( )) ( . ( ))
+ = + −

− + − + − −
     (20) 

 

   y n y n
n y n

n x n n y n n n z n
0 0

0

0
2

0
2 2

0
2

1
7 5 1 5

2 1 5 5 0 05
( ) ( )

. ( . ( ))

( ( )) ( . ( )) ( . ( ))
+ = + −

− + − + − −
     (21) 
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    z n z n
n n z n

n x n n y n n n z n
0 0

2
0

0
2

0
2 2

0
2

1
7 5 5 0 05

2 1 5 5 0 05
( ) ( )

. ( . ( ))

( ( )) ( . ( )) ( . ( ))
+ = + − −

− + − + − −
     (22) 

 
 
Iterating Equations (20-22), starting with n=30 (t=15), produces the paths for the 
Patriot and Scud given in Table 5. The distances between the Patriot and Scud 
are determined by Equation (19) and are also given in Table 5.  The Scud is 
destroyed at t=25.5 (n=51) at location (102,77,125),  when the Patriot closes to 
within 1.6 units of the Scud.  The intercept is much higher than 20 units 
(z=125>20), so it is a safe and effective intercept. 
 
 
 

n x0(n) y0(n) z0(n) x1(n) y1(n) z1(n) d(n) 
30 100 0 0 60 45 105 121.0 
31 97.5 2.8 6.5 62 46.5 107 115.2 
32 95.2 5.6 13.0 64 48 108.8 109.3 
33 93.1 8.5 19.6 66 49.5 110.6 103.3 
34 91.1 11.5 26.2 68 51 112.2 97.4 
35 89.3 14.6 32.8 70 52.5 113.8 91.4 
36 87.7 17.6 39.5 72 54 115.2 85.4 
37 86.4 20.9 46.1 74 55.5 116.6 79.5 
38 85.2 24.1 52.8 76 57 117.8 73.4 
39 84.2 27.5 59.4 78 58.5 119.0 67.4 
40 83.5 30.9 66.0 80 60 120 61.4 
41 83.1 34.5 72.6 82 61.5 121 55.4 
42 82.9 38.1 79.2 84 63 121.8 49.4 
43 83.1 34.5 72.6 86 64.5 122.6 43.4 
44 83.6 45.8 92.0 88 66 123.2 37.4 
45 84.5 49.8 98.3 90 67.5 123.8 31.5 
46 85.8 54.1 104.4 92 69 124.2 25.6 
47 87.6 58.4 110.0 94 70.5 124.6 19.8 
48 90.0 63.0 115.6 96 72 124.8 14.2 
49 93.2 67.8 120.5 98 73.5 125.0 8.7 
50 97.3 72.7 124.3 100 75 125.0 3.6 
51 102.9 77.5 125.7 102 76.5 125.0 1.6 

 
Table 5.  Iterates for the paths of the Patriot and the Scud, from the time of the 
launch of the Patriot (n=30).   
 
 
The space curves showing the paths of the Patriot and Scud are given in Figure 
10. 
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Figure 10.  Paths of Patriot and Scud from launch to impact. 
 
 
In this section, we have studied and solved a challenging problem with many 
applications.  Our model and its solutions have performed well in the examples 

we have solved.  There are several 
obvious questions we have not 
addressed.  Some of these are:  Will 
the chaser always catch the target?  
What happens when the target is 
faster than the chaser?  What are the 
effects of changing parameters like 
∆ t, ε , and s. We could go on-and-on 

asking more-and-more questions.  That’s what makes this such a challenging 
and interesting problem.  There are other challenges in our model.  We always 
need to question our assumptions.  What would happen if we lead our target, 
instead of moving directly toward it?  What about the maneuverability of the 
chaser?  Can it always turn fast enough to make the necessary move in the next 
timestep ∆ t ?  How should the target move to better evade the chaser?  In later 
sections we refine our model to address some of these considerations.        
    
 
Exercises 
 
1.  An enemy tank, currently at location (10,0), is moving in a zigzag pattern 
away from your location with parametric equations:  x t t1 12 3( ) = +   and   
y t t1 2 2( ) sin( )= .  You launch a tank tracking round moving at a speed of 12 from 
your location at (0,0).  The guidance system of the radar-controlled round uses a 
timestep of  ∆t = 0 25. and always moves directly toward the tank target. 
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a)  Write a system of difference equations in terms of the discrete variable n that 
models the movement of the round towards the target. 
b)  Iterate the equations to find the first 4 positions of the tank round and 
determine the location of the round at t = 0. 
c)  What is the distance between the tank and the round at t = 1?  Is the round 
closer at t = 1 or t = 0 ?  
d)  Based on the findings in part (c), do you think the round will catch and impact 
with the tank?  Conjecture an impact time and location based on the relative 
speed of the round and tank (do not perform the iterations). 
e)  If you have adequate computing resources, iterate your model to determine 
impact time and location. 
 
2.  A ship located at (25,10) detects a torpedo at 
(15,6) and begins the evasive maneuver of 
moving directly away from the torpedo at a 
constant speed of 8.   
a)  What are the parametric equations, using 
time t as the parameter, for the path of the ship 
with t=0 representing the start time of the path?   
b)  If the torpedo follows the ship with a speed of 
10, how long will it take for the torpedo to catch 
the ship? 
 
3.  Write the parametric equations for the motion of a reconnaissance plane that 
flies in the path of a circular helix as shown in Figure 11.  Use the variable 
representation’s shown for x, y, and z.  The circles have a radius of 5 and the 
plane has an upward speed (vertical or z direction) of 2.  The start point (t=0) is 
the point (5,0,0).   Is your solution the only possible solution or are other 
solutions possible? 
    
 

 
Figure 11.  Circular helix for Question 3.   
 
 

X Y, Z,
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      x 
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4.  Is it ever possible for a slow chaser to “catch” a faster target?  What is the 
difference in the chase when the target also has its own goal to achieve (i.e. 
Scud heading for its own target,  football ball carrier trying to make a touchdown 
or firstdown) and when the target’s only goal is to evade the chaser (i.e. ship 
running from a torpedo, cat running from a dog)? 
 
5.  Explain the steps of the mathematical modeling process in your own words.  
What step is the most important to solve a problem successfully? 
 
6.  Discuss the dichotomy of discrete and continuous mathematics.  Include in 
your discussion examples of behaviors and functions that are naturally discrete 
and behaviors and functions that are naturally continuous. 
 
 
 


