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Introduction:  The Army’s social networks often involve cooperation – entities working 

together to achieve a common goal.  What are the metrics for such a network?  What is 

cooperation and what makes cooperative networks effective?  Can network structures and 

processes enhance cooperation and optimize networks?  This presentation uses the emerging 

mathematical framework of subset team games (Arney & Peterson 2008), which provides a 

theory of the principles, relationships, and metrics of cooperative phenomena.  The subset team 

game framework is focused on agents (network entities) working together for a common good, 

reflecting the team-oriented cooperation that characterizes social and military networks. The 

underlying assumption of subset team games is that players are motivated by a combination of 

selfish and altruistic reasons, and the framework provides computable metrics from the 

network’s utility.  The framework provides derived metrics of an agent’s selfish contribution, 

altruistic contribution, and total contribution from a carefully defined utility function.   

In this presentation, we explain using subset team games to understand teamwork. First, 

cooperation space provides a visual means of assessing and comparing the cooperative nature of 

multiple algorithms geared toward the same tasks. Second, the cooperation complex provides a 

snapshot of the contributions of all subsets of a team. Together, these tools provide a means of 

visualizing and comparing multiple algorithms. We illustrate their use in network flow that 

requires distributing information load across a network graph.  The strength of the theory of 

subset team games is its ability to provide insight into the cooperative nature of various 

algorithms that accomplish the same task. Algorithms can be classified on a spectrum between 

“altruistic” and “selfish”. While an algorithm’s rate of success is important, a singular focus on 

this number can lead to disappointing results. This is particularly true in cooperative systems, 

where other ideas such as cohesion and trust play key roles. Given the choice between multiple 
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algorithms with equal success rates, it is better by far to choose a more altruistic algorithm since 

it has a more positive impact on the team.  The Army’s culture is based on cooperative networks.  

Many emerging areas of net-centric warfare involve cooperation, requiring trust and autonomy 

of the agents. Therefore, understanding, designing for, and using cooperation are critical 

elements in meeting the goals of the future Army. This fundamental research in the basic 

mathematical principles of cooperation can contribute greatly to that effort and these important 

Army goals.   

Background:  Traditional approaches to social network analysis are often performed either by 

studying individual nodes or by studying the graph as a whole (Wasserman & Faust, 1994). 

Beside statistical techniques, there are few theories that attempt a unified approach, 

encompassing both the individual and the team view. This paper implements this kind of theory 

using subset team games.  The framework of subset team games was developed to understand 

cooperation simultaneously at the individual and the team level. In earlier work (Arney & 

Peterson, 2009) (Arney & Peterson, 2010), it is evident that the framework is a useful tool for 

understanding cooperation in a system. This is because it provides notions of both altruistic and 

selfish cooperation. This is important because entities in real life are not rational in the strict 

sense of classical cooperative game theory (Axelrod, 1984) (von Neumann, 1928) (Sally, 1995). 

Instead, as in the Army, teams of individuals are designed to work together for the common 

good.  Other notions of cooperative systems are also emerging as vital to the modern Army, such 

as robotic teams, teams of software agents, groups of sensors, and there are additional questions 

regarding systems with both human and artificial agents. In this paper, we provide several 

examples illustrating how subset team games may be used as an analytical tool.  

 

Metrics, Utility Functions, Cooperation Space:   A metric (or distance function) is a function 

with special properties which defines distance between elements.  Metrics then become utility 

functions for a team when they measure and evaluate the process or function of an entity or 

cooperative group of entities (organization or team). This utility function is then used in the 

determination of the condition or level of productive or mission-accomplishing activity of the 

organization or team.  When subset utility functions are appropriately determined for the network 

(team), altruistic and competitive contributions provide an analytical tool for comparing the 

value of various subsets of a “team” of players. We call this the cooperation map, and say that it 

takes values in cooperation space.  Figure 1 is a visual depiction of this space, along with 

regions marked by sensibility and cohesiveness.  If all points take values in the region with 

0Sa , the utility function is said to be cohesive because a negative altruistic contribution 

indicates some players would be better off by themselves. If all points take values in the region 

with 0Sc , the function is said to be sensible, because utility functions that do not increase 

with the size of the subset have limited value.   



 

Figure 1. Cooperation space of a coalition A. Ideal behaviors take values in Quadrant I. 

 

Example 1: Network Flow Game: In broadest terms, the cooperation space visualization 

depends upon an underlying algorithm or behavior, and the choice of a subset utility function (or 

metric).  It is therefore very useful as a comparative tool for analyzing or classifying algorithms 

and behaviors. Figure 2 shows a simple network flow game where individual nodes share their 

channel capacities to pass information through a system. The objective of the system is to 

maximize the amount of information that reaches a destination. In this game, the altruistic 

contribution of nodes is well-correlated with a generic understanding of a “cooperative” 

algorithm (see Peterson & Arney 2008).  On the other hand, “greedy” algorithms tended to have 

a higher selfish contribution. Building upon this work, we investigated various algorithms to 

determine their effectiveness, viewed through the lens of cooperation space. Altruism compares 

the system’s effectiveness when a player is removed from the system. In this reduced system, we 

removed the player and its channel, and redistributed that player’s load across all other available 

nodes.  The results of a simulation with 20 nodes and 20 channels are shown in Figure 3, which 

compares three different algorithms. There is a substantial difference between the algorithms as 

viewed in cooperation space. In particular, the “proportional” algorithm in (c) differs 

significantly from the “even” algorithm in (a) and the “greedy” algorithm in (b). 

         

Figure 2. Network flow game. The circles represent nodes, and the rectangles represent capacities. Each node 

may pass information through its neighboring channels. 
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Figure 3. The results of a network flow game. In (a) nodes divide their load evenly. In (b), nodes place their 

loads on the highest channels. In (c), nodes assign loads to channels in proportion to their capacity. The plot 

shows the results in cooperation space. 

 

Example 2: Geometric Equi-distribution problem:  We use cooperation in the task of 

determining geometric assignments in a polygonal region to establish regions of equal area.  

Each entity is assigned a region within the polygon, and the goal is for the entities to sense their 

situation and move autonomously to equalize their assigned areas.   Two agent-based algorithms 

are run in simulations to test performance and convergence.  Metrics are computed to determine 

how successful the entity distribution is at any stage of the dynamics.  The metrics that are used 

are normalized with respect to the mean area of the sub-regions and the number of entities to 

capture the deviations in the areas of responsibilities as ratios.  Let     represent the mean sub-

region area, and let            represent the areas assigned to players.  We track 3 measures: 

1) Maximum deviation from the mean as a ratio with mean sub-region area:               . 

2) The average deviation from the mean as a ratio with mean sub-region area: 
 

 
           . 

3) The sum of the mean-squared deviations as a ratio with the square of the mean sub-region 

area: 
 

 
        

 
    . 

By tracking these normalized utility metrics (ratios or percentages), we are able to normalize the 

algorithms behavior independent of the size of the region or the number of points used in the 

simulation. (Arney, Arney, & Peterson 2010)  The simulations are performed by establishing a 

polygonal region and initially randomly dispersing a specified number of points (representing 

players) in the region.  A Voronoi diagram then partitions the overall region into sub-regions 

where each point is responsible for the area where it is the closest point. This geometric 

framework is shown as the “meshed” region in Figure 4.  In a dynamic assignment game, the 



areas would then be assigned to each given point as it cooperates to maximize the utility 

function.  The simulations implement various algorithms to dynamically adjust the point 

locations to make the areas equal.   

 

 

Figure 4: Initial “meshed” region with 40 points (unequal areas).  This region has poor utility metrics --- e.g., 

the maximum assigned area for the largest entity is 140% of the mean area. 

We begin with the premise that when the autonomous entities in a region sense they are no 

longer in balance in terms of equal areas of responsibility, they attempt to move to equalize the 

areas using only local information.  To do this, the entity determines local factors (distances or 

areas or loads of neighboring entities) and seeks to move in a way to reduce the imbalance. We 

run two algorithms (S-1, S-2) to test their performance in various scenarios. In S-2, each entity 

moves in a direction found by weighting the differences in the region’s area with all its adjacent 

neighbor areas.  In S-1, each entity moves with the average of all neighbor movements (iterative 

scheme) if its area is close to the mean sub-region area.  We did this for 40, 100, and 400 entities.  

An image of the region with a sample converged mesh (40 areas or sub-regions that are equal) is 

shown in Figure 5.  The performance and convergence data for the simulations for algorithm S-2 

are provided in Table 1. 

 

Figure 5: Converged region with 40 points arrayed in locations to produce equal areas of responsibility. 

  



Table 1: Performance metrics for algorithm S-2. 

 

   

Number of Steps 

  
Initial 10 50 100 250 500 

CASE 

1: 40 

points 

Maximum 

Deviation 1.417 0.332 0.057 0.018 0.002 1.20E-04 

 

Mean Deviation 0.429 0.094 0.011 0.004 

2.97E-

04 2.18E-05 

 

Mean Sq. 

Deviation 0.292 0.014 

2.47E-

04 

2.62E-

05 

2.48E-

07 1.25E-09 

        CASE 

2: 40 

points 

Maximum 

Deviation 1.191 0.167 0.114 0.069 

1.66E-

04 2.18E-07 

 

Mean Deviation 0.303 0.051 0.012 0.009 

4.65E-

05 6.47E-08 

 

Mean Sq. 

Deviation 0.147 0.004 

5.96E-

04 

2.88E-

04 

3.70E-

09 7.58E-15 

        100 

points  

Maximum 

Deviation 2.35 0.521 0.288 0.064 0.037 0.052 

 

Mean Deviation 0.474 0.152 0.063 0.024 0.005 0.004 

 

Mean Sq. 

Deviation 0.362 0.037 0.006 

7.93E-

04 

5.42E-

05 7.18E-05 

        400 

points 

Maximum 

Deviation 2.572 1.028 0.437 0.389 0.257 0.190 

 

Mean Deviation 0.428 0.218 0.093 0.054 0.014 0.014 

 

Mean Sq. 

Deviation 0.314 0.078 0.013 0.005 0.001 5.04E-04 

In the following simulation, different individual entities were programmed to follow different 

algorithms forming teams whose goal was to converge (the utility function measures how close 

each entity is to the mean or equi-distribution).  The entities were scored as to their altruistic and 

selfish contributions and teams were scored as to their overall performance.  Figure 6 shows the 

evolution of average team scores for five teams of various player (algorithm) composition, with a 

maximum/ideal score of 20 and the average taken over 200 sets of initial positions. 



 

Figure 6: Team scores reflecting average closeness to equi-distribution for five teams of 20 players with 

various compositions of players using the S-1 and S-2 algorithms (as indicated). Each line represents the 

average of 200 runs for different sets of initial conditions, with each run consisting of 140 iterations. 

It is clear from Figure 6 that the S-2 algorithm performs better on a homogeneous team than the 

S-1 algorithm, but it is less clear to what extent the individual players (algorithms) contribute to 

the overall team score on a heterogeneous team.  On this individual level, the results indicate that 

the S-2 algorithms perform better than the S-1 algorithms on heterogeneous teams, in both their 

selfish and altruistic contribution. Figure 7 shows a comparison of the altruistic and selfish 

scores of the S-1 and S-2 players on a common team, in this case a team of 20 entities with 10 S-

1 and 10 S-2 players. The selfish contribution of S-2 is better on average, and the gap widens 

over time. The altruistic contribution of S-2 is also better on average, and increases over time. 

Similar differences in cooperation utility were also apparent in all other team compositions of 

players performing the S-1 and S-2 algorithms.  These results indicate that the S-2 algorithm, 

which weights individual movements based on differences in neighbor areas, improves the 

overall team score beyond what is expected from a single individual gain. Even in the scenario 

where almost all players follow S-1, a few S-2 players can have a positive impact on their fellow 

S-1 players. 

 

Figure 7: Selfish and altruistic scores for players operating with S-1 and S-2 algorithms on a team with 10 S-1 

players and 10 S-2 players. Each line represents the average of 200 runs for different initial conditions, with 

each run consisting of 140 iterations. Despite noise in the results, the S-2 algorithm is more altruistic. 

Future Work: We have described the concept of subset team games, and illustrated analysis of 

several simple games using the utility functions and metrics of cooperation provided by that 

framework.   We assumed that the subset utility function was given exogenously, making the 

framework a primarily explanatory model for the nature and value of cooperation of subsets of 

players. Other games that have been studied using these methods include hypothetical basketball 

games (Arney and Peterson 2008) and pursuit and evasion games (see Gebhart 2009). 
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These results are intended to increase the understanding of cooperation from an analytical 

perspective. Much work needs to be done to determine to what extent these ideas will translate to 

applications. The strongest point of impact is probably the understanding of metrics of trust. 

With trust defined as the confidence that one player has that another player will behave in a way 

that benefits the team, it makes sense to use the altruistic cooperation score to build trust and 

ultimately measure trust.  The score that most closely measures this within our framework is 

altruism.  A player which has a high marginal contribution but is primarily selfish may not be 

working for the team and therefore cannot be trusted as much as an altruistic player. 

 

A secondary point of application might be network disruption. Because the metric of altruism is 

also connected closely with the idea of cohesion, it follows that the optimal points of disruption 

are precisely the points with the highest altruistic score. Again, this idea depends fundamentally 

on the definition of a subset utility, and needs to be tested further. 
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