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Abstract Currently light infantry soldiers do not have access to many of their 

cyber resources the moment they depart the forward operating base (FOB).  

Commanders with recent combat experience have reported on the dearth of com-

puting abilities once a mission is underway [14].  To address this, our group seeks 

to develop a tactical, mobile cloud implemented on a swarm of semi-autonomous 

robots.  We provide two contributions with this work.  First, provide a formal def-

inition of the problem followed by a description of our approach to vulnerable 

state identification based on pattern recognition techniques.  Second, we present 

an awareness definition as it pertains to our domain.  

 

1. Problem statement and formalization 

This is in essence a coverage problem.  A robot is responsible for providing com-

munication coverage to the set of clients in its area.  Additionally, each robot must 

maintain communications with at least one other robot to ensure that the global 

network remains connected, see Figure 1. 

First, we consider the elements of our domain.  Let R={r1, …, rN} be the set of 

robots and C={c1, …, cM} the set of clients. The set C combined with their spatial 

location is a configuration.  We denote  as a robot’s unique communications 

range, which could be adjusted based on environmental demands. Next, E={e1, …, 

eN} is the set of communication links between the robots and Gc=(R, E) is the cor-

responding communication graph.  Let Nc, be the set of node coordinates. Two ro-

bots ri and rj are separated by a distance of dij and are connected if their distance is 

less than . In later sections of this work, dij will denote the distance between two 

robots, two clients, or one robot and one client. We assume that (i) indirect links 
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are possible through intermediate nodes acting as relays, and (ii) at least one of the 

nodes is connected to an external communication node such as a satellite or UAV.  

In other words, we assume that there exists a communication resource capability 

within the network to ensure that clients’ messages are handled properly through 

the mobile cloud via an external wide range communication relay. 

The environment is represented by a navigation graph, where each node repre-

sents a possible position for the robots or clients and each edge between nodes is a 

possible path [15]. 

 
Fig. 1 A tactical mobile cloud for commu-

nication coverage.  Black circles are robot 

nodes ri and light blue circle represent their 

coverage.   is the communication range 

and dij is the distance between robot ri and 

rj. 

 
 

Our formal objective is to provide continuous communications coverage for all 

clients while simultaneously maintaining sufficient connectivity within the net-

work of robots.  Accordingly, our research hypothesis is the following: an early 

identification of network vulnerabilities will prevent catastrophic events. 

1.1. Coverage and connectivity 

Central to our work is a precise definition of coverage.  Clients need to have cov-

erage in the mobile communications architecture in order to access the tactical 

cloud.  Similarly, robots need to provide global coverage to ensure all clients are 

fully connected to the cloud.  For simplicity, we provide a binary definition of 

coverage:  covered or not covered.  However, this definition can be easily extend-

ed to other models, such as probabilistic ones.  We now consider a robot ri with a 

communications range  and a client cj separated by a distance dij.  

We define coverage provided by robot ri to client cj as 
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The global coverage for the network of robots at a given client cj is 





N

i
j

c
i

rcovjcRcov

1

),(),(    (2) 

which is the number of robots that cover client cj. In (3) we describe the inverse, 

i.e., a definition of set of clients covered by robot ri. 
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Given the coverage definitions from the perspectives of both the client and the ro-

bot, equation (4) describes the global coverage of the network relative to the set of 

clients. 
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The other notion crucial to our work is that of network connectivity. We say 

that two robots are connected if they are in their respective range of communica-

tion. We define then: 

otherwise0                 
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   (5) 

A value of 1 means then that a link exists between the two robots.  

We say then that the global network connectivity holds if for each pair of ro-

bots (ri,rj) there exists a path linking ri to rj: 
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Alternative definitions could easily replace these binary definitions and define 

different connectedness indices such as the algebraic connectivity [6]. Indeed, al-

lowing real values for the connectivity would increase our flexibility in the defini-

tion of vulnerable states and lead to different cost functions (see Section 3.3).  

This kind of approach would lead to a multi-class problem rather a binary one and 

will be considered in future work. 

1.2. Vulnerability 

The vulnerability V of a system S can be understood as a mapping, VS: T↦C, be-

tween an initiating threat T, whether intended or not, and a resulting consequence 

C characterized by a degree of loss [16] and related to system inoperability or state 

unreachability. Depending on how the threat uncertainty is characterized, the cost 

function may be aggregated, giving rise to an expected cost, or equivalently to a 

risk function [1].  Vulnerability thus corresponds to the susceptibility of a system 

or to the manifestation of the inherent state of a system, which can be severely af-

fected when threatened [7].  Following the classification proposed by Klibi et al. 

[10], uncertain initiating events such as threats can be classified as either random,  

hazardous, or deeply uncertain events. Depending on the event model adopted, 

various approaches can be used to deal with uncertainties arising in a decision-

making problem.  For instance, the approach advocated by Brown et al. [2], which 

is based on worst-case bi-level or simplified tri-level programming, is to be con-

trasted with risk analysis involving probability and event trees [5], [1].  Indeed, the 

fault trees used to locate the single point of failure or the minimal cut set4 that 
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maximizes the probability of disruption relies on the probabilistic modeling of 

events such as random failures [22]. 

In this paper, a mobile network vulnerable state can be defined as an instance 

of the network’s state that may evolve in time until it affects the network’s func-

tions and the completion of its goals.  Endogenous and exogenous threats to the 

network include the robots’ inability to precede as intended, possibly due to hard-

ware-software failures or malevolent acts, electronic warfare, obstacles, or unex-

pected client moves that cause some robots to move beyond their neighbors’ 

communication range.  Consider a sample set of possible clients configurations C0 

and a corresponding robot deployment represented by graph G0=(R, E0).  Include 

also the set Nc,0 of nodes’ coordinates at time instant t0 (encoded as attributes of 

the nodes).  Various experiments can be conducted by triggering the loss of a ro-

bot or a subset of robots or by repositioning clients.  The occurrence at t1 of this 

triggering event may give rise to an adaptive robot deployment, whereby commu-

nication links can be either permanently lost or re-established, depending on the 

relative distance to neighboring robots. This hybrid dynamical system is character-

ized by switching time instants {t1, t2, …, tm}, where ti+1>ti.  At ti, the edge set 

jumps from Ei to Ei+1. An edge (i,j) is lost whenever the distance between robots ri 

and rj is greater than the communication range.  It is assumed that the node set R 

remains invariant whether or not a robot is able to operate. The final time instant 

tm is defined by the absence of any future triggering events such as a robot failure 

or a client move. 

As further explained in Section 2.3, a component of the network (i.e., edge, 

node, or sub-network) is classified as vulnerable when a graph-connectedness-

related cost associated to this component is above a prescribed threshold.  

1.3. Vulnerability awareness 

The notion of awareness considered in this work is derived from the concept of 

limited system resources [9],[8].  Intuitively, awareness is an epistemic state, close 

to knowledge, referring to a limited view and a limited capacity of the agents to 

reach a perfect state of knowledge, the one that would be reached by perfect logi-

cally omniscient reasoners.  When defining situational awareness, one must con-

sider the concepts of attention, vigilance, intelligence and stress within the context 

of resource-bounded agents.  Therefore, we adopt the following definition of 

awareness: “an agent is aware of a proposition y if it can compute the truth value 

of y before time t”.  The vulnerability awareness of one robot ri 
5 is thus directly 

linked to its ability to come with an answer the question y =“Am I vulnerable?” by 

means of an algorithm (to be detailed in the upcoming section) given its limited 

resources (memory, computation, move, etc).  Particularly challenging is the fea-

ture selection process as (1) the more features, the higher the computation and 

memory costs; and (2) some feature may require a complete map of the swarm in-

volving higher memory needs while other may be evaluated locally. 
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2. A pattern recognition approach to vulnerability 

assessment 

2.1. Principle 

In [13], the authors proposed a toolbox with the goal of detecting and predicting 

the vulnerabilities in complex networks. These principles rely on pattern recogni-

tion techniques that leverage structural, dynamical, and functional features select-

ed to sensitize the classifier to potential vulnerabilities in abnormal situations.  

Such an approach is expected to yield fast vulnerability prediction when compared 

with a simulation using a first-principle-based model of the network.  The problem 

of complex systems vulnerability assessment has already been interpreted as a 

classificatory problem, which includes such applications as disease surveillance 

systems [20] and the crisis recognition [11].  Our approach integrates pattern 

recognition techniques applied to a time series and a network’s structural and dy-

namical properties. 

To determine vulnerability, we reason over the network using pattern recogni-

tion.  With it, we design by training a mapping  such that: 
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where x is a representation of an element of G (e.g. a node, link or sub-graph) and 

ŷ is an estimate of the detrimental effect of that element on the network, either 1 

if vulnerable or 0 otherwise.  Note that we use the term “vulnerable” for qualify-

ing a node although this is extended to the network.  Typically, x is a vector of k 

network features identified as relevant by feature selection pre-processing.  As 

mentioned in Section 1.3, one of the crucial tasks consists in identifying the set of 

candidate features for the problem. 

 

 

Fig. 2: Training of the network vulnerability classifier.  F aims to yield a classifier   

that minimizes the error estimation given the training data set z=(x n,y n). 

 

The training data set z
n
=(x

n
,y

n
) consists of n instances of R, that is a set of n 

samples x
n
 of k features together with a label y (see Table 1).  z

n
 feeds a classifier 

generation mechanism F, as shown in Fig. 2, which seeks a classifier that mini-

mizes the error estimate between the set of estimated class labels and their corre-

sponding ground truth.  
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2.2. Features 

In [1], the authors proposed four network feature categories.  The first pertains to 

the structural properties of a labeled, weighted graph.  These include centrality, 

similarity connectivity, shortest path metrics, clustering coefficient, spectral prop-

erties, vertex coreness, graph density, average nearest neighbor degree, among 

others [3].  The second category considers flow dynamic changes by exploiting in-

formation on signals and systems such as Fourier transform, spectral monitoring 

[12], bifurcation analysis [4] and efficiency measures [17].  Indicators pertaining 

to complex system science and statistical physics described the third category of 

features with examples including the exponent of the power-law distribution of 

failure occurrences at a crossover [18], the local shape factor of a sand pile 

adapted to networks [19], the Cavahlo-Rodrigues entropy, the spatial entropy, the 

fractal dimension, the symmetropy, the Hurst coefficient, and the self-similarity 

parameter [21]. The final feature group concerns functional information on key 

components of the network.  This fourth category includes the notions of coverage 

introduced in Section 2.2.  Our example features were drawn from this latter group 

as well as the structural features from the first category. 

2.3. Training 

The purpose of feature extraction is to build a representation that is particularly 

suited to vulnerability recognition problems specific to networks.  Indeed, features 

are naturally geared to the modeling of classificatory problems.  Once this model 

is derived, fast and efficient recognition is expected when compared to physics-

based models of large interconnected networks.  A parallel between pattern-

recognition-based and game-theoretic approaches is proposed in [13]. 

Given an initial clients configuration C0 and a corresponding robot deployment 

G0, (including the robots’ coordinates Nc,0), the training data set z used to derive 

the classifier in (7), is obtained from the disturbance sample set D={D1,…,Dn}. Di 

stands for a set of sequence of disturbances {ij1, ij2,…,ijm}.  This sequence is in 

a one-to-one correspondence with the occurrence time set { t1 ,t2, …, tm}, ti+1>ti.  

ijk represents a random realization of the j
th

 disturbance of the sequence applied to 

the network of robots at time tk and for experiment i.  The first disturbance ij0 cor-

responds to a robot failure and is followed by a series of new client configuration 

Cj, {ij1,…,ijm}.  It assumed that the first triggering event (first disturbance) ij1 is 

a robot failure occurring at t1 and that all ij1 span R, the set of robots. The follow-

ing disturbances are a series of new client configuration Cj, {ij1,…,ijm} represent-

ing new client configurations arising from clients adjusting their positions.  In or-

der to evaluate each robot’s vulnerability, they will be removed successively.  Di 

is then defined as the following union ∪j∈R{ij1, ij2,…, ijm}.  Di is instrumental in 

defining experiment i. Indeed, sequence Di generates the sequence of edge sets 

{{E11,…, E1m},…,{E|R|1,…, E|R|m}}, where |R| denotes the total number of robots. 

The state of Gm is used to determine the cost Cij,(coni,covi) associated with a dis-

turbance sequence j of experiment i. This cost depends on the connectedness of 
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the graph through a disconnectedness index, coni(Gm), derived from equation (6), 

and the coverage covi(Gm,,Cm) of the set of clients by the robot network at time tm.  

In the binary case, when Gm is disconnected, coni is equal to 1 and when Gm is 

connected, coni is set to zero.  Sequence j of experiment i is thus associated with 

the following mapping   

{dij1,dij2,…,dijm}  Cij  yij 

 

Each experiment i is characterized by the set of labels {yi1,…, yi|R|}. The classifier 

used to analyze the vulnerability of the robot network’s dynamics in response to 

the occurrence of possible contingencies is obtained by exploiting the data of Ta-

ble 1 established for each experiment i{1,…,N}. 

 

Table 1 Table of features excerpt from Experiment i. Features are divided into two classes 

depending on whether each robot is able or not to compute the features from local information, 

which is sent by adjacent nodes.  
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. . .
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. . . . . .

 
 

3. Conclusion 

In this paper, we have described a formal definition of a vulnerability-aware mo-

bile, tactical cloud architecture designed to support dismounted soldiers.  We de-

veloped a problem formalization that described the network as well as a definition 

of coverage and vulnerability.  In addition, we provided a formal definition of 

awareness as it pertains to our domain.  We applied a novel pattern-recognition 

approach to vulnerability assessment, which enables robot nodes in the network to 

efficiently detect when they are in a vulnerable state.  Future work consists of im-

plementing and benchmarking the architecture as well as exploring multi-class 

problems for more robust connectivity definitions.  
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