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Motivation from Applied Problems

• Network interdictions
– During a military deployment by one author to Iraq, US and Iraqi 

Security Forces frequently conducted missions to physically 
interdict the following net flows:

1. Import/transport of EFP and IED material to assembly points

2. Transport of completed EFPs and IEDs to distribution point(s)

3. Transport of sectarian kidnapping victims, Feb-Nov 2006

• Synergy
– US and Iraqi forces had different capabilities that manifest 

superadditive synergy when utilized in local, combined 
operations

• Other applications
– Joint, interagency, intergovernmental, and multinational 

interdiction operations involving resources with some disparate 
capabilities, deployed to work in concert

2/13



Purpose and Scope of Research

• Examine and improve network resource allocation 

models via a consideration of microscopic (i.e., ‘local’) 

interactions of resources

– Network interdiction problem with multiple resources (NIP-MR) 

and synergy, considering (1) linear, (2) concave nonlinear, and 

(3) general nonlinear superadditive synergy relationships

• Develop effective and efficient algorithms to solve the 

resulting math programming formulations
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NIP-MR with Linear Synergy - Model

• Objective: minimize the maximum flow

• Assumptions
– Known source and terminus nodes

– Partial arc interdiction

– Resource types (kK) constrained by availability (Rk)

• Model:  linear minimax formulation
– pijk: the percentage interdiction of the maximum capacity for flow (uij) 

on arc (i,j) by resource k based on the cost of complete interdiction 
(cijk)

– Given values for pijk,  (i,j)A, kK, the additional percentage 
interdiction due to synergy takes the form

with linear synergy factor  f(0,1]

  KkAjipf ijkij  ,,,
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NIP-MR with Linear Synergy – Solution Procedure

• Direct solution
– Dualize the inner maximization problem

– Restrict certain dual variables to binary values

MIP formulation readily solvable via CPLEX

• Alternative solution procedure
– Reduction by |A| decision variables via Fourier-Motzkin elimination

– Considered 2-resource problem with f=0.5 for solution comparison

• Set of 15 test problem sizes, with 100 instances each

• 43.42% reduction in computational effort

• General impact of synergy considered
– Average of 5.10% reduction in optimal objective values based on a 

0.42% increase in the amount of flow disrupted
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NIP-MR with Concave Nonlinear Synergy: Model

• Limiting function for synergy, with proportionality factor g

Synergy relationship used for K=2, g=0.2

• Resulting MINLP formulation has convex relaxation
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NIP-MR with Concave Nonlinear Synergy: 

Algorithm and Heuristics Tested

Algorithm:  SBB commercial software with =0.01%

1. Inner linearization heuristic
– Piecewise approximation to nonlinear synergy constraints

• Employ {2,3,4} segments

• Equidistant breakpoints and breakpoints located so as to minimize the reduction in 
the feasible region

– Solve the restricted problem, fix resulting resource allocations and interdiction 
percentages, determine actual induced synergy on arcs, and then determine 
the corresponding maximum flow

2. SBB commercial software with {0.1%, 1%}
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NIP-MR with Concave Nonlinear Synergy:  

Comparative Testing Results
• Testing conditions

– 30 instances each on 15 problems sizes, ranging in size from a 5x5 to a 50x50 intermediary network of nodes

– Time limit of 1800 CPU seconds

• Results
– SBB terminated early on the three largest problem sizes, with relative performances as follows:

1. Inner linearization heuristic effective on small problems, superior on large problems
– Strategy with 4 equidistant segments reduces computational effort by a factor of 18; solutions within 3% of 

optimality on Problems 1-12

2. Use of ‘optimized’ segment breakpoints not necessarily improvement over equidistant 
breakpoints, at a 17.03% increase in computational effort

3. SBB with ={1%,0.1%} were the most effective technique(s), but terminated early for Problems 
13-15 on 82.22% and 95.55% of instances, respectively

Additional testing showed BARON Node 0 solutions no more effective than that for SBB
– 0.34% solution gaps and 1755.85% relative times on Problems 1-11

– Unable to attain a feasible solution on Problems 12-15

Problems Strategy
Equidistant Segments Optimized Segments SBB

2 3 4 2 3 4 =1% =0.1%

1-12
Soln. gap (%)
Rel. time (%)

2.17
7.59

2.07
10.06

1.88
12.39

2.16
8.36

1.91
11.05

1.95
14.06

0.02
57.83

0.001
66.79

13-15
Soln. gap (%)
Rel. time (%)

-39.03
16.94

-38.72
22.47

-38.71
28.03

-38.80
19.35

-38.71
26.44

-38.79
34.29

-39.52
94.24

-39.83
100.04
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NIP-MR with General Nonlinear Synergy: Model

• Limiting function for synergy, with proportionality factor g’

Synergy relationship used for K=2, g’=1

• Resulting MINLP formulation has nonconvex relaxation
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NIP-MR with General Nonlinear Synergy: 

Algorithm and Heuristics Tested

Algorithm:  Commercial software BARON

1. BARON Node 0 solution

2. Commercial software SBB

3. Inner linearization

4. Piecewise linear approximation - {2,3,4} equidistant segment breakpoints

5. Outer approximation - tangential chord over concave section and {2,3,4} 

equidistant, tangential upper bounding supports
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NIP-MR with General Nonlinear Synergy: 

Comparative Testing Results

• Testing conditions
– 30 instances each on 15 problems sizes, ranging in size from a 5x5 to a 50x50 

intermediary network of nodes

– Time limit of 1800 CPU seconds

• Results
– Reported are the average % optimality gaps from the best reported solution for each 

instance

1. Commercial solvers failed for large problem sizes 

2. The outer linearization heuristic with 4 tangential supports was the most effective
• Worst solution gap performance of 2.539% was superlative among techniques

• Reduction in computational effort by a factor of 461 over BARON for Problems 1—9

– Additional testing with H4 segments constructed to mirror H5 (1 segment over the 
convex region and {2,3,4} over the concave region) did not improve performance

Problems Alg H1 H2 H3
H4 (# segments) H5 (# tngt spts)

2 3 4 2 3 4

1-9 0.46 0.47 0.65 0.95 1.20 1.21 1.15 0.28 0.27 0.25

1-12 – – 0.62 0.89 1.13 1.13 1.08 0.23 0.22 0.20

1-15 – – 499.77 0.85 1.08 1.09 1.04 0.19 0.18 0.16
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Conclusions and Recommendations

• Results

– Novel models that account for synergistic resource relationships

– Effective solution methods that outperform leading commercial 

software SBB and/or BARON

• Future Research 

– Sociological research on the forms of superadditive synergy 

between groups/agencies

– Computationally study on the effects of three or more resource 

types
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