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Problem Statement

Given:
« A set of maritime vessels, v eV, for patrolling a coastal seaspace

* Aregion of seaspace within 200 nmi of the a coastline
— Adiscretization of the seaspace into areas, jeN
— A set of historical demands for each area

A number of areas n, to be assigned to each vessel

Find:
« A model that assigns n,areas to a sector for each vessel veV such
that
1. The areas form contiguous sectors

2.  We minimize a convex combination of the:

. Maximum deviation of vessel’'s assigned historical demand from its
proportionally expected demand

. Maximum time from a vessel’s home port to the farthest area in its sector
. Maximum time-based span of the vessels’ sectors

(Some related* problems: police sector design, sales territory design, school districting,
political districting, snow removal sector design)



What does this problem look like?

The Seaspace
(Straits of Florida — 7520 nmi?) The Vessels

Fort Pierce, FL 15 1
Dania Beach, FL 15 1
Miami, FL 15 1

Key West, FL 15 1
Fort Myers Beach, FL 15 1
San Juan, PR 15 1
Miami, FL 18 2

San Juan, PR 18 2
Key West, FL 18 2
Miami, FL 21 3

* Determined via AHP

» Discretize the seaspace for assignment

(Saaty, 1990; Yousefi and Donohue, 2004) 3



Our modeling approach:
Construct a spanning arborescence

Create artificial nodes: 0, =root node for each vessel, v eV
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Decision variables:
s; =1if area j assigned tovesselv,00/w,V jeN,veV

r/ =1if arc (i,j) is in the arborescence constructed for vesselv,00/w, V (i, j)e AveV .



Programming Formulation
to Construct a Spanning Arborescence

min  (objective function)

s.t.

Z S‘j' =n,, VveV, Assign n, areas to vessel v
jeN
Zs‘j’ =1, V jeN, Assign each area to one-and-only-one vessel
veV
Vv

Z lo,i = 1, VveV, Connect the root node to only one area in its tree
jeN

Z = S\j', V JeN,veV, Indegree=1if areais assigned to vessel v
ies” (j)ofo, }

r + rI < S \v/ (i, j)e A, veV, Arcrequires both nodes to be assigned to v

(enforce contiguity), VveV,  The tricky part!
(objective function related calculations), workload, span, distance...

sie{0l], VjeN,veV, ‘JL
Binary restrictions
I’i}' e {0,1}, \v4 (i, J)e A" veV.

So... how shall we enforce contiguity...



Contiguity Constraint Version #1
Subtour Elimination Constraint

Zu— ZS -s,, VkeS,ScN, 2<‘S‘<n VeV

eA(S) jes
\ Y J \ Y J\ Y J
The number The number of areas within For every subset of
: , , — 1 ) For every
of arcsin a S a subset in a vessel’s tree areas that could be in vessel
subset (if at least one area assgn’d to vessel) a vessel’s tree
AR
WV =

(Lucena and Resende, 2004)



Contiguity Constraint Version #2 (a & b)
STP-RLT

New decision variable:

v

u; = no.of arcs in directed pathfrom root
nodeo, tonode |,V jeN,veV

Constraints:

L
0o =

u 0, Y VeV, Fixthearccount for the root nodes of the arborescence

Vv

\'

r) = Uiv +1) rUV, \v4 (I, j)e AV, Vv EV, Increment count based on constructed arc

Uil
1£uJY§nV, V J € N,veV. Boundthe arccount

Proposition. Transformation via Reformulation Linearization Technique
(RLT) yields two alternative, equivalent linear representations.

(Haouari et al., 2010; Miller et al. 1960; Sherali and Adams, 1990 and 1994; Sherali and Driscoll, 2002) 7



Contiguity Constraint Version #3
Multicommodity Flow

New decision variable:
z//i‘fV = flow onarc (i, J) of commodity v that reaches

areak,V (i,j))e A", ke N,veV
Constraints:
ZWQ/J- = Sk VkeN , V EV, Outflow of one unit from root node v

v !
jeN

Zwlk — S V ke N,VveV, Inflow of one unit into node k
ics™ (k)u{o, )

ij =0, V(k,J)e A veV, outflowfromnode kis 0
Zl// ZQ//[(.V =0, VkeN J e N \{k} V Conservation of flow
! N ! )

'at all other nodes
ied™ (j)u icd" ()

- - v Flow can only be nonzero if arc
0< WIJ - r v (I’ J) €A : kKeN v eV. (i,j) is in the arborescence for v

(Haouariet al., 2010)



Modeling Enhancements

« Symmetry Defeating Constraints
1A Smallest indexed assigned node as the virtual root node

s'<{l-r' )} VijeN,ieN:i<j,veV

1B Weaker but more compact version of 1A

s’ <(t-r! )min{n, [ieN:i<jl}, VjeN,vev

IeN:i<]

2 Defeat the symmetry among the like vessels with same portage

ero\\lllj S[Z jro\\lxzj]_l’ VV1<V2 EVW’W:]'!"'!W

jeN jeN
* Objective Function Perturbation
— Non-preemptively weight the symmetry defeating constraint(s)

(Ghoniem and Sherali, 2011; Sherali and Soyster, 1983)



Comparative Testing

4 alternative formulations

3 alternatives for solution enhancement technigues
— Direct CPLEX application (i.e., ‘none’)

— CPLEX symmetry breaking technique

— Non-hierarchical objective perturbation

6 combinations of 3 symmetry defeating constraints
— 2 methods regarding the area node connected to root node
— 1 method regarding like-vessel symmetry

Implementation Environment

— C++invoking CPLEX 12.1
— Intel Model T7100 Processor with 4GB RAM



Comparative Testing Results (1 of 3)

Modeling Strategies (6 hrs CPU time, €=5%)

Strategy Feasible Solution | e-optimal Solution | Best Solution

Subtour Elimination 100% 82.4% 5.9%
e STP-RLT #1 100% 82.4% 47.1%
® STP-RLT #2 100% 82.4% 41.1%
Multicommodity Flow* 31.3% 6.0% 5.9%

MC Flow reformulations only tractable when:
— Invoking symmetry defeating constraint(s)
— Non-preemptively perturbing the objective function

Objective function perturbation (6 hrs CPU time, ¢=5%)

Techniaue Feasible g-optimal Best
9 Solution Solution Solution

None; CPLEX default settings 75% 70.8% 10%
® Non-preemptive 100% 45.0% 60%
CPLEX symmetry breaking option 75% 70.8% 30%

11



Comparative Testing Results (2 of 3)

«  Symmetry Defeating Constraints (6 hrs CPU time, £¢=5%)

Modeling Feasible Solution | g-optimal Solution | Best Solution

Root Node #1 83.3%* 83.3% 8.3%
® Root Node #2 83.3%* 58.3% 33.3%

® |ike Vessels 83.3%* 33.3% 33.3%
Root Node #1 o % o .
2 Like Vessels 83.3% 75.0% >> 8.3%
Root Node #2 o % o .
& Like Vessels S L2 e

* MC Flow reformulations only tractable when non-preemptively perturbing the objective
function

« Same performance trends confirmed over variants of the instance based on
altering

— The relative optimality gap ¢
— Time computational time limit
— The vessel set (higher demand load per vessel)

— The historical demand set (as distributed over the seaspace) -



Comparative Testing Results (3 of 3)

* Acloser look at the top four combinations (24 hrs CPU time, e=1%)

Contiguity Symmetry Obj. Pert | CPU Time Assured
Modeling Defeat Mech. (hrs) Opt Gap

STP-RLT #1
STP-RLT #2
STP-RLT #2

Subtour Elimin.

Root Node #2
Root Node #2

Root Node #2
& Like Vessels

None

Non-pre. 24.0 13.14%*
Non-pre. 24.0 12.28%*
Non-pre. 24.0 13.98%
n/a 8.29 1%

* Within 0.0196% of optimal, based on assured optimality gap of final solution

« Same performance trends confirmed over variants of the instance based on

altering

— The vessel set (higher demand load per vessel)
— The historical demand set (as distributed over the seaspace)

13



Conclusions & Future Research

Conclusions

« STP-RLT reformulations for implementation to obtain a
near-optimal solution

« STP-RLT reformulations, combined with symmetry
defeat constraints and objective perturbation, are
promising as heuristics

Future Research

« Larger instances (and/or tighter discretizations)
 Alternative methods to discretize the seaspace

« Modification of AHP vessel ratings to defeat symmetry
« Allow for alternative portage of vessels




Questions



