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Military Reliability Modeling 
William P. Fox, Steven B. Horton 
 
 
Introduction 
 
You are an infantry rifle platoon leader.   Your platoon is occupying a battle 
position and has been ordered to establish an observation post (OP) on a hilltop 
approximately one kilometer forward of your position.  The OP will be occupied 

by three soldiers for 24 hours.  Hourly situation 
reports must be made by radio.  All necessary 
rations, equipment, and supplies for the 24 hour 
period must be carried with them.  The OP is 
ineffective unless it can communicate with you 
in a timely manner.  Therefore, radio 
communications must be reliable.  The radio 
has several components which affect its 
reliability, an essential one being the battery.  
Batteries have a useful life which is not 
deterministic (we do not know exactly how long 

a battery will last when we install it).  Its lifetime is a variable which may depend 
on previous use, manufacturing defects, weather, etc.  The battery that is 
installed in the radio prior to leaving for the OP could last only a few minutes or 
for the entire 24 hours.  Since communications are so important to this mission, 
we are interested in modeling and analyzing the reliability of the battery. 
 
 We will use the following definition for reliability: 
 
If T is the time to failure of a component of a system, and f(t) is the probability 
distribution function of T, then the components’ reliability at time t is 
 

R(t) = P (T >t) = 1 - F(t).   
 
R(t) is called the reliability function and F(t) is the cumulative distribution function 
of f(t). 
 
A measure of this reliability is the probability that a given battery will last more 
than 24 hours.  If we know the probability distribution for the battery life, we can 
use our knowledge of probability theory to determine the reliability.  If the battery 
reliability is below acceptable standards, one solution is to have the soldiers carry 
spares.  Clearly, the more spares they carry, the less likely there is to be a failure 
in communications due to batteries.  Of course the battery is only one component 
of the radio.  Others include the antenna, handset, etc.  Failure of any one of the 
essential components causes the system to fail.   
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This is a relatively simple example of one of many military applications of 
reliability.  This chapter will show we can use elementary probability to generate 
models that can be used to determine the reliability of military equipment. 
 
 
Modeling Component Reliability 
 
In this section, we will discuss how to model component reliability.  Recall that 
the reliability function, ( )R t  is defined as: 

 
( ) ( )R t P T t= > =  P(component fails after time t). 

 
This can also be stated, using T as the component failure time, as  
 

( ) ( ) ( ) ( ) ( )R t P T t P T t f x dx F t
t

= > = − ≤ = − = −
− ∞
∫1 1 1 . 

 
Thus, if we know the probability density function ( )f t  of the time to failure T, we 
can use probability theory to determine the reliability function ( )R t .  We normally 
think of these functions as being time dependent; however, this is not always the 
case.  The function might be discrete such as the lifetime of a cannon tube.  It is 
dependent on the number of rounds fired through it (a discrete random variable). 
 
A useful probability distribution in reliability is the exponential distribution.  Recall 
that its density function is given by 
 

f t
e tt

( ) =




>−λ λ

0
0

     
otherwise

, 

 
where the parameter λ  is such that 1

λ  equals the mean of the random variable 

T.  If T denotes the time to failure of a piece of equipment or a system, then 1
λ  

is the mean time to failure which is expressed in units of time.  For applications of 
reliability, we will use the parameter λ .  Since 1

λ  is the mean time to failure, λ  

is the average number of failures per unit time or the failure rate.  For example, if 
a light bulb has a time to failure that follows an exponential distribution with a 
mean time to failure of 50 hours, then its failure rate is 1 light bulb per 50 hours 
or 1/50 per hour, so in this case λ = 0 02.  per hour.  Note that the mean of T, the 
mean time to failure of the component, is 1

λ . 

 
Example 1:  Let's consider the example presented in the introduction.  Let the 
random variable T be defined as follows: 
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T = time until a randomly selected battery fails. 

 
Suppose radio batteries have a time to failure that is exponentially distributed 
with a mean of 30 hours.  In this case, we could write  
 

T ~ EXP =
1

30
λ



 . 

 

  Therefore, λ = 1
30

 per hour, so that 

 

( )f t e
t

=
−1

30

1
30 , t > 0  and ( )F t e dx

x
t

=
−

∫ 1
30

1
30

0

. 

 
( )tF , the CDF of the exponential distribution, can be integrated to obtain 

 

( )F t e
t

= −
−

1
1

30 , t > 0 . 
 
Now we can compute the reliability function for a battery: 
 

( ) ( )R t F t e e
t t

= − = − −






 =

− −

1 1 1
1

30
1

30 , t > 0 . 

 
Recall that in the earlier example, the soldiers must occupy the OP for 24 hours.  
The reliability of the battery for 24 hours is 
 

( ) ( )
R e24 0 4493

1
30

24
= =

−

. , 
 
so the probability that the battery lasts more than 24 hours is 0.4493. 
 
Example 2:  We have the option to purchase a new nickel cadmium battery for 
our operation.  Testing has shown that the distribution of the time to failure can 
be modeled using a parabolic function: 
 

f x

x x
x

( ) =





 −



 ≤ ≤








384
1

48
0 48

0 otherwise

 

 
Let the random variable T be defined as follows: 
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T = time until a randomly selected battery fails. 

 
In this case, we could write  
 

( ) ( )( )f t t t= −/ /384 1 48 , 0 48≤ ≤t  and ( ) ( )( )dxxxtF
t

∫ −=
0

48/1384/ . 

 
Recall that in the earlier example the soldiers must man the OP for 24 hours.  
The reliability of the battery for 24 hours is therefore 
 

( ) ( ) ( )( )R F t t dx24 1 24 1 384 1 48 0 500
0

24

= − = − − =∫ / / .  

 
which is an improvement over the batteries from example 1. 
 
 
Modeling Series Systems 
 
Now we consider is a system with n components C C Cn1 2, ,...,  where each of the 
individual components must work in order for the system to function.  A model of 
this type of system is shown in figure 1. 
 

...C1 C2 C3 Cn
 

 
Figure 1:  Series system 

 
If we assume these components are mutually independent, the reliability of this 
type of system is easy to compute.  We denote the reliability of component i at 
time t by ( )R ti .  In other words, ( )R ti  is simply the probability that component i 
will function continuously from time 0 through until time t.  We are interested in 
the reliability of the entire system of n components, but since these components 
are mutually independent, the system reliability is 
 

( ) ( ) ( ) ( )R t R t R t R tn= ⋅ ⋅ ⋅⋅⋅ ⋅1 2 . 
 
Example 3:  Our radio has several components.  Let us assume that there are 
four major components -- they are (in order) the handset, the battery, the 
receiver-transmitter, and the antenna.  Since they all must function properly for 
the radio to operate, we can model the radio with the diagram shown in figure 2. 
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C1 C2 C3 C4
 

 
Figure 2: Radio System 

 
Suppose we know that the probability that the handset will work for at least 24 
hours is 0.6703, and the reliabilities for the other components are 0.4493, 
0.7261, and 0.9531, respectively.  If we assume that the components work 
independently of each other, then the probability that the entire system works for 
24 hours is:  
 

( ) ( ) ( ) ( ) ( ) ( )( )( )( )R R R R R24 24 24 24 24 6703 4493 7261 9531 0 20841 2 3 4= ⋅ ⋅ ⋅ = =. . . . . .                        
                                   
Recall that two events A and B are independent if ( ) ( )P A B P A| .=   
 
 
Modeling Parallel Systems (Two Components) 
 
Now we consider a system with two components where only one of the 
components must work for the system to function.  A system of this type is 
depicted in figure 3.   

 

C1

C2
 

 
Figure 3: Parallel System of Two Components 

 
Notice that in this situation the two components are both put in operation at time 
0; they are both subject to failure throughout the period of interest.  Only when 
both components fail before time t does the system fail.  Again we also assume 
that the components are independent.  The reliability of this type of system can 
be found using the following well known model: 
 

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ . 
 
In this case, A is the event that the first component functions for longer than 
some time, t, and B is the event that the second component functions longer than 
the same time, t.  Since reliabilities are probabilities, we can translate the above 
formula into the following: 
 

( ) ( ) ( ) ( ) ( )R t R t R t R t R t= + −1 2 1 2 . 
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Example 4: Suppose your battalion is crossing a river that has two bridges in the 
area.  It will take 3 hours to complete the crossing.  The crossing will be 
successful as long as at least one bridge remains operational during the entire 
crossing period.  You estimate that enemy guerrillas with mortars have a one-
third chance of destroying bridge 1 and a one-fourth chance of destroying bridge 
2 in the next 3 hours.  Assume the enemy guerrillas attacking each bridge 
operate independently.  What is the probability that your battalion can complete 
the crossing?   
 
Solution:  First we compute the individual reliabilities: 
 

( )R1 3 1
1
3

2
3

= − =  

 
and 
 

( )R2 3 1
1
4

3
4

= − = . 

 
Now it is easy to compute the system reliability: 
 

( ) ( ) ( ) ( ) ( )R R R R R3 3 3 3 3
2
3

3
4

2
3

3
4

11
12

0 91671 2 1 2= + − = + − 








 = = . . 

 
 
Modeling Active Redundant Systems 
 
Consider the situation in which a system has n components, all of which begin 
operating (are active) at time t = 0.  The system continues to function properly as 
long as at least k of the components do not fail.  In other words, if n k− + 1 
components fail, the system fails.  This type of component system is called an 
active redundant system.  The active redundant system can be modeled as a 
parallel system of components as shown in figure 4 below: 
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Cn

C2

C1

...

 
 

Figure 4: Active Redundant System 
 

 
 We assume that all n components are identical and will fail independently.  
If we let Ti  be the time to failure of the ith component, then the Ti  terms are 
independent and identically distributed for i n= 12 3, , ,..., .  Thus ( )R ti , the 
reliability at time t for component i, is identical for all components. 
 
 Recall that our system operates if at least k components function properly.  
Now we define the random variables X and T as follows: 
 

X = number of components functioning at time t, and 
T = time to failure of the entire system. 

 
Then we have  
 

( ) ( ) ( )R t P T t P X k= > = ≥ . 
 
It is easy to see that we now have n identical and independent components with 
the same probability of failure by time t.  This situation corresponds to a binomial 
experiment and we can solve for the system reliability using the binomial 
distribution with parameters n and ( )p R ti= . 
 
Example 5:  Three soldiers on an OP have been instructed to put out 15 sensors 
forward of their OP to detect movement in a wooded area.  They estimate that 
any movement through the area can be detected as long as at least 12 of the 
sensors are operating.  Sensors are assumed to be in parallel (active redundant), 
i.e.: they fail independently.  If we know that each sensor has a 0.6065 probability 
of operating properly for at least 24 hours, we can compute the reliability of the 
entire sensor system for 24 hours. 
 
Define the random variable:  X = number of sensors working after 24 hours. 
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Clearly, the random variable X is binomially distributed with n = 15 and p = 
0.6065.  In the language of mathematics, we write this sentence as 
 

( )X b~ , .15 0 6065  or ( )X ~ BINOMIAL 15,0.6065 . 
 
We know that the reliability of the sensor system for 24 hours is 
 

( ) ( ) ( )R P X P X24 12 12 15 0 0990= ≥ = ≤ ≤ = . . 
 
Thus the reliability of the system for 24 hours is only 0.0990. 
 
 
Modeling Standby Redundant Systems 
 
Active redundant systems can sometimes 
be inefficient.  These systems require only k 
of the n components to be operational, but 
all n components are initially in operation 
and thus subject to failure. An alternative is 
the use of spare components.  Such 
systems have only k components initially in 
operation; exactly what we need for the 
whole system to be operational.  When a 
component fails, we have a spare “standing 
by” which is immediately put in to operation.  
For this reason, we call these Standby 
Redundant Systems.  Suppose our system 
requires k operational components and we 
initially have n k−  spares available.  When a component in operation fails, a 
decision switch causes a spare or standby component to activate (becoming an 
operational component).  The system will continue to function until there are less 
than k operational components remaining.  In other words, the system works until 
n k− + 1 components have failed.  We will consider only the case where one 
operational component is required (the special case where k = 1) and there are 
n − 1 standby (spare) components available.  We will assume that a decision 
switch (DS) controls the activation of the standby components instantaneously 
and 100% reliably.  We use the model shown in figure 5 below to represent this 
situation. 
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Cn

C2

C1

...

DS

 
 

Figure 5:  Standby Redundant System 
 

If we let Ti be the time to failure of the ith component, then the Ti’s are 
independent and identically distributed for i n= 12 3, , ,..., .  Thus ( )R ti  is identical 
for all components.  Let T = time to failure of the entire system.  Since the system 
fails only when all n components have failed, and component i + 1 is put into 
operation only when component i fails, it is easy to see that 
 

T T T Tn= + + +1 2 ... . 
 
In other words, we can compute the system failure time easily if we know the 
failure times of the individual components.   
 
 Finally, we can define a random variable  
 
X = number of components that fail before time t in a standby redundant system. 
 
Now the reliability of the system is simply equal to the probability that less than n 
components fail during the time interval (0, t).  In other words, 

( ) ( )R t P X n= < . 
 
It can be shown that X follows a Poisson distribution with parameter λ α= t  
where α  is the failure rate, so we write    ( )X ~ POISSON λ . 
 
For example, if time is measured in seconds, then α  is the number of failures 
per second.  The reliability for some specific time t then becomes:  

( ) ( ) ( )R t P X n P X n= < = ≤ ≤ −0 1 . 
 
Example 6:  Consider the reliability of a radio battery.  We determined previously 
that one battery has a reliability for 24 hours of 0.4493.  In light of the importance 
of communications, you decide that this reliability is not satisfactory.  Suppose 
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we carry two spare batteries.  The addition of the spares should increase the 
battery system reliability.  Later in the course, you will learn how to calculate the 
failure rate α  for a battery given the reliability (0.4493 in this case).  For now, we 
will give this to you:  α = 1 30  per hour.  We know that n = 3  total batteries.  
Therefore: 
 

( )X t~ .POISSON λ α= = =





1
30

24 0 8  

 
and 
 

( ) ( ) ( )R P X P X24 3 0 2 0 9526= < = ≤ ≤ = . . 
 
The reliability of the system with two spare batteries for 24 hours is now 0.9526. 
 
Example 7:  If the OP must stay out for 48 hours without resupply, how many 
spare batteries must be taken to maintain a reliability of 0.95?  We can use trial 
and error to solve this problem.  We start by trying our current load of 2 spares.  
We have 

( )X t~ .POISSON λ α= = =





1
30

48 16 , 

and we can now compute the system reliability 
 

( ) ( ) ( )R P X P X48 3 0 2 0 7834 0 95= < = ≤ ≤ = <. .  
which is not good enough.  Therefore, we try another spare so n = 4  (3 spares) 
and we compute: 
 

( ) ( ) ( )R P X P X48 4 0 3 0 9212 0 95= < = ≤ ≤ = <. .  
 
which is still not quite good enough, but we are getting close!  Finally, we try 
n = 5   which turns out to be sufficient: 
 

( ) ( ) ( )R P X P X48 5 0 4 0 9763 0 95= < = ≤ ≤ = ≥. . . 
 

Therefore, we conclude that the OP should take out at least 4 spare batteries for 
a 48 hour mission. 
 
Models of Large Scale Systems 
 
In our discussion of reliability up to this point, we have discussed series systems, 
active redundant systems, and standby redundant systems.  Unfortunately, 
things are not always this simple.  The types of systems listed above often 
appear as subsystems in larger arrangements of components that we shall call 
“large scale systems”.  Fortunately, if you know how to deal with series systems, 
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active redundant systems, and standby redundant systems, finding system 
reliabilities for large scale systems is easy.  Consider the following example. 
 
 The first and most important step in developing a model to analyze a large 
scale system is to draw a picture.  Consider the network that appears as figure 6 
below.  Subsystem A is the standby redundant system of three components 
(each with failure rate 5 per year) with the decision switch on the left of the figure.  
Subsystem B1 is the active redundant system of three components (each with 
failure rate 3 per year), where at least two of the three components must be 
working for the subsystem to work.  Subsystem B1 appears in the upper right 
portion of the figure.  Subsystem B2 is the two component parallel system in the 
lower right portion of the figure.  We define subsystem B as being subsystems B1 
and B2 together.  We assume all components have exponentially distributed 
times to failure with failure rates as shown in the figure. 
 

 
 

Figure 6:  Network Example 
 
 Suppose we want to know the reliability of the whole system for 6 months.  
Observe that you already know how to compute reliabilities for the subsystems A, 
B1, and B2.  Let’s review these computations and then see how we can use them 
to simplify our problem. 
 
Subsystem A is a standby redundant system, so we will use the Poisson model.  
We let 

X = the number of components which fail in one year. 
 

Since 6 months is 0.5 years, we seek ( ) ( )R P XA 0 5 3. = <  where X follows a 
Poisson distribution with parameter ( )( )λ α= = =t 5 0 5 2 5. . .  Then, 

  ( ) ( ) ( )R P X P XA 0 5 3 0 2 0 5438. .= < = ≤ ≤ = . 
 
Now we consider subsystem B1.  In the section II, we learned how to find 
individual component reliabilities when the time to failure followed an exponential 
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distribution.  For subsystem B1, the failure rate is 3 per year, so our individual 
component reliability is  

( ) ( ) ( )( )( ) ( )( )R F e e0 5 1 0 5 1 1 0 22313 0 5 3 0 5. . .. .= − = − − = =− − . 

 
Now recall that subsystem B1 is an active redundant system where two 
components of the three must work for the subsystem to work.  If we let 
 

Y = the number of components that function for 6 months 
 

and recognize that Y follows a binomial distribution with n = 3 and p = 0.2231, we 
can quickly compute the reliability of the subsystem B1 as follows: 
 

( ) ( ) ( ) ( )R P Y P Y P YB1
0 5 2 1 2 1 1 1 0 8729 0 1271. . .= ≥ = − < = − ≤ = − = . 

 
Finally we can look at subsystem B2.  Again we use the fact that the failure times 
follow an exponential distribution.  The subsystem consists of two components; 
obviously they both need to work for the subsystem to work.  The first 
component’s reliability is  
 

( ) ( ) ( )( )( ) ( )( )R F e e0 5 1 0 5 1 1 0 36792 0 5 2 0 5. . .. .= − = − − = =− − , 

 
and for the other component the reliability is 
 

( ) ( ) ( )( )( ) ( )( )R F e e0 5 1 0 5 1 1 0 60651 0 5 1 0 5. . .. .= − = − − = =− − . 

 
Therefore, the reliability of the subsystem is 
 

( ) ( )( )RB2
0 5 0 3679 0 6065 0 2231. . . .= = . 

 
Our overall system can now be drawn as shown in figure 7 below. 
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Figure 7:  Simplified Network Example 
 
From here we determine the reliability of subsystem B by treating it as a system 
of two independent components in parallel where only one component must 
work.  Therefore, 
 

( ) ( ) ( ) ( ) ( )
( )( )

R R R R RB B B B B0 5 0 5 0 5 0 5 0 5

0 1271 0 2231 0 1271 0 2231 0 3218
1 2 1 2

. . . . .

. . . . .

= + − ⋅
= + − =

 

 
Finally, since subsystems A and B are in series, we can find the overall system 
reliability for 6 months by taking the product of the two subsystem reliabilities: 
 

( ) ( ) ( ) ( )( )R R RA Bsystem 0 5 0 5 0 5 0 5438 0 3218 0 1750. . . . . .= ⋅ = = . 
 
 We have used a network reduction approach to determine the reliability for 
a large scale system for a given time period.  Starting with those subsystems 
which consist of components independent of other subsystems, we reduced the 
size of our network by evaluating each subsystem reliability one at a time.  This 
approach works for any large scale network consisting of basic subsystems of 
the type we have studied (series, active redundant, and standby redundant). 
 
 We have seen how methods from elementary probability can be used to 
model military reliability problems.  The modeling approach presented here is 
useful in helping students simultaneously improve their understanding of both the 
military problems addressed and the mathematics behind these problems.  The 
models presented also motivate students to appreciate the power of mathematics 
and its relevance to today’s military. 
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Exercises 
 
1. A continuous random variable Y, representing the time to failure of a .50 cal 
machine gun tube, has a probability density function given by 
 

f y e y
y

( ) = ≥






−1
3

0

0

3

otherwise
 

 
a. Find the reliability function for Y. 
b. Find the reliability for 1.2 time periods, R(1.2). 
 
2. The lifetime of a HUMM-V engine (measured in time of operation) is 
exponentially distributed with a MTTF of 400 hours. You have received a mission 
that requires 12 hours of continuous operation. Your log book indicates that the 
HUMM-V has been operating for 158 hours.  
a. Find the reliability of your engine for this mission. 
b. If your vehicle’s engine had operated for 250 hours prior to the mission, find 
the reliability for the mission. 
 
3. A critical target must be destroyed. You are on the staff of the division G-3 
when he decides to use helicopter gunships to destroy this key target. The 
aviation battalion is tasked to send four helicopter gunships. On their way to the 
target area, these helicopters must fly over enemy territory for approximately 15 
minutes during which time they are vulnerable to anti-aircraft fire. The life of a 
gunship over this territory is estimated to be exponentially distributed with a 
mean of 18.8 minutes. It is further estimated that two or more gunships are 
required to destroy the target. Find the reliability of the gunships in accomplishing 
their mission (assuming the only reason a gunship fails to reach the target is 
enemy air defense systems). 
 
4. For the mission in exercise 3, the division G-3 determines that, to justify risking 
the loss of gunships, there must be at least an 80% chance of destroying the 
target. How many gunships should the aviation battalion recommend be sent? 
Justify your answer. 
 
5.  Mines are a dangerous obstacle. Most mines have three components--the 
firing device, the wire, and the mine itself (casing). If any of these components 
fail, the systems fails. These components of the mine start to “age” when they 
are unpacked from their sealed containers. All three components have MTTF that 
are exponentially distributed of 60 days, 300 days, and 35 days, respectively. 
a. Find the reliability of the mine after 90 days. 
b. What is the MTTF of the mine? 
c. What assumptions, if any, did you make? 
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6. You are a project manager for the new ADA system being developed in 
Huntsville, Alabama.  A critical subsystem has two components arranged in a 
parallel configuration. You have told the contractor that you require this 
subsystem to be at least 0.995 reliable. One of the subsystems came from an 
older ADA system and has a known reliability of 0.95. What is the minimum 
reliability of the other component so that we meet our specifications? 
 
7. You are your battalion S-3. Your battalion has several night operations 
planned. There is some concern about the reliability of the lighting system for the 
Battalion’s Tactical Operations Center (TOC). The lights are powers by a 1.5 KW 
generator that has a MTTF of 7.5 hours.  
a. Find the reliability of the generator for 10 hours if the generator’s reliability is 
exponential. 
b. Find the reliability of the power system if two other identical 1.5 KW generators 
are available. First consider as active redundant and then as stand-by redundant. 
Which would improve the reliability the most? 
c. How many generators would be necessary to insure a 99% reliability? 
 
8. Consider the fire control system for a missile depicted below with the reliability 
for each component as indicated. Assume all components are independent and 
the radars are active redundant. 
 

Battery
0.92

Acceleration 
Switch
0.995

Match
0.985

Radar 2
x

Radar 1
0.96

 
 
 
a. Find the system reliability for six months when x = 0.96. 
b. Find the system reliability for six months when x = 0.939. 
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9.  A major weapon system has components as shown in diagram below. All 
components have exponential times to failure with mean times to failure shown. 
All components operate independently of each other. Find the reliability for this 
weapon system for 2 hours. 
 
 

DS

10 hours

10 hours

10 hours

10 hours

2 hours

6 hours7 hours

8 hours5 hours

 
 

10.  Write an essay about how you can use elementary probability in modeling 
military problems.  
 
 
References 
 
[1]  Devore, J. L., Probability and Statistics for Engineers and Scientists, 4th 
Edition, Duxbury Press, Belmont, CA (1995). 
 
[2]  Resnick, S. L., Adventures in Stochastic Processes, Birkhäuser, Boston 
(1992). 
 
 


