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 The “tipping point” is 
often referred to in 
popular literature. 
 First introduced in 

Schelling ‘78 and 
Granovetter ‘78 

 In layman’s terms: 
 Every member of the 

population has a 
threshold k 

 If k number of your 
friends adopt a 
behavior – then you will 
too. 
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 The idea of “tipping” 
can be extended to 
social networks to 
describe a diffusion 
process. 

 We will often say a 
node is “activated” if 
it has adopted a 
certain behavior. 

Large Social Networks can be Targeted for Viral Marketing with Small Seed Sets 3 

a 

b 

c 

d 

e f 

g 

h 

j 

i 



 In 2003, Kempe, Kleinberg, and Tardos 
introduce a framework for dealing with the 
tipping problem. 
 

 They state that the parameter k can often not 
be determined, and hence assigned based on 
some probability distribution. 
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 They show that the 
cascade initiated by 
tipping is submodular 
when k is assigned 
probabilistically. 
 

 Intuitively, a 
submodular function 
has diminishing 
returns 
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 The submodularity of the tipping process in 
the non-deterministic KKT model was 
leveraged in the proof of an approximation 
guarantee for a greedy algorithm to find the 
most influential nodes (w.r.t expected value). 
 

 However, their approach was not scalable to 
huge social networks as their approach relied 
on simulation runs. 
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 Recent studies of very large social networks has 
suggests that we may be able to determine k 
based on the attributes of a given node. 
 

 For instance, Aral and Walker (2012) : 

 People over 31 are less susceptible to influence than 
younger people 

 Men are more susceptible to influence than women 

 Married people are less susceptible to influence than 
people engaged to be married 
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However, submodularity does not hold if the 
threshold is deterministic 
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 If we know the k value for each node, can we 
find a (near-minimal) set of nodes that causes 
universal adoption under the tipping model? 
 

 Can we find such a set in very large networks? 
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 Preliminaries 
 

 The Pruning Heuristic 
 

 Experimental Evaluation 
 

 Concluding Remarks 
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We assume a directed network and a threshold 
function that provides the percentage of 
“active” neighbors required to tip that node. 
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G = (V, E) 

For all vi, hi
in  is the set of incoming neighbors 

q : V  (0,1] 

For all vi  V, ki = q(vi) di
in 



 Maps subsets of vertices (nodes activated at 
the current time step) to subsets of vertices 
(nodes activated at the next time step) 
 
 

 Defined for multiple iteration below: 
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Consider the social 
network to the left. 
 
Suppose we have a 
majority threshold. 
 
For all vi  V, q(vi)=0.5 
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Initially individuals h 
and j are activated. 
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Initially villages h and j 
are activated. 
 
This leads to g and i 
also becoming 
activated in the next 
time step. 
 
But no others. 
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 Clearly, the tipping process must complete in less than 
|V| time steps 

 For j > |V|, we define the following: 
 
 
 
 

 The MIN-SEED problem is to find a set V’ V of 
minimal size that causes                        . 
 
 

 Previously, this problem has been shown to be 
NP-Complete. (Dreyer & Roberts, ‘09) 
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Our new pruning heuristic guarantees that the 
result will lead to adoption of the behavior by the 
entire population, but does not guarantee 
minimal size. 

 
However, experimentally, we find that the set 
returned is often several orders of magnitude 
smaller than the population. 
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 THEOREM:  Given set V’ returned by 

TIP_DECOMP, Gq(V’)=V. 
 

 PROPOSITION: On a directed network of N 
nodes and M edges, TIP_DECOMP runs in  
O(M lg N) time. 
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Let us consider the 
following network. 
 
First, our algorithm 
identifies the threshold 
for each node to be 
tipped.  If we assume at 
least 50% of each 
neighbor is required, 
then this number is 
shown in red. 
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Next, the distance to 
being tipped is 
computed.  This is 
defined as the node’s 
current degree minus 
the threshold. 
 
It is shown for each 
node in blue 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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 TIP_DECOMP was implemented in about 200 
lines of Python code using the NetworkX 
library. 
 

 Experiments performed on 31 real-world social 
networks 
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BlogCatalog1 88,784 4,186,390 23.58 ASU SocMedia

BlogCatalog2 97,884 3,337,294 17.05 ASU SocMedia

BlogCatalog3 10,312 667,966 32.39 ASU SocMedia

Buzznet 101,163 5,526,132 27.31 ASU SocMedia

Douban 154,908 654,324 2.11 ASU SocMedia

Flickr 80,513 11,799,764 73.28 ASU SocMedia

Flixster 2,523,386 15,837,602 3.14 ASU SocMedia

FourSquare 639,014 6,429,972 5.03 ASU SocMedia

Frienster 5,689,498 28,135,774 2.47 ASU SocMedia

Last.Fm 1,191,812 9,038,680 3.79 ASU SocMedia

LiveJournal 2,238,731 25,632,368 5.72 ASU SocMedia

Livemocha 104,103 4,386,166 21.07 ASU SocMedia

WikiTalk 2,394,385 9,319,130 1.95 SNAP SocMedia

CATEGORY A
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Delicious 536,408 2,732,272 2.55 ASU SocMedia

Digg 771,231 11,814,826 7.66 ASU SocMedia

EU E-Mail 265,214 728,962 1.37 SNAP E-Mail

Hyves 1,402,673 5,554,838 1.98 ASU SocMedia

Yelp 487,401 4,686,962 4.81 ASU SocMedia

CATEGORY B
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CA-AstroPh 18,772 396,100 10.55 SNAP Collab

CA-CondMat03 30,460 240,058 3.94 UMICH Collab

CA-CondMat03a 23,133 186,878 4.04 SNAP Collab

CA-CondMat05 39,577 351,384 4.44 UMICH Collab

CA-CondMat99 16,264 95,188 2.93 UMICH Collab

CA-GrQc 5,242 28,968 2.76 SNAP Collab

CA-HepPh 12,008 236,978 9.87 SNAP Collab

CA-HepTh 9,877 51,946 2.63 SNAP Collab

CA-NetSci 1,463 5,486 1.87 UMICH Collab

Enron E-Mail 36,692 367,662 5.01 SNAP E-Mail

URV E-Mail 1,133 10,902 4.81 URV E-Mail

YouTube1 13,723 153,530 5.59 ASU SocMedia

YouTube2 1,138,499 5,980,886 2.63 ASU SocMedia

CATEGORY C



 Many social networks had very mall seed sets – 
many under 1% of the population, even for 
majority thresholds. 
 

 The algorithm runs very quickly, able to process 
millions of nodes and edges in minutes. 
 

 TIP_DECOMP tended to find small seed sets in 
networks with either a low average clustering 
coefficient and/or low Louvain modularity. 
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 TIP_DECOMP is a simple, but powerful algorithm 
for finding seed sets in a social network under the 
tipping model. 
 

 Experimental evaluation shows that it can easily 
scale to networks with millions of nodes and 
edges. 
 

 TIP_DECOMP tends to find smaller seed sets in 
networks with less community structure.  
Fortunately, many online social networks seem to 
exhibit this quality. 
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