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Introduction and setting 
 
Army forces depend upon combat systems to move and fight.  Because Army 
forces move in very stressful environments, these combat systems eventually 
break and require repair.  While a system is awaiting repair, it is considered non-
mission capable or NMC.    The percentage of vehicles awaiting repair is one of 
the key indicators of a unit’s ability to fight, and is tracked at all levels of 
command.  The operational readiness rate, or OR Rate, is the percentage of 
systems in a given class which are Mission Capable (MC). 
 

 
 
In this paper, we will discuss three simple models 
which describe the OR rate for the number of tanks in 
a tank battalion in the 1st Armored Division.  We will 
also discuss ways the models could be extended to 
improve their usefulness to the commander. 
 
We assume that the reader is familiar with elementary 
matrix algebra, linear systems of difference equations, 
and optimization using differential calculus. 

 
Markov Chain models 
 
We begin with a simple model where a tank can be in one of two states: mission 
capable (MC) or non-mission capable (NMC).  Each day, on average a certain 
percentage of the mission capable tanks break, and move to the other state.  
Each day, a certain percentage of the NMC tanks are repaired and become 
operational.  Graphically, we have: 
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Figure 1 

 
 
We use the notation that p1 is the probability that a tank stays MC ; 1-p1 is the 
probability that a tank moves from MC to NMC; p2 is the probability that a tank 
moves from NMC to MC, and 1- p2 is the probability that a tank stays NMC.   
 
Let Mi be the number of tanks in the battalion which are mission capable on day 
i, and Ni be the number of tanks non-mission capable.  Then we can write the 
expected transitions from one day to the next: 
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This system of equations can be easily expressed in matrix notation: 
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This assumes that the pi are known and constant, and ignores the randomness 
in this problem by just looking at the expected values of tanks operational.  
(Recall the expected value of an integer-valued variable is not necessarily an 
integer.) 
 
This system will eventually reach a steady state, where the expected values do 
not change from day to day.  The steady state can be found by eigenvector 
analysis.   A matrix of probabilities such as we have constructed is called a 
probability transition matrix, since every entry is non-negative and every column 
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sums to 1.  It is known that every probability transition matrix has at least one 
eigenvalue equal to 1, and its associated eigenvector is the steady state for the 
system. 
 
We can solve for the steady state eigenvector by solving the equation 
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since at the steady state the number of vehicles breaking exactly balances the 
number of vehicles being repaired.  
 
We obtain the eigenvector  
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where T is the total number of tanks in the battalion  ( T M Ni i= + ).  Regardless 
of our starting state, the top component of the eigenvector tells us how many 
vehicles, on average, we can expect eventually to have working, the bottom 
component tells us how many we expect to be awaiting repair.   
 
The MC/NMC rate steady states can be found similarly to be 
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For example, let’s let p1 95=.  and p2 8=. .  This means that only 5% of the 
working vehicles break each day, and 80% of the broken vehicles are repaired.  

We set T = 58 .  Substitution gives us a steady state of 
54 5882
34118

.
.

L
NM

O
QP , and an 

eventual steady state OR of  94.1176%.  Of course, we can’t have 54.5882 
tanks.  That is the expected value for the number operational, which is an 
average.  Just as the average of 1 and 2 is 1.5, which is not an integer, so can 
the average number of tanks operational also not be an integer. 
 
We can verify these calculations by constructing a spreadsheet model of the 
tank maintenance status.  Let’s start with M = 50 and N = 4.  Figure 2 is a picture 
of how the system on average would behave. 
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Figure 2 
 
 
Let’s look a little closer at the steady state for M, which we said was equal to 
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If we want to improve the expected steady state for M, should we try to increase 
p1 , p2 , or some combination of the two?  One way to gain insights into this 
question is to look at the gradient of steady state for M with respect to p1 and p2.   

 

The gradient of M is given by:  
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We know from calculus that the direction of greatest increase in M is in the 
direction of the gradient.  That means to obtain the greatest increase in M for a 
fixed size change in the values of p1 and p2, the change in p1 should be 
proportional to p2, and the change in p2 should be proportional to 1-p1.  Does this 
make sense? 
 
If we are repairing vehicles quickly already, then it makes sense to work on not 
breaking them instead of working on improving our repair time. That is why the 
change in p1 is proportional to p2.  As p2 increases, we work more on p1.   
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If we are breaking vehicles frequently, it makes sense to improve our repair 
capability.  (1-p1 ) is the fraction of vehicles expected to “break” each time 
period.  As that increases, so should p2, according to the gradient. 
 
Notice that unless p2 is zero, or p1 is one, we should work on improving both 
percentages.  The gradient tells us how to allocate our effort between them. 
 
There are at least two shortcomings of this model.  First, it is deterministic: we 
only work with the expected number of vehicles in each category, and this 
ignores the randomness of the true behavior, as well as the integer nature of the 
objects.  We can’t have 54.5882 tanks mission capable: we can only have 54 or 
55.  We don’t know from this model how much variation to expect around the 
average. 
 
The second shortcoming is that it is very simple.  It doesn’t recognize that 
vehicles break at different rates depending upon whether one is driving them in 
the field or not.  Vehicles are repaired at different rates depending upon the 
availability of spare parts and mechanics, and upon how many other vehicles are 
waiting to be repaired.  The availability of parts depends on the priority code of 
the unit.  If the unit level maintenance can not repair the vehicle, it is sent to 
higher level maintenance, which has different repair rates.   A better model 
would incorporate these additional features. 
 
However, this simple model is useful.  It allows us to gain understanding about 
our system, which is the hallmark of an effective model. 
 
 
Binomial Equation 
 
It is possible to improve the model in the previous section by considering a 
stochastic model.  This will allow us to not only understand the average behavior 
of our model, but also how much the number of MC tanks varies around that 
average.  There is a significant difference between 54.5882 (plus or minus .1), 
and 54.5882 (plus or minus 10).  We will use the binomial distribution for our 
models. 
 
Let’s consider the number of tanks that are mission capable each day.  That 
number will be the sum of those tanks that were mission capable the previous 
day and stayed in that state, plus the number of tanks that were repaired the 
previous day.  This can be modeled as the sum of two binomially distributed 
random variables.  Let Mi be the number of mission capable tanks the preceding 
period, and T be the total number of tanks.  Then 
 

M Bin p M Bin p T Mi i i+ = + −1 1 2( , ) ( , ) . 
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Mi+1 is the sum of two binomial random variables, but it itself is not binomially 
distributed unless p1 = p2.   
 
How does Mi+1 behave?  Let’s imagine 20 battalions all starting at with the same 
number of MC and NMC tanks (54 and 4), each with p1 = 0.95 and p2 = 0.80, and 
each following our model.  We can graph their number of MC tanks using a 
spreadsheet, and obtain Figure 3: 
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Figure 3 
 
 
This image of 20 different histories (one for each of the battalions) gives us a 
feel for the variability we can expect in the number of operational tanks.  We can 
expect to have between 51 and 58 tanks MC usually, and only about 1 in every 
2000 days would we have as few as 47 tanks operational.   
 
We can also use the spreadsheet to do some simple “what--if” analysis.  We can 
put p1 and p2 in cells, and have all the calculations refer to those cells.  Then as 
we vary the values of those cells, we can dynamically see the effect in 
operational readiness rate.  At Figure 4, we see an example, with p p1 285 5= =. , . . : 
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Figure 4 
 
 
Notice that this data is serially correlated.  If the previous day was low, the next 
day tends to be low, as well.  If the previous day was high, the next day tends to 
be high.  It is obvious from the graph that the day to day levels of Mi are not 
independent.  Of course, we knew that since in our model the distribution of Mi+1 
was a function of Mi. 
 
This type of pictorial representation of a stochastic discrete system is very useful 
to demonstrate the properties of a maintenance system to a commander.  
Pictures tell stories that mere numbers often fail to convey.  The picture of the 
Markov chain model shows only the long-term trend of the average number of 
tanks.  These pictures from the simulation show both the long-term average and 
the variability.  While the average number of tanks MC may reach an equilibrium 
value, the variability of the actual number of tanks up at any given time does not 
go to zero!  The randomness remains. 
 
 
Estimating the parameters 
 
How do we determine p1 and p2?  We may never know them exactly.  The best 
we can hope to do is to estimate them from historical data.  We have assumed in 
our earlier models that p1 and p2 are constant.  This is a very strong assumption.  
If it holds, we can estimate p1 and p2 from prior records.  In the section after this, 
we discuss an approach for relaxing the assumption of constant transition 
probabilities. 
 
For now, we continue to assume that the transition probabilities are constant.  
How may we estimate them? 
 



 176

Our answer will depend on what type of data we have available.  If we have data 
that tells us for each day the number of vehicles that stayed MC, that went from 
MC to NMC, that went from NMC to MC, and stayed NMC, we can estimate the 
transition probabilities directly.  Unfortunately, the data we have from the 1st 
Armored Division only has the number of MC vehicles for each reporting period. 
 
We can use that data to estimate p1 and p2 in our binomial model by constructing 
a discrete dynamical system of expected values under our binomial model where 
we allow the transition probabilities to be variables.  We have that 
 

E M p M p Ni i i+ = +1 1 2b g , 
 

where E(M) means the expected value of M.  We then calculate residuals, which 
are the difference between the expected value and the observed values.  We 
square the residuals, and choose the two values of p1 and p2 that minimize the 
sum of the squared errors.  Using the Solve macro from Excel, we find the 
values of p1 and p2 that minimize the squared residuals.  The output is shown in 
Figure 5. 
 
The spreadsheet is searching through all possible values of p1 and p2 to find the 
values that minimize the sum of squared residuals.  These values are all listed 
on the first line of the output.  We see that the best estimate from this data is that 
p1 = 96.66% and p2 = 32.11%. 
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 p1 p2  sum 
 0.966653 0.321071  113.5452 

Day M N EM r2 
36 55 3   
35 54 4 54.12913 0.016674 
34 54 4 53.48355 0.266725 
33 52 6 53.48355 2.200907 
32 52 6 52.19238 0.03701 
31 52 6 52.19238 0.03701 
30 52 6 52.19238 0.03701 
29 53 5 52.19238 0.652249 
28 53 5 52.83796 0.026256 
27 53 5 52.83796 0.026256 
26 53 5 52.83796 0.026256 
25 53 5 52.83796 0.026256 
24 53 5 52.83796 0.026256 
23 53 5 52.83796 0.026256 
22 50 8 52.83796 8.054035 
21 53 5 50.90122 4.404893 
20 53 5 52.83796 0.026256 
19 48 10 52.83796 23.40589 
18 52 6 49.61005 5.711853 
17 53 5 52.19238 0.652249 
16 53 5 52.83796 0.026256 
15 53 5 52.83796 0.026256 
14 48 10 52.83796 23.40589 
13 49 9 49.61005 0.372163 
12 49 9 50.25563 1.576617 
11 49 9 50.25563 1.576617 
10 48 10 50.25563 5.087885 
9 53 5 49.61005 11.49175 
8 53 5 52.83796 0.026256 
7 53 5 52.83796 0.026256 
6 54 4 52.83796 1.350329 
5 55 3 53.48355 2.299634 
4 58 0 54.12913 14.98365 
3 58 0 56.06587 3.74084 
2 55 3 56.06587 1.136089 
1 55 3 54.12913 0.758418 
     

 
Figure 5 
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Modeling the transition probabilities as functions of other variables 
 
Let’s look at a plot of the residuals from the previous section, given at Figure 6: 
 

Residuals

-5

-4

-3

-2

-1

0

1

2

3

4
1 4 7 10 13 16 19 22 25 28 31 34

Residuals

 
 

Figure 6 
 
We see that there are some days where the residuals are much bigger than the 
others are, indicating that our estimated model does not fit too well on those 
days.  Can we find information to explain why the model does poorly on those 
days? 
 
One approach is to allow p1 and p2 to be functions of some other variables.  For 
example, p1 might very well be affected by whether or not the battalion tanks 
were driven that day.  p2 might be affected by the number of mechanics 
available, the number of spare parts available, and even the number of NMC 
vehicles:  the more broken, the less likely any one of them might be fixed. 
 
 We were not able to collect data on these predictors, but we can find the days 
the battalion was in the field using its vehicles.  To illustrate the method, we add 
a predictor to our data set with value 1 if the battalion drove the vehicles in the 
field that day, and value 0 if not.  It is still possible to have a vehicle become 
NMC if it is not driven because of the preventive maintenance checks and 
services (PMCS), but it is much less likely.   
 
We define p3 as the amount that p1 changes when the battalion is in the field.  
We then have EM p p I M p Ni i i i+ = + +1 1 3 2( ) , where Ii is an indicator variable equal 
to 1 if the battalion is in the field that day.  Just as before, we use Excel to solve 
for all three p values, and obtain the spreadsheet output at Figure 7, below: 
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p1 p2 p3 sum 

0.950452 0.597506 -0.07669 57.00474 day in field? 
Day M N  EM r2 r 

36 55 3 53.71445 1.652645 1.285552 0
35 54 4 53.71445 0.08154 0.285552 0
34 54 4 53.00855 0.982964 0.991445 0
33 52 6 53.00855 1.017182 -1.00855 0
32 52 6 53.00855 1.017182 -1.00855 0
31 52 6 53.00855 1.017182 -1.00855 0
30 52 6 53.3615 1.853685 -1.3615 0
29 53 5 53.3615 0.130683 -0.3615 0
28 53 5 53.3615 0.130683 -0.3615 0
27 53 5 53.3615 0.130683 -0.3615 0
26 53 5 53.3615 0.130683 -0.3615 0
25 53 5 53.3615 0.130683 -0.3615 0
24 53 5 53.3615 0.130683 -0.3615 0
23 53 5 52.30266 0.486281 0.697339 0
22 50 8 53.3615 11.29969 -3.3615 0
21 53 5 53.3615 0.130683 -0.3615 0
20 53 5 51.59677 1.969059 1.403232 0
19 48 10 49.02076 1.041956 -1.02076 1
18 52 6 53.3615 1.853685 -1.3615 0
17 53 5 53.3615 0.130683 -0.3615 0
16 53 5 53.3615 0.130683 -0.3615 0
15 53 5 51.59677 1.969059 1.403232 0
14 48 10 48.19199 0.036859 -0.19199 1
13 49 9 48.19199 0.652884 0.808012 1
12 49 9 48.19199 0.652884 0.808012 1
11 49 9 47.91573 1.175642 1.08427 1
10 48 10 49.29702 1.682263 -1.29702 1

9 53 5 53.3615 0.130683 -0.3615 0
8 53 5 53.3615 0.130683 -0.3615 0
7 53 5 53.71445 0.510436 -0.71445 0
6 54 4 54.06739 0.004542 -0.06739 0
5 55 3 55.12623 0.015935 -0.12623 0
4 58 0 55.12623 8.258531 2.873766 0
3 58 0 54.06739 15.46539 3.932606 0
2 55 3 54.06739 0.869753 0.932606 0
1 55 3 0

 
Figure 7 
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Notice how much our estimates change with the addition of the new information, 
and how much our squared error is reduced.  The plot of the residuals at Figure 
8 indicates a much better fit, although there still are some days which are not 
well explained by the model. 
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Figure 8 
 
With more information, we might model p1 and p2 as functions of the other 
predictors, and fit them using least squares.  We could then not only have better 
estimates of the parameters, but also an understanding of how different factors 
affect the readiness of the battalion’s vehicles. 
 
Conclusion 
 
These simple models are very useful to leaders trying to understand the usual 
variation of their systems.  We have been able to provide this battalion 
commander with much useful information about the OR of his unit.  The estimate 
of p3, in particular, helps the commander quantify the readiness cost of field 
training. 
 
It is very satisfying to see in this problem that the discrete dynamical systems, 
calculus, and statistics topics of the USMA core curriculum are so directly useful 
to the Army in the field.  We have seen that the expected number of operational 
vehicles can be modeled with a first order difference equation.  We have used 
the binomial distribution from the probability and statistics course to understand 
the variability of the readiness rate.   Minimizing the sum of squared errors  to 
obtain estimates is a topic from both the calculus and statistics.  Finally, our use 
of the gradient to see the relationship between changes in the parameters and 
changes in the OR rate is a straightforward application of the multivariable 
differential calculus. 
Exercises 
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1.  Your battalion values for p1 and p2 are given by .95 and .7, respectively.  
Assume you initially have 58 vehicles, 45 which are MC. 
 
 a)  Formulate the transition matrix for MC and NMC tanks for your 
battalion. 
 b)  Find the steady state readiness posture of your battalion.  How long 
does it take to achieve this? 
 c)  Use simulation to estimate the variability of the MC and NMC rates. 
 d)  Do these values of p1 and p2 produce pronounced serial correlation?  
Why or why not, and why would a commander care? 
 
2.  You obtain the data in Figure 9 on your tank battalion’s MC and NMC counts.  
Estimate p1 and p2.  Interpret them in a short paragraph to your commander.  
Include a simulation that demonstrates how variable the MC and NMC daily 
totals can be. 

 
Day MC NMC 

0 40 18 
1 43 15 
2 44 14 
3 46 12 
4 50 8 
5 51 7 
6 50 8 
7 53 5 
8 55 3 
9 56 2 
10 52 6 
11 52 6 
12 50 8 
13 53 5 
14 54 4 
15 56 2 
16 54 4 
17 53 5 
18 52 6 
19 52 6 
20 49 9 

 
Figure 9 
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3.  You have the data at Figure 10 from a sister battalion, which also includes 
whether or not they were in the field.  Estimate p1, p2, and p3.  Summarize your 
findings to your commander in a short report.  Include appropriate graphical 
evidence. 

In field? MC NMC 
0 40 18 
0 51 7 
0 54 4 
0 51 7 
0 48 10 
0 50 8 
0 51 7 
1 34 24 
1 38 20 
1 33 25 
1 39 19 
1 42 16 
1 40 18 
1 36 22 
1 38 20 
0 51 7 
0 49 9 
0 50 8 
0 55 3 
0 55 3 
0 54 4 

Figure 10 
 
4.  Your commander is uncertain about this model.  Write a short essay 
explaining the assumptions of this Markov chain maintenance model.  Based on 
your experiences, discuss which assumptions might be reasonable and which 
might be unreasonable.  Cite examples to support your discussion.  Give enough 
information so an informed decision can be made about using the model in your 
unit. Write in language your commander can understand. 
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