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Introduction  
   
Mathematical modeling is an important and fundamental skill for quantitative 
problem solvers.  Increasingly, Army officers are called upon to solve problems 
that can be modeled mathematically.  It is therefore important that the United 
States Military Academy (USMA) curriculum includes mathematical modeling 
and problem solving.  Many of the principles, skills, and attitudes necessary to 
perform effective mathematical modeling can be presented in the core 
mathematics courses taken by all cadets.   
 
After providing some background about the USMA program, we briefly discuss 
the mathematical modeling process.  We then give examples of course topics, 
developmental problems, and student projects that are used to accomplish early 
presentation of modeling and problem solving.  This “early and often” approach 
to teaching modeling results in undergraduates who are able to apply their 
mathematics to solve quantitative problems.  This paper also serves to 
demonstrate how modeling supports the innovative mathematics curriculum 
presented at USMA.  We discuss and explain large-scale modeling projects 
called Interdisciplinary Lively Application Projects (ILAPs) in the context of the 
curriculum. 
 
 
Background 
 
“A mind is not a vessel to be filled, but a flame to be kindled” -- Plutarch 
 
USMA was founded in 1802 as the nation’s first engineering school and the first 
national educational institution.  In 1817, newly appointed Academy 
Superintendent Sylvanus Thayer, previously an assistant professor of 
mathematics, returned to USMA from a visit to the Ecole Polytechnique in Paris 
and instituted a rigorous four-year engineering curriculum.  He placed great 
emphasis on modeling and applied mathematics.  The basis of civil engineering 
at the time was descriptive geometry, with algebra, trigonometry, and some 
calculus supporting the necessary mechanics of engineering.  Thayer and his 
Professor of Mathematics, Charles Davies, converted the theoretical approach of 
the French at the Ecole Polytechnique to the applied modeling approach needed 
in America.  Modeling became the thread holding together the rigorous and 
substantial undergraduate core mathematics program at West Point.  In turn this 
applied mathematics and modeling approach was exported from USMA to other 
technical schools around the country during the 19th century. 
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By the middle of the 20th century less curriculum time was available for 
mathematics, yet more sophisticated mathematical topics were being required of 
cadets.  The core curriculum dilemma of fitting seven topics (Differential 
Calculus, Integral Calculus, Multi-variable Calculus, Differential Equations, 
Linear Algebra, Probability and Statistics, Discrete Math) into the four allotted 
semesters of core mathematics was a substantial challenge for USMA and many 
other technically based schools.   
 
West Point instituted a new integrated mathematics curriculum in 1990.  The 
four semester courses; Discrete Dynamical Systems and Introduction to 
Calculus, Calculus 1 (with differential equations), Calculus 2 (multivariable), and 
Probability & Statistics, satisfied the “7 into 4” demands at West Point.  Modeling 
was an important thread linking the four courses together for student growth and 
development.  The integration of the four core courses made for a more 
sophisticated multiple perspective of modeling.  Students investigate and 
traverse behavior, models, and solution methods using discrete or continuous, 
linear or nonlinear, and deterministic or stochastic mathematics.  The following 
figure shows the possibilities of the modeling flow just considering discrete and 
continuous classifications.  Similar flow perspectives are possible for linear--
nonlinear and stochastic--deterministic classifications.  
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Figure 1: Modeling flow possibilities. 
 
 
Another feature of the USMA mathematics core curriculum is the use of 
Interdisciplinary Lively Applications Projects (ILAPs).  These projects are 
broader and, in some ways, more realistic than previous educational modeling 
projects used at West Point.  ILAPs are co-authored and co-presented by 
mathematicians and experts from partner disciplines in the USMA program (for 
example, engineers, scientists, and economists).  The disciplinary experts 
present background information to the students.  Students then model and solve 
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the problem in small groups, write their solution and present their results.  
Finally, disciplinary experts critique the problem and explain the use of 
mathematics in the applied discipline.  Students benefit by seeing a more 
realistic, multidisciplinary problem, and faculty benefit by working together to 
develop educational projects using modeling and writing as key elements in 
problem solving. 
 
 
Integrated Curriculum 
 
“The greatest good you can do (for students) is not just to share your riches, but 
to reveal (to them) their own...” -- Benjamin Disraeli 
 
 
The education philosophy of the 
Department of Mathematical 
Sciences at West Point is that 
undergraduate students should 
acquire important and fundamental 
knowledge, develop logical thought 
processes, and learn how to learn.  
Successful students can formulate 
intelligent questions, reason and 
research solutions, and are 
confident and independent in their 
work.  Modeling plays a vital role in 
supporting this philosophy.  
 
 With this philosophy in mind, 
the core mathematics curriculum 
integrates concepts of the seven 
fundamental engineering-based 
mathematics topics into the core 
program.  A key to this core 
curriculum effort is a first course 
containing discrete dynamical 
systems (difference equations) including systems of equations (matrix/linear 
algebra) and a sequential approach to differential calculus.  The major 
ingredients of this course are simple proportionality models and applications.  
The second course, Calculus I, covers integral calculus, differential equations, 
and calculus-based models of a single variable.  Many of the applications and 
models covered in a discrete mode in the first course are revisited in a 
continuous mode in the second core course.  By the end of the first year, 
students have the ability to understand the perspective of problem solving 
presented in Figure 1.  The third course, Calculus II, includes topics in 
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multivariable and vector calculus.  Students encounter more sophisticated 
models in higher dimensions with more complex geometries.  The fourth core 
mathematics course at USMA is Probability & Statistics.  In this course, students 
use stochastic modeling to revisit previous problems with new mathematical 
perspectives and new fundamental concepts, and to solve new application 
problems. 
 
Throughout these four core courses, the major content themes of undergraduate 
mathematics are studied using new and different perspectives.  These content 
themes are functions, limits, change, accumulation, vectors, approximation, 
visualization, representation of models, and solution methods.  In addition to 
modeling and writing, a computation thread ties course content together.  The 
role of technology in this program includes and extends beyond using tool for 
calculations, exploration and discovery.  Technology aids students in 
visualization and graphics, data analysis, communication, and integration of 
various means of problem solving. 
 
 
Mathematical Modeling   

 
Mathematical modeling is the process of 
formulating and solving real-world 
quantitative problems using mathematics.  In 
performing this process, we normally need to 
describe a real-world phenomenon or 
behavior in mathematical terms.  Often, the 
problem solver is interested in understanding 
how a system works, the cause of its 
behavior, the sensitivity of the process to 
changes, predicting what will happen, or 
making a decision based on the 
mathematical model developed. 

 
The four basic steps in the mathematical modeling process are as follows: 
 
 Step 1:  Identify the Problem 
 Step 2:  Develop a Mathematical Model 
 Step 3:  Solve the Model 
 Step 4:  Verify, Interpret, and Use the Model 
 
We briefly discuss each of these steps which are not always so clear and 
distinct in every problem-solving endeavor.  However, by using this 
mathematical modeling process, problem solvers can gain confidence to 
approach complex and difficult problems and even develop their own innovative 
approaches to solving problems. 
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Step 1: Identify the Problem 
 The problem needs to be stated in as precise a form as possible.  One 
must understand and consider the scope of the problem when writing this 
statement.  Sometimes, this is an easy step, while other times this may be the 
most difficult step of the entire modeling process. 
 
Step 2:  Develop the Mathematical Model 
 Developing the model entails both translating the natural language 
statement made in Step 1 to a mathematical language statement and 
understanding the relationships between factors involved in the problem.  To 
further understand and define these relationships, simplifying assumptions are 
usually needed.  In this step, the problem solver defines variables, establishes 
notation, and identifies some form of mathematical relationship and/or structure.  
The mathematical model is sometimes the equivalent of the problem statement 
in mathematical notation.  
 
Step 3:  Solve the Model 
 This step is usually the most familiar to students.  The model from Step 2 
is solved, and the answer understood in the context of the original problem.  The 
problem solver may need to further simplify the model if it cannot be solved.  The 
solution procedure many times involves analytic, numeric, and/or graphic 
techniques. 
 
Step 4: Verify, Interpret, and Use the Model 
 Once solved, the model must be tested to verify that it answers the 
original problem statement, it makes sense, and it works properly.  After verifying 
the model, the problem solver interprets its output in the context of the problem.  
It is possible that the model works fine, but the modeler could develop or needs 
to develop a better one.  It is also possible that the model works, but it’s too 
cumbersome or too expensive to use.  Once again, the problem solver returns to 
earlier steps to adjust the model until it meets the desired and necessary criteria.  
Once the model meets the design needs, one uses the model to solve the 
problem.   
 
As indicated, the modeling process is iterative in the sense that as the problem 
solver proceeds, he or she may need to go back to earlier steps and repeat the 
process or continue to cycle through the entire process or part of it several 
times.  “Simplifying the model” refers to the process of going back to make the 
model simpler because it cannot be solved or is too cumbersome to use.  
“Refining the model” indicates the process of going back to make the model 
more powerful or to add more complication.  By simplification and refinement, 
one can adjust the realism, accuracy, precision, and robustness needed for the 
model.  
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We should mention that the model is just a tool to solve the problem.  How well 
the problem solver navigates the entire modeling process determines the 
success or failure of the problem-solving endeavor. 
 
Early Modeling   
 
Modeling in undergraduate core courses is often used to predict or explain 
simple changing behavior, such as proportionality or linear growth or decay.  
Even early modelers need to be exposed to the power and limitations of 
modeling.  One of the most fundamental concepts discussed in early courses is 
when to use modeling to solve quantitative problems.  Once the modeling thread 
is started, the emphases for beginning modelers are stating and understanding 
underlying assumptions and defining variables.  As the modelers become more 
experienced, they explore and discuss the sensitivity of the conclusions to the 
assumptions, and more rigorously approach the verification stage of the 
modeling process.  
 
The discrete dynamical systems course is ideal for introducing the fundamental 
concepts of modeling and problem solving.  Proportionality behaviors often 
produce constant coefficient dynamical models.  Further refinements can 
produce nonlinear equations or systems of equations, which are still solvable 
through iteration.  Conjecturing models and solutions and verifying their 
accuracy are natural processes in this first course of dynamical systems. 
 
As continuous modeling is introduced in the Calculus I course, differential 
equations are often produced as models.  Recent developments in computing 
packages make analysis of differential equations and systems of equations 
accessible to undergraduate students.  Computers and calculators are natural 
tools to help the student in several stages of the modeling process. 
 
In both discrete and continuous dynamics, the basic concept is that the future is 
predicted by first understanding the present and then conjecturing the change 
over the interval of interest.  These dynamical models are solvable numerically 
by iteration or by approximation and iteration. These topics provide accessibility 
for freshmen to the modeling process.  The heat conduction problem given in the 
following example is the type of problem that many mathematics programs 
traditionally cover in higher-level courses (junior or senior year).  Now, this type 
of problem is accessible to first year cadets taking the discrete dynamical 
modeling course at USMA.  The mathematical modeling process illustrates how 
a freshman student using difference equations can determine the transfer of 
heat through a metal bar (or rod). 
 
Example:  Heat Conduction in a Metal Bar 
 
Step 1:  Identify the Problem:   
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 Find a function representing the temperature along the length of the 
interior of a metal bar at different times given known temperatures at the ends of 
the bar.   
 
Step 2:  Develop a Mathematical Model:   
 The problem solver will use a discrete view of the bar by selecting evenly 
spaced points on the bar.  To produce a basic model, we pick three evenly 
spaced points on the interior of the bar along with the two endpoints:  See Figure 
2 to visualize this geometry.  The problem solver desires to describe the change 
of temperature at each of the points over an interval of time (a time step).  In this 
model the problem solver assumes that the set of points and intervals of time 
accurately approximate the reality of continuous temperature change.  “A” is the 
set temperature at Point 0 (left endpoint) and “B” is the set temperature at Point 
4 (right endpoint). 
 
 
            Insulation 
 
 
      Point 1      Point 2   Point 3 
 A = 25°                B = 40° 
 
 
 
 
          

Insulation 
Figure 2.  Geometry of the bar. 
 
 
The problem solver defines t n t n t n1 2 3( ), ( ), ( ),  and  to be the temperature at time 
step n at the points 1, 2, and 3 respectively.  An assumption is that the surface 
temperature of the rod does not affect the internal temperatures (rod is 
insulated).  The major effect on the temperature at a point is then the 
temperature at the points next to it.  For this 3-point geometry, temperature at 
Point 1 affects that at Point 2, the temperature at Point 2 affects that at Points 1 
and 3, and the temperature at Point 3 affects that at Point 2.  If the temperature 
t n1( )  is higher than t n2 ( )  then Point 1 causes the temperature at Point 2 to 
increase.  The amount of temperature increase, t n t n2 21( ) ( )+ − , is proportional to 
the amount Point 1 is hotter than Point 2, k t n t n( ( ) ( )1 2− ), where k is the 
proportionality constant.  Similarly, if the factor t n t n1 2( ) ( )−  is negative, Point 1 
causes the temperature at Point 2 to decrease.  
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The difference model of the influence of the temperature at Point 1 on that at 
Point 2 is given by ( )t n t n k t n t n2 2 1 21( ) ( ) ( ) ( )+ − = − .  Modeling continues by 
analyzing the influence of the temperature at Point 3 on that at Point 2.  In a very 
similar manner, the difference equation model for this situation is 

( )t n t n k t n t n2 2 3 21( ) ( ) ( ) ( )+ − = − .  The total change in one time step of the 
temperature at Point 2 is the sum of these two effects.  Therefore, the difference 
model for Point 2 is ( ) ( )t n t n k t n t n k t n t n2 2 1 2 3 21( ) ( ) ( ) ( ) ( ) ( ) .+ − = − + −   The 
temperature at Point 1 is influenced from the right by the temperature at Point 2 
and from the left by the endpoint temperature A.  Therefore, the function 
describing the change over time of the temperature at Point 1 is 

( ) ( )t n t n k t n t n k A t n1 1 2 1 11( ) ( ) ( ) ( ) ( )+ − = − + − . Similarly, the temperature at Point 3 
is influenced from the left by the temperature at Point 2 and the right by the 
endpoint temperature B.  The change over time of the temperature at Point 3 is 
modeled by ( ) ( )t n t n k t n t n k B t n3 3 2 3 31( ) ( ) ( ) ( ) ( )+ − = − + − . 
 
We assemble the entire system of difference equations that describe the change 
of temperature of the three points on the bar.  The equations along with the 
values of the temperatures at an initial time give us a model for predicting the 
temperature at later times.  The first order, linear, and homogeneous system of 
difference equations (the mathematical model) is given by: 
 

t n k t n k t n Ak
t n k t n k t n k t n
t n k t n k t n Bk

1 1 2

2 1 2 3

3 2 3

1 1 2
1 1 2
1 1 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

+ = − + +
+ = + − +
+ = + − +

 
  
 

 

 
Step 3:  Solve the Model:   
 The problem solver can use iteration or analytic solution methods from 
linear algebra to solve this model.  For this example, given specific values for k, 
A, B, and initial values for t1(0), t2(0), t3(0), we give only the graphic portrayals of 
the solution for three different times.  With k=0.25, A=25, B=40, and t1(0)=0, 
t2(0)=0, t3(0)=0, the plots for n=0, 1, 2, 3 are shown in Figure 3. 
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Figure 3. Temperature in the bar for t = 0, 1, 2, 3 (n = 0, 1, 2, 3). 
 
Step 4:  Verify, Interpret, and Use the Model: 
 The plots in Figure 3 show the temperature rising in the interior of the bar 
and moving towards a more uniform (and possibly linear) function.  This makes 
sense given the assumptions.  However, the problem solver may want to refine 
the model by adding more discretization points in the bar and allowing the model 
to proceed for more iterations.  Graphing these results may provide a better 
visualization of the temperature change on the insulated bar.  Although not 
presented in this example, the modeler often needs this type of refinement step. 
 
 
Interdisciplinary Lively Application Projects (ILAPs) 
 
“The heart of mathematics consists of concrete examples and concrete 
problems.” -- Paul Halmos (1970) 

 
At USMA and the other 15 schools involved in a 
consortium called Project INTERMATH, 
cooperative efforts by faculty from mathematics 
and partner departments produce application 
projects called ILAPs.  These problems offer 
opportunities for students to apply 
mathematical modeling procedures.  Groups of 
students solve these applied problems using 
modeling, computing, and reasoning.  They 
present the results of their modeling work orally 

and in writing.  Finally, the expert authors of the ILAPs present critiques and 
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extension briefings for the students.  The ILAPs provide motivation for students 
by showing them the relevance of their mathematics.  They also enable the 
consolidation of concepts in the curriculum, give students experiences in group 
and interdisciplinary problem solving, and vividly demonstrate the relevance of 
mathematical modeling skills. 
 
  
Summary   
 
Modeling can help set the standard for undergraduate mathematics education. In 
the past, mathematics was understood as the language of science.  Today 
mathematics can also provide the structure for scientific reasoning and 
quantitative problem solving.  In the mathematics course work at USMA, we 
emphasize the entire modeling process--developing, solving, interpreting, and 
communicating with the emphasis on analyzing realistic, interdisciplinary 
problems.  Our mathematics students will be more valuable to the military as 
active and skilled members of problem solving teams.   Through modeling in 
core courses, we can make progress in developing these more powerful 
quantitative problem solvers.  These future Army officers will understand and 
demand proper quantitative reasoning.  Modeling is both an appropriate and 
valuable thread in early mathematics courses at the United States Military 
Academy. 
 
 
Exercises 
 
1.  Write an essay that explains mathematical modeling and its role in problem 
solving.  Relate the modeling process to your own problem solving experiences. 
 
2.  Investigate the process called the “Scientific Method.”  How is this process 
similar to and different from the mathematical modeling process? 
 
3.  List some quantitative problem solving principles you have learned or think 
may be helpful in your own problem solving.  Could these principles apply to 
solving problems in a military setting? 


