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For Whose Eyes Only?   
Cryptanalysis and Frequency Analysis 
David Cochran 
 
 
Introduction 
 
Cryptanalysis, the art of breaking codes, has proven to be a combat multiplier 
throughout history.  By reading encrypted enemy message traffic, commanders 
often gain immediate intelligence on the enemy's disposition, strengths and 
intent.  During World War II, many allied successes were attributed to the 
advantages gained by cracking both the German Enigma and Japanese 
PURPLE cipher systems.  Further advances in the field of cryptanalysis will 
likewise give future American commanders a distinct advantage on the modern 
battlefield. 

 
The ADFGVX Cipher  

 
By 1917, the warring nations in World War I were facing manpower shortages 
due to the large-scale slaughter on the battlefields.  The United States declared 
war on Germany and joined the Allies on April 6, 1917.  On 26 June 1917, the 
first large contingent of American troops arrived in France.  With fresh American 
forces arriving regularly in France, everyone realized the Americans would soon 
bring a numerical advantage to the Allies.  They also knew there would be some 
time before sufficient numbers of Americans would be available to break the 
stalemate on the Western Front.   
 
The success of the Bolsheviks in Russia and the resulting separate peace in 
December 1917 allowed the Germans to move forces from the Eastern Front to 
France.  The change in force ratios allowed the Germans to gain a temporary 
numerical superiority in the West.  They made a surprise attack on March 21, 
1918 and made significant gains.  The attack threatened to split the British and 
French armies and brought Paris within range of Germany's guns.   More 
importantly, the attack depleted the previously strained manpower resources of 
both the British and French. On May 27, in an effort to reach Paris, the Germans 
attacked again between Reims and Soissons.  The attacking forces penetrated 
the allied lines to a depth of fifteen miles and were so successful that the French 
government prepared to leave Paris.  The Allied High Command knew the 
Kaiser's forces would attempt to exploit their success with yet another major 
attack, but only had sufficient reserves to bolster the defenses in one sector.  
Discovering the location and timing of the next large attack become critical. [1] 

 
In March 1918, the Germans implemented a now famous cipher - the ADFGX 
cipher - to encrypt communications between their corps and division level field 
headquarters.  This new cipher used only the letters A, D, F, G and X and 
resisted all attempts at cryptanalysis.  This cipher contributed to the tactical 
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surprise achieved by the Germans during the initial spring offensive.  A French 
cryptanalyst, Georges Panvin, attacked the new cipher using frequency analysis.  
By the end of April he was able to read some of the messages protected by this 
cipher, but he never achieved a general solution.  On June 1, Panvin noticed that 
the Germans had slightly changed the cipher by including the letter V.  Panvin 
used frequency analysis once more and was able to decipher some messages 
protected by this new cipher by June 2.  He disseminated the key he uncovered 
to the other French cryptanalysts.  On June 3, one of the French cryptanalysts, 
using the key provided by Panvin, deciphered an intercepted German message 
that provided the first hint as to the location and timing of the anticipated German 
offensive.  When the new attack came, there was no surprise and the Germans 
were not as successful as in their previous attempts.  Georges Panvin and the 
method of frequency analysis helped save France. [2]  

 
Introduction to Cipher Systems 

 
Koblitz defines cryptography as “the study of methods of sending messages in 
disguised form so that only the intended recipients can remove the disguise and 
read the message.” [3]  A cipher system consists of an enciphering map f  and 
its inverse 1−f  for deciphering.  Often both f  and 1−f  depend on an encryption 
key, a parameter which may change the encryption map in some way. The 
enciphering map f  takes the plaintext, the message we are disguising, and 
transforms it to the ciphertext, the disguised message.  Likewise, 1−f  takes the 
ciphertext and transforms it back to the plaintext. 

 
There are two general classes of ciphering systems.  The first is a symmetric 
ciphering system.  In a symmetric ciphering system both the sender and receiver 
must have the same key and encryption algorithm to scramble and unscramble 
the message traffic.  An example of a symmetric ciphering system is the simple 
substitution method discussed later in this paper.  

 
The second class is a public key ciphering system.  In a public key ciphering 
system, the sender (and everyone else) has access to the receiver's public 
encryption key and can use the public key to encipher the message to the 
receiver.  The receiver alone has access to the secret deciphering key.    

 
An example of a Public Key encryption system is the Rivest Shamir 
Adleman (RSA) encryption algorithm.  In the RSA system, a user chooses two 
prime numbers, p  and q , and calculates pqn = .  Additionally, the user 
calculates a random number e , which has no factors in common with 

)1)(1( −− qp .  The user then makes the two numbers e  and n  public.  A person 
who wishes to communicate secretly with the user breaks the message in 
plaintext message blocks ip  and calculates the ciphertext ic  by the formula 

TextPlainTextCipherTextPlain ff  → → − 1



 207

npc e
ii mod=  where e  and n  are the numbers previously made public to 

everyone.  To decrypt the message the user calculates the private key d , by the 
relationship ))1)(1mod((1 −−= − qped , and decrypts the message using the 
relationship ncp d

ii mod= .  The security of the RSA system lies in the difficulty of 
factoring the number n  into its prime factors p  and q .  This is a difficult 
mathematical problem when n  is large. [4] 
 
Example 1:  Encrypt the message ATTACK using the RSA cipher system, when 

13=p and .17=q  
 
Solution:  221)17)(13( === pqn .  Choose a random number e  with no factors in 
common with 32192)16)(12()1()1( 6 ⋅===−⋅− qp .  Let 25=e .  The public key 
consists of the two numbers 221=n  and 25=e .  Everyone has access to these 
two numbers.  To encrypt the message A-T-T-A-C-K, assign each of the plaintext 
message blocks the corresponding number for each letter in the plaintext.  Then 

11 == Ap , 202 == Tp , etc.   The message is then encrypted as: 
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The message 113120201 −−−−−  is encrypted as 19313311501501 −−−−− .  
To decrypt the message again, we calculate the private key 

169),192mod(25 1 == − dd , remembering the intended recipient alone knows this 
number.  The message is decrypted as follows: 
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The security of the RSA cipher system is greatly enhanced when large prime 
numbers are used and the size of the message block is increased.  At the current 
level of mathematical knowledge, a number 100 digits long may be factored in 
minutes, while a number 200 digits long may take years to factor.  Because of 
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this fact, in practice this algorithm is often used with prime numbers, p and q , 
over 100 digits long.   Prime numbers of this size will generate a number n  that 
may take years to factor. 

 
     

Substitution Ciphers 
 
The simplest symmetric cipher system is a substitution system.  In a substitution 
cipher system, plaintext symbols are substituted one-for-one with encrypted 
symbols.  In the simplest example another letter represents each letter of the 
alphabet.  For example, consider plaintext message traffic that consists only of 
the letters in the alphabet.  An enciphering map and corresponding deciphering 
map, f, may be defined by the table: 
 
  A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
  M A T H B C D E F G I J K L N O P Q R S U V W X Y Z 
 
Then the plain text message: ATTACK NOW is encrypted as the cipher text 
MSSMTI LNW. 
 
Example 2: How many different enciphering maps can be created from a 26-
letter alphabet? (At least one letter must be encrypted.) In general how many 
enciphering maps are there for n symbols?  How many different enciphering 
maps are possible for n symbols where every symbol is mapped to a different 
symbol? 
 
Solution:  There are 26 symbols to choose for the first letter, 25 symbols to 
choose for the second symbol, 24 for the third, etc.  Then there are  

 
ways to create a substitution enciphering map with 26 symbols.  In general, there 
are 1!−n  ways to create a substitution enciphering map with n symbols when at 
least one symbol must be encrypted.  If every letter must be encrypted, the 
problem is a derangement and there are approximately en /!  ways to create 
different substitution alphabets.  
  
Note:  A derangement is the general problem of scrambling n  elements with 
specified positions so that no element stays in its original position.  Let nD  
represent the total number of permutations of arranging n  items such that no 
item is in its original position.   Clearly if 1=n  then 01 =D .  If 2=n , then 12 =D  
for {1, 2} can be arranged only as {2, 1} when no element is placed in its original 
position.  It can be shown that for 3≥n , then ))(1( 12 −− +−= nnn DDnD and we can 
calculate 2)10()13(3 =+⋅−=D  and 9)21()14(4 =+⋅−=D .  Additionally, it can be 

2610033.41!26

1!261)122526(

×=−
−=−⋅⋅⋅⋅ L
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are approximately en /!  ways to create different substitution alphabets then 
follows. [5] 

 
At first glance, the problem of finding the correct arrangement to decipher the 
message may seem to be a daunting challenge, but we can use clues from the 
message itself to simplify the task.  Notice in the plaintext message from the 
substitution example above, the symbols T and A both occur twice.  Likewise the 
corresponding symbols in the ciphertext, M and S both occur twice.  This gives 
us clues that we may be able to use underlying statistical characteristics of the 
plaintext to find information about our ciphertext. 
 
 
Frequency Analysis 

 
As discovered above, 

some cipher systems may 
lend themselves to statistical 
methods of cryptanalysis.  
The idea of using the 
underlying frequency 
distribution of a language to 
aid in the attempt to read 
encrypted message traffic is 
first attributed to an Arab 
named Qalqashandi early in 
the 15th Century. [6]  Since 
his time, frequency analysis 
is often the first step 
undertaken by cryptanalysts 
in the attempt to read the 
enemy's encrypted message 
traffic.   

 
In the English language, the letter 'e' is the most frequently occurring letter.  In 
fact, using an electronic version of Melville's Moby-Dick, prepared by Professor 
Eugene F. Irey at the University of Colorado [7], I calculated the following 
frequencies and associated probabilities:  
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Thus from the sample of the English language contained in Moby-Dick, the letter 
'e' has a 12.27% probability of occurring. 
 
Example 3.  What is the expected number of occurrences of the letter 'n' in a 
721-letter size sample from the novel Moby-Dick?  What is the standard deviation 
of the number of occurrences of the letter 'n' in a 721-letter sample from Moby-
Dick? 

Solution:  Let iE represent the event that the randomly chosen letter is the thi  
most frequently occurring letter.  Then 1E  represents the event that a randomly 
chosen letter is the most frequently occurring letter 'e'. 2E  represents the event 
that the randomly chosen letter is the second most frequently occurring letter 't', 
etc.  The events iE  are mutually exclusive and mutually exhaustive.  A randomly 
selected letter can not be the letter 'e' and the letter 't' at the same time, nor will 
we encounter any other letter other than those in the alphabet.  Define the 
random variable ),,,( 2621 xxxX K

r
=  such that ix  is the number of occurrences of 

event iE  in n  trials.  X
r

 has a multinomial distribution and the expected value 
)( iXE  and variance )( iXV  for event iE  in n  occurrences are ii pnXE ⋅=)(  and 

)1()( iii ppnXV −⋅⋅= .  The expected number of occurrences of the letter 'n' then 
is 69.49)06892.0)(721()'(')( 7 === nEXE  and the variance and standard deviation 

can be calculated as   
 

802.627.46)(

27.46)06892.01()06892.0(721)'(')(

7

7

7
≈==

=−⋅⋅==

XV

nVXV
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Therefore we expect 50 occurrences of the letter 'n' in a sample size of 721 with 
a variance of 6.802. 
 
Example 4: Consider the following ciphertext with corresponding plaintext from 
the novel Moby-Dick: 
 

Occurrences Letter Probability Occurrences Letter Probability
114462 E 0.122748 22079 C 0.023677

86159 T 0.092396 21659 W 0.023227
76146 A 0.081658 20401 F 0.021878
67815 O 0.072724 20385 G 0.021861
64273 I 0.068926 17551 P 0.018822
64267 N 0.068919 16530 B 0.017727
62846 S 0.067396 16512 Y 0.017707
61469 H 0.065919 8457 V 0.009069
50912 R 0.054598 7903 K 0.008475
41969 L 0.045007 1512 Q 0.001621
37454 D 0.040165 1204 X 0.001291
26037 U 0.027922 1046 J 0.001122
22817 M 0.024469 630 Z 0.000676
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GSV OZMW HVVNVW HXLIXSRMT GL SRH UVVG.  DLMWVIUFOOVHG 
GSRMTH ZIV VEVI GSV FMNVMGRLMZYOV; WVVY NVNLIRVH BRVOW ML 
VYRGZYSH; GSRH HRC-RMXS XSZYGVI RH GSV HGLMVOVHH TIZEV LU 
YFOPRMTGLM. 
 
Make a table of occurrences for each letter and calculate the probabilities for 
each letter?  Which letter 'most likely' represents 'e'? 
 
Solution: (149 total symbols) 

 
To answer the question which symbol represents the letter 'e' we must first 
develop the idea of a the probability interval.  Define the random variable X  as 
the number of occurrences of the symbol that represents the letter 'e' out of 149 
trials.  The symbol that represents the letter 'e' has a probability of occurring 

1227.0=p .  Then X has a binomial distribution, )1227.0,149(~ BINX .  The 
cumulative distribution function (c.d.f.) for this random variable is:   

  ∑
=

−−⋅⋅



=

x

i

ii

i
xB

0

149)1227.01()1227.0(
149

)1227.0,149;(   . 

 
If we can find an 1x  such that 025.0)1227.0,149;( 1 =xB  and an 2x  such that  

975.0)1227.0,149;( 2 =xB , then 95.0)( 21 =≤≤ xXxP  and there is a 95% 
probability that X will take on a value from the set {x1, x1+1, x1+2,..., x2}.  Using a 
computer and iteration we can quickly find that the values x1 = 10 and x2 = 26 
result in 956.0)2610( =≤≤ XP .  
 
Therefore, we are at least 95% certain that the symbol representing the letter 'e' 
will occur between 10 and 26 times in our sample.  The symbols {V, G, H, M, R, 
and S} all meet this criteria, and we conclude the letter 'e' is most likely 
represented by one of these symbols. 
 
Computing the 95% probability interval for the next most frequently occurring 
letter 't', we find that the symbol representing the letter t should occur between 6 

Occurrences Letter Probability Occurrences Letter Probability
25 V 0.167785 4 T 0.026846
13 G 0.087248 4 X 0.026846
13 H 0.087248 3 F 0.020134
12 M 0.080537 3 U 0.020134
12 R 0.080537 2 E 0.013423
10 S 0.067114 1 B 0.006711
9 L 0.060403 1 C 0.006711
7 I 0.046980 1 D 0.006711
7 O 0.046980 1 P 0.006711
6 Y 0.040268 0 A 0.000000
6 Z 0.040268 0 J 0.000000
5 W 0.033557 0 K 0.000000
4 N 0.026846 0 Q 0.000000
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and 21 times in the encrypted message.  The symbols {G, H, M, R, S, L, I, O, Y, 
and Z} are all candidates to be the letter 't'. 

 
Since there is less than a 5% chance that the letter V represents a letter other 
than 'e', we conclude that the letter V most likely represents the letter 'e'. 
 
This method of frequency analysis can be used to find the most likely value(s) for 
the most frequently occurring symbols in the sample population.  Note that if we 
are able to intelligently guess at the eight most frequently occurring letters {E, T, 
A, O, I, N, S, H} we will know just over 64% of the information contained in a 
message. 
 
Example 5: Using the message traffic from Example 4, calculate the 95% 
probability interval for each of the eight most frequently occurring letters.  How 
many deciphering maps are possible for these eight letters, if we only consider 
symbols that have occurrences within the 95% probability interval of each letter?  
How many are possible if you allow all symbols?   
 
Solution:  Using the method described above we find the following results: 

 
 
Hence there are 960,672,405161411106 4 =⋅⋅⋅⋅  ways to represent the eight letters 
using the possible symbols generated by the 95% probability intervals.  There 
are 000,928,990,62)!826/(!26 =−  ways to represent the eight letters allowing all 
possible symbols. 
 
World War II 

 
During World War II, many allied successes were attributed to the advantages 
gained by cracking the German Enigma and Japanese PURPLE cipher systems.  
Other tactical advantages were also gained by cryptanalysts working at 
operational and tactical levels for the allies.  In North Africa, the 129th Signal 
Company (Radio Intelligence) discovered the Nazi's were withdrawing from 
Kasserine Pass.  Later in North Africa the 128th gave advance warning of 
several attacks.  In Italy, radio reconnaissance units provided "outstanding" 
intelligence support to VI Corps. Cryptanalysts working for General Omar 

Expected Values
Letter Low Value High Value Possible Letters
E 10 26 V,G,H,M,R,S
T 6 21 G ,H,M,R,S,L,I,O,Y,Z
A 5 19 G ,H,M,R,S,L,I,O,Y,Z,W
O 4 17 G ,H,M,R,S,L,I,O,Y,Z,W,N,T,X
I 4 17 G ,H,M,R,S,L,I,O,Y,Z,W,N,T,X
N 4 17 G ,H,M,R,S,L,I,O,Y,Z,W,N,T,X
S 4 16 G ,H,M,R,S,L,I,O,Y,Z,W,N,T,X
H 3 16 G ,H,M,R,S,L,I,O,Y,Z,W,N,T,X,F,U
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Bradley's 12th Army Group, the 849th Signal Intelligence Service (S.I.S.), read a 
German message at Normandy which allowed Bradley to respond to a strong 
counterattack against one of his vulnerable positions.  Later, the 849th S.I.S. 
working in the Ardennes was able to decipher German message traffic disclosing 
the movement of armored divisions in the region of the Ardennes Forest.  (Not all 
intelligence information is evaluated properly.)  Another S.I.S. unit working for 
General Patton's 3rd Army, deciphered a German message that contributed to 
the 3rd Army inflicting heavy losses on the German 5th Parachute Division at 
Bastogne. Cryptanalysts continued to provide valuable support until the 
conclusion of the War. [8]  It is certain that cryptanalysts will play a major role in 
future wars. 
 
 
Exercises 
 
1.  Find the expected number of occurrences of the letter 'm' in a sample size of 
323 from the novel Moby Dick.  What is the variance for the number of 
occurrences of the letter m?  
 
2.  Find a 95% probability interval for the occurrences of the symbol representing 
the letter 's', in a sample of encrypted text of size 50.  
 
3.  Find a 90% probability interval for the occurrences of the symbol representing 
the letter 'o', in a sample of encrypted text of size 60. 
 
4.  Consider the cipher text of a quote from Moby Dick: 
 

GSVKV ZKV HLNV VMGVKIKRHVH RM DSRXS Z XZKVWFQ 
URHLKUVKQRMVHH RH GSV GKFV NVGSLU. 

 
Which symbol most likely represents the letter 'e'?  Which symbol(s) most likely 
represents the letter 'o'? 
 
5.  Using the cipher text from problem 4, develop 95% probability intervals for 
each of the 8 most frequently occurring letters. 
 
6.  Consider the cipher text of a quote from Moby Dick: 
 
ACN MPNDFMFAAAFKB JAKKNP FK WCFDC DAMAAFK ACAR CAE 
OUFAANE ACN QAJUNI NKENPRY LS ILKELK, CAE KLA RNNK 
UKAAANKENE WFAC QLJN QJAII VFLINKDN AL CFQ LWK MNPQLK.  CN 
CAE IFBCANE WFAC QUDC NKNPBY UMLK A ACWAPA LS CFQ RLAA ACAA 
CFQ FVLPY INB CAE PNDNFVNE A CAIS-QMIFKANPFKB QCLDH. 
 
Which symbols most likely represent the letter 's'? 
 



 214

7.  Would you expect the associated probabilities to change for each letter if we 
consider other languages besides English?  Explain. 
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