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Motivation

• Goal:  minimize the overall risk associated with the 
contemplation of an attack by a terrorist organization

• Accepted methodology for measuring risk

Risk  Threat * Vulnerability * Consequence

s.t. Threat  Capability * Intent

 “Risk = CIVC”

• Issue:  coordination of countermeasure and consequence-
related resources
– Government and private agency involvement 

– Levels of government:  national, state, local, tribal, territorial

– Lack of central coordinating agency with authority to direct actions

• Our problem:  develop effective model to coordinate resources 
to minimize overall risk, along with efficient algorithm(s) to solve 
it to global optimality
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Risk Determination

• Example capabilities, targets, and outcomes

• Example of a single terrorist organization-to-outcome risk calculation

• Model requirements
– Account for all capabilities, targets, outcomes, and consequences within a 

single framework

– Relate resource application to reduction of probabilities and consequences
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Capability Types (i) Target Types (n) Attack Outcomes (j)

Assassination Military base Serious injuries

Dirty bombs Political leaders Fatalities

Kidnapping High population density areas Property damages

Chemical attack Water treatment plant Water supply contamination

Biological agents Nuclear power plant Infectious disease propagation

Nuclear weapons Economic center Economic Impact

Capability Intent Vulnerability
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Modeling Framework

• Nested event tree to account for all capabilities, targets, 

outcomes, and consequences within a single framework

– A capability may affect more than one target

– An attack on a target may result in more than one outcome
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Textual Model Formulation

Minimize: Overall Risk

Subject to: Resource availabilities

Overall budget

Probability-resource relationships

Consequence-resource relationships

Any additional bounds on probabilities

Nonnegative resource application

*Results in a nonconvex NLP

(Often 

policy-driven)

(Diminishing 

marginal returns 
desired)
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Probability-Resource and 

Consequence-Resource Relationships

• Logit model for countermeasure resource to probability 

relationships

– Diminishing marginal returns below 

– Given limited resources, all probabilities are finitely bounded

• Exponential model for consequence management 

resource to consequence relationships

– Resource vector y applied to consequence vector C
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Reformulation of Complicating Constraints 

to Problem NETO()

1. Reformulate nonlinearities as logarithmic functions

2. Transform the costs

3. Convexify the objective function

4. Take the natural logarithm of both sides and equivalently state

5. Define the bounded hyperrectangle () on probabilities
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Algorithms Developed

Relaxation/approximation to
logarithmic functions in

Relaxation or 
Approximations 

Result in:(q1,p)- and (q2,p)-space (q1,q2)-space

• Polyhedral envelope 
construction on bounded 
logarithmic functions 

A1 A1S Convex NLPs

• Polyhedral envelope 
construction on bounded 
logarithmic functions

• Relaxation of the objective 
function to linear supports

A2 A2S LPs

• Relaxation of the objective 
function to linear supports

• Piecewise linear inner 
approximations to 
logarithmic functions

A3 A3S
MIPs with convex 
feasible regions
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Algorithms A1, A1S, A2, A2S: 

Polyhedral Envelope Construction

• Construct a bounding, polyhedral envelope based on the 

hyperrectangle with upper bounding supports
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Algorithms A2, A2S, A3, A3S:

Linear Bounding of NETO() Objective Function 

For Algorithms A2, A2S, A3 and A3S

1. Rewrite the objective function as

2. Relax NETO() by 

replacing the 

exponential relationship 

with equispaced, 

lower bounding 

tangential supports
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Properties of A1, A1S, A2, A2S Relaxations

1. The optimal objective function value for a relaxation is a lower 

bound on Problem NETO().

2. Given optimal resource allocations for a relaxation, can recover 

NETO() feasible solution with probabilities and consequences 

computed via the logit and exponential models.

3. If an optimal solution to the relaxation satisfies

then it is also optimal to NETO().

4. Given an optimal solution to a relaxation, if each of the p-variables 

equals one of its bounds on the hyperrectangle , then Property #3 

applies.
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Algorithmic A1, A1S, A2, A2S:

Relaxation-based Branch and Bound

Initialization
1.Solve relaxation to determine LB0

2.Calculate corresponding NETO solution (0)  with objective value UB0, setting it as incumbent 
solution with *=UB0

3.Terminate if LB0  *(1-) Otherwise, determine (L, kKL) via the branching rule

Node Selection and Branching
1.Select node a for branching based on the least lower bound of active nodes
2.Create two subnodes, bifurcating the hyperplane a for each according to the partitioning rule 

Bounding Step For nodes h=a+1, a+2, do the following:
1.Solve relaxation based on sub-hyperplane h to determine LBh

2.If LBh < *(1-) , determine (Lh, kKLh) via the branching rule.  Compute corresponding h and UBh.
3.If UBh < *, then update incumbent solution

Fathoming Step: Fathom nodes for which If LBa  *(1-)

Are all nodes 
fathomed?

Accept incumbent 
solution as -optimal

NY
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Branch-and-Bound Variants and Enhancements

• Branching Rules:  select the variable index for branching at node a by 

the maximum of a measure of deviation from the relaxed logarithmic 

constraint, noting that :

1. Absolute deviation (ordinal axis)

2. Relative deviation (ordinal axis)

3. Relative deviation (abscissal axis)

• Partitioning Rules:  on branching, split the interval at:

1. Incumbent value, 

2. Arithmetic mean

3. Geometric mean

• Range reduction at each node, for a maximum of 100 nodes, so long 

as the parent node exhibited improvement in at least one p-variable 

bound by at least 0.1%
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Fundamental Algorithmic Properties

• Proposition (Algorithm A1).  The proposed branch-and-bound algorithm A1, 
with =0, either terminates finitely with the incumbent solution for the convex 
relaxation being optimal to Problem NETO, or else an infinite sequence of 
stages is generated such that, along any infinite branch of the branch-and-
bound tree, any accumulation point of the (x,y,p,C)-variable part of the convex 
programming relaxation solutions generated for the corresponding node 
subproblems solves Problem NETO.

• Corollary (Algorithm A1). For >0, the proposed algorithm A1 applied to the 
convex relaxation will converge to an -optimal solution for Problem NETO 
within a finite number of iterations.

• Proposition (Algorithm A1S).  The algorithm is not impacted by the number of 
upper bounding, tangential supports in (q1,q2)-space, as the optimal solution to 
the relaxation will lie on the lower bounding support.

• Proposition (Algorithm A2). For >0 and a sufficient  number of linear 
bounding supports for the objective function in the linear relaxation to ensure its 
induced error is less than , then the proposed algorithm A2 applied to the linear 
relaxation will converge to an -optimal solution for Problem NETO within a finite 
number of iterations. 
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Approximations for A3 and A3S

• Piecewise inner linear approximations, with objective linearly 

bounded as per Algorithm A2 and A2S

1q

2q

uq2

lq2

uq1

lq1

 
 

  ln
1ln

,ln

2

1 




pq

pq





u

l

ul

Algorithm A3S
(q1,q2)-
space

Proposition (Algorithm A3).  Can bound the 

maximum error based on the equidistant width 

between breakpoints on the ordinal axis.

Proposition (Algorithm A3S).  Strictly a 

relaxation to NETO(), thereby providing a lower

bound (and an optimality gap).

 
 

 11ln
1ln

ln
2

2

1 q
eq

pq

pq









Algorithm A3
(q1,p)- and
(q2,p)-space

16



Testing Environment and 

Initial Computational Results

• Environment 

– Algorithm A1/A1S using C++ and SNOPT 7.2

– Algorithm A2/A2S, A3/A3S using C++ and ILOG CPLEX 11.1

– Compared to BARON 8.1.5 using CPLEX for LP subproblems and 

SNOPT for NLP subproblems

– Run on Intel 2.40 GHz Xeon Processor and 1.5 GB of RAM

– All tested over ten randomly generated instances

• Results that Prescribe Parametric Settings

– Apply 4 upper bounding tangential supports in (p,q1)- and (p,q2)-space 

for Algorithms A1 and A2

– Employ 32 lower bounding tangential supports for the objective function 

in Algorithms A2, A2S, A3, A3S

– Branching rule: relative deviation (ordinal axis) from the logarithmic 

identity 

– Partitioning rule: arithmetic mean

– Invoke range reduction 17



Summary of Computational 

Comparisons with BARON

• Termination criteria: 

=0.01 1001 nodes for A1, A1S, A2, A2S 1800 CPU seconds

• Commercial Solver Limitations

– Average performances only reported for Instances 1-8,10, as BARON terminated 

at 1884.3 seconds on Instance 9 without identifying a feasible solution.

• Conclusions

– All of the proposed algorithms tested significantly outperformed BARON with 

respect to optimality gap attained and computational effort.

– Only Algorithm A3S attained the specified optimality gap for all instances

– Algorithm A3S versus BARON

• 3.95% reduction in average optimality gaps attained

• 96.94% reduction in computational effort 

Strategy A1 A1S A2 A2S A3 A3S BARON

-optimal  (out of 10) 9 9 8 9 9 10 4

Relative gap (%):
Nodes explored:
Effort (CPU sec.):

0.62
2.78

188.87

0.62
2.78

196.93

0.71
224.33
221.82

0.70
114.56
121.00

0.69
--

173.38

0.35
--

35.00

4.29
70.78

1144.94
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Enhancements to Algorithm A3S

• Increasing the number of segments in the piecewise linear 

approximation in (q1,q2)-space improves the optimality gap attained, 

though at a faster than linear increase in computational times for the 

six largest test instances

– Decreasing segments did not attain -optimal solutions for all instances

– Increasing segments ultimately exceeded implementation time constraints

• Increasing the number of linear supports to the objective function 

improves the optimality gap attained, with computational effort 

increasing less than five-fold on all instances, for an eightfold 

increase in the number of supports

Number of segments 2 4 8 16

Relative gap (%):
Effort (CPU sec.):

0.58
22.786

0.37
35.009

0.32
163.39

*
*

Number of supports 32 64 128 256

Relative gap (%):
Effort (CPU sec.):

0.37
35.009

0.14
52.339

0.088
81.900

0.072
157.33
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Conclusions and Recommendations

• Nested event tree optimization modeling framework 
comprehensively addresses capability, intent, vulnerability, 
and consequence issues in combating terrorism.
– Useful for allocation decisions and scenario analysis

• Alternative reformulations along with specialized global 
optimization algorithms to solve the resulting challenging 
nonconvex programming problems are effective and efficient, 
compared to BARON commercial software.

• Algorithmic performance can be further improved with 
alteration of certain parameters

• Model can be further modified to: 
– Represent multiple terrorist organizations

– Account for partially aligned interests between nations applying 
resources

– Consider alternative probability-resource relationships
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