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ABSTRACT 
 
In this paper, we investigate questions involving the impact of a multitude of covariates and their 
interactions on the scores of a comprehensive exit exam from 121 undergraduate students in Texas State 
University via a hierarchical Bayesian mixture model. The model uses a mixture of Beta distributions, 
inflated for the purposes of modeling the behavior of students who are no-shows for the exam. We 
formulate the predictive probability distribution of letter grade test scores as well as the probability that a 
student will belong to a particular grade cluster given a set of covariate values.  
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1. INTRODUCTION 
 
 In this paper, we propose a hierarchical Bayesian mixture model to predict future performance and 
explain variations in the results of an introductory business statistics course exit assessment of Texas 
State University students. We conceptualize the N students’ test scores as clustered in K performance 
groups where the average grades of the clusters are monotonically ordered indicating relative 
performance that go from the least to the highest performance group. We refer to these performance 
groups as grade clusters i. In addition to modeling the average grades in each cluster, we also model the 
probability that a particular student will belong to any of the K clusters. We note that each semester there 
exists a group of students who usually do not have a positive probability of passing the course and, 
therefore, do not show-up for the final assessment exam. The list of zeroes assigned to these students 
forms our first grade cluster. We propose a mixture model to incorporate the multi-peakedness of the 
distribution of grades implied by a K that is greater than 1. We use the Harmonic Mean measure of 
Newton & Raftery (1994) in determining K. 
 The hierarchical Bayesian modeling approach allows us to do several things we would not be able 
to do with a Generalized Linear Model. First, we can use information and make predictions on small sub-
groups in our sample. Second, we can investigate a richer structure than is available using any 
frequentist version of the proposed models. For instance, we can obtain the probability distribution of the 
average grades in the grade clusters and provide a student with a probability distribution of his/her grade 
given various covariate values. We can also choose to treat some covariates as nuisance factors, 
integrate them out, and use only those that a model-user deems relevant while not over/under estimating 
the uncertainty about the coefficients of the chosen covariates. Furthermore, our model allows a realistic 
framework in which a student’s probabilities of belonging to various clusters are negatively correlated, 
and we are able to introduce student level variation about the average grades in each cluster. 
 We provide a set of methods to help students and instructors to understand the relationship 
between various covariates and students’ probabilistic grade distribution. From the perspective of policy-
makers, it would be of interest whether a particular student group seems to perform better or worse than 
others for fixed values of the other covariates. For example, we can compare probabilistically a particular 
grade a Hispanic student will obtain compared to a student who is not classified as Hispanic. Our model 
can be used as a framework to draw a number of inferences as we model the average grade of each 
grade cluster as well as the probability that a student is going to belong to this cluster. 
 
2. METHODS 
 
 In the first sub-section, we discuss the data source used in the analysis. We then describe the 
mixture model of test scores without any covariates. This allows an intuitive understanding of the general 
model. Next, we introduce the incorporation of information from the covariates in order to explain the 
uncertainty about the membership to a particular grade cluster, as well as the average grade in each 
grade cluster. In the final sub-section, we describe how we select K, the number of grade clusters. 
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2.1 Data Source 
 
 Our data consists of information that we obtained from 121 students. We used the Hawkes 
Learning Systems (HLS) to obtain the number of minutes each student logs in. This measure will serve as 
a proxy to the amount of time a student puts into class. Note that HLS logs a student out after 5 minutes 
of inactivity so that we would not have to worry about inactive students with high HLS minutes logged. We 
obtained age, grade point average (GPA) at the beginning of the semester, Hispanic status, and gender 
from the university registration system. This study was designated as exempt by the Institutional Review 
Board. We scale the final exam grade between 0 and 1 and illustrate it in Figure 1. This figure illustrates 
the multiple peaked nature of the grades. As mentioned above, the first peak of zeroes occur due to the 
students who are no-shows for the final exam. Note that we determine the number of peaks based on the 
measure of Harmonic Mean as explained below in the model section. 

 
Figure 1: Histogram of 121 Student's Test Results 

 
 The covariates Y1 − Y5, represent Gender (1-female, 0-male), Age, Hispanic Status (1-Hispanic, 0-
otherwise), Overall GPA, and Total Time Spent on the System, respectively. A student whose age (53) 
was over 8 standard deviations above the mean was removed from further analysis. There is substantial 
variation in all the covariates except the Hispanic status covariate. As is the current trend in business 
schools, the majority of the students are female. Also, the data indicates a rather wide dispersion among 
the students of GPA and total time spent in HLS minutes logged. There are a total of 71 female students 
and 29 Hispanics. 
 In Figure 2, we illustrate the relationships between grade distribution and the covariates. There are 
a total of 8 students who were no shows for the final exam. As the grades of the no-show students are 
fixed, we remove them for the purposes of illustrating the covariates’ relationship to the final exam 
grades. For the continuous covariates, we add an Ordinary Linear Squares line to the plots. As can be 
seen from Figure 2, there seems to be a degree of linear trend of various strengths. 

 
Figure 2: Test Results vs. Covariates 
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2.2 Model without Covariates 
 
 We use T to represent the final exam score of a student, scaled between 0 and 1, and assume that 
T is generated from one of K grade clusters where the first cluster is composed of the no-show students 
obtaining a score of 0. We chose to represent the likelihood function of the grade clusters with the beta 
distribution. We justify our choice due to the flexibility of the shape of the beta distribution with changes in 
its parameters and its support being bounded between 0 and 1. The Zero Inflated Mixture of Beta 
distribution can be represented as: 
 

T =X1 * 0 +...+ Xk * β((κ
μ
 * μk),κ

μ
(1−μk)) +...+                                     (1) 

XK * β((κ
μ
 * μK),κ

μ
 * (1−μK)) 

 
 In Equation 1, the X vector of length K has one of its elements equal to 1 and the rest 0. It is 
straightforward to model this vector as a multinomial distribution where the total number of trials is equal 
to one. 

X ~ Multinomial(ϕ, 1)                                                         (2) 
  
 In Equation 2, the elements of K length vector, ϕ, represent the distribution of probabilities that a 
student is going to belong to one of K grade clusters. We choose the Dirichlet distribution to represent this 
uncertainty about ϕ parameters. We parameterize this Dirichlet distribution such that the K elements sum 
up to one implying that αk in Equation 3 is the expected probability that a student will belong to k’th grade 
cluster. Due to our parameterization, note that K elements of the Dirichlet distribution are negatively 
correlated, which is necessary to represent the probabilities of a discrete probability distribution. When 
coupled with this distribution’s flexibility, the Dirichlet distribution is a natural choice in modeling vector ϕ. 
 

ϕ ~ Dirichlet(κ
α
 * α1,...,κ

α
 * αK)                                           (3) 

 

where         
    and κ

α
 is the precision term of the Dirichlet distribution. 

  
 Due to the definition of grade clusters, we should have an order of the random variables 
representing their distribution. We use the ordered Dirichlet distribution to represent the uncertainty about 
the average grades in each cluster. The ordered Dirichlet is a natural choice as it allows us to incorporate 
the structure that there is a monotonic order to the expected values of the average test scores in the 
grade clusters, the μ terms in Equation 4. Note that the index of μ in Equation 4 starts from 2 as the index 
1 refers to the least performing students whose grades are fixed and do not need to be modeled. Details 
of the Dirichlet and ordered Dirichlet distribution and its various parameterizations are discussed in 
Mazzuchi et al. (1997) and Mazzuchi et al. (1998). 
 

μ ~ Ord.Dirichlet(κ
γ
 * γ2,...,κ

γ
 * γK)                                              (4) 

 

where         
   
      and κ

γ
 is the precision term. Note that γk − γk−1 is the expected grade change 

between grade cluster k and k − 1. The k index in Equation 4 starts from 3 since the very first grade 
cluster group has its value fixed as it represents the no-show students and therefore is not part of a 
probability distribution. Also, γ2 represents the expected grade change of the students whose grades are 
clustered to represent the next least performing students after the no-show grade cluster. 
 Ordered Dirichlet distribution is similar to the Dirichlet but the random variables in the distribution 
are monotonically ordered. This allows us to introduce identifiability to the mixture distributions. We 
summarize this model in Equation 5 below: 
 

T =X1 * 0 +...+ Xk * β((κ
μ
 *  μk),κ

μ
(1−μk)) +...+ 

XK * β((κ
μ
 * μK),κ

μ
 * (1−μK)) 

X ~ Multinomial(ϕ, 1) 
μ ~ Ord.Dirichlet(κ

γ
 * γ2,...,κ

γ
 * γK)                                              (5) 

ϕ ~ Dirichlet(κ
α
 * α1,...,κ

α
 * αK) 

γk − γk−1 ~ Dirichlet(1, . . . , 1); α ~ Dirichlet(1, 1..., 1) 
κ
μ
 ~ Gamma(1, .1); κ

γ
 ~ Gamma(1, .1); κ

α
 ~ Gamma(1, .1) 
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2.3 Model with Covariates 
 
 The model we develop in this subsection allows us to make inferences on the effects of various 
covariates on a students’ probability of belonging from the highest to the lowest performance grade 
clusters. We use covariates in an N by M matrix Y to model the expected probabilities, where N is the 
number of students and M is the number of covariates. Namely, we model the elements of vector ϕk in 
Equation 5. We set the expected probability that student n is going to belong to grade cluster k, αn,k, equal 
to the ratio of a function of the M covariates for that grade cluster to the sum of the functions associated 
with all the grade clusters. This parameterization ensures that αn,k has a support between 0 and 1 and 

           
    We formulate this in Equation 6. The value of the function for a particular grade cluster k for 

student n, is represented as ηn,k. The ηn,k terms can be greater than or equal to 0 which is ensured by the 
formulation shown in Equation 7. The log of ηn,k has a support between positive and negative infinity and 
is the sum of the common intercept term in grade cluster k, χ

η
k, and the multiplication of the M coefficients 

with their respective covariates. In order to make our parameter estimation of the intercepts, χ
η
, and 

coefficient of the covariates, ρ
η
 in ηn,k, more efficient, we set the parameters associated with the K’th 

grade cluster equal to 0 and use Equation 6 to make the other parameters relative to them. This 
formulation allows us to estimate one set of parameters more than we otherwise would by including the 
coefficients associated with the K’th cluster. 

       

           
    

       
   
   

                                                     (6) 

 
In Equation 6, we fix the coefficients of (ηK) equal to zero. This implies that the remaining coefficients are 
estimated relative to this last set of coefficients. The parameter ηn,k is computed with a linear equation and 
a common intercept term. 

log (ηn,k) = χ
η
k + ρ

η
k * Yn,1 + . . . + ρ

η
k * Yn,M                                 (7) 

  
 Our choice of priors as normal distributions with mean 0 and variance 10 might seem less than 
diffuse. Note, however, that the random variable from this normal distribution is exponentiated and is a 
component in a ratio that is relative to the K’th category. Note that in Equation 3, the K length vector ϕn 
and μn represent the probability and the average grade that student n will belong to a particular grade 
cluster and the average grade in that cluster, respectively. κ

α
 represents the common precision term. We 

use the covariate information in Y to model the ϕ and μ vector using the well-known log link function. We 
extend the model in order to model the μ terms. Note that μn,k represents the expected grade student n 
receives in grade cluster k. We again use the ordered Dirichlet distribution. 
 

μn,k ~ Ord.Dirichlet(κ
γ
 * γn,2,...,κ

γ
 * γn,K)                                             (8) 

 
where the γ parameters of the ordered Dirichlet distribution are monotonically increasing from γn,2 to γn,K , 
the κ

γ
 term is again the common precision term. We use the familiar link function: 

 

             
    

       
   
   

                                                     (9) 

 
The set of ψn,k parameters are computed again with a linear equation, 
 

log (ψn,k) = χ
ψ

k + ρ
ψ

k,1 * Yn,1 + . . . + ρ
ψ

k,M * Yn,M                        (10) 
 
where a student obtains a zero test score with probability α1 and belongs to test score group n with 
probability αk. We use the information in the covariates (Y) in modeling the probability that a student is 
going to belong to a particular grade group as well as the parameters of the grade distributions. This is 
done through the well-known log link function. We fix the values of the covariates associated with αK and 
μK equal to 0. This implies that the values of the remaining parameters are computed relative to k’th 
group. We use diffuse priors to let the data drive the learning process on the parameters. The number of 

grade clusters K is determined by making use of Harmonic Mean, where       
    and    

 
     : 
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Tn =Xn,1 * 0 +...+ Xk * β((κ
μ
 * μk),κ

μ
(1−μk)) +...+ 

XK * β((κ
μ
 * μK),κ

μ
 * (1−μK)) 

X ~ Multinomial(ϕ, 1) 
μ ~ Ord.Dirichlet(κ

γ
 * γ2,...,κ

γ
 * γK) 

ϕ ~ Dirichlet(κ
α
 * α1,...,κ

α
 * αK) 

        
    

       
   
   

           
    

       
   
   

                                      (11) 

log (ηn,k) = χ
η
k + ρ

η
k,1 * Yn,1 + . . . + ρ

η
k,M * Yn,M 

log (ψn,k) = χ
ψ

k + ρ
ψ

k,1 * Yn,1 + . . . + ρ
ψ

k,M * Yn,M 
χ
η

1,...,K−1 ~ Normal(0, 0.1); ρ
η
1,...M,...,K−1 ~ Normal(0, 0.1); 

χ
ψ

2,...,K−1 ~ Normal(0, 0.1); ρ
ψ

2,...M,...,K−1 ~ Normal(0, 0.1); 
χ
η
K = 0; ρ

η
K, = 0; χ

ψ
K = 0; ρ

ψ
K = 0 

κ
μ
 ~ Gamma(1, .1); κ

γ
 ~ Gamma(1, .1); κ

α
 ~ Gamma(1, .1) 

where            
          

    
 

2.4 Selecting K 
 
 Note that we can choose any integer that is greater than or equal to one for K. With each possible 
decision, we would be defining a new model. A measure that is used to select between different models is 
the Harmonic Mean Index. The Harmonic Mean Index computes the prior predictive of the data, p(T). This 
measure allows us to compare different models where the higher values of p(T) imply a better fit to the 
data. In computing p(T) we utilize the property below: 

      
 

 
  

 

       

   
   

   
                                                 (12) 

 
3. RESULTS AND DISCUSSION 
 
 We applied our models using OpenBugs (Spiegelhalter et al., 2009), and we used the R package in 
analyzing convergence, constructing the posterior predictives, and conducting remaining analysis (R 
Development Core Team, 2009; Plummer et al., 2010). 
 As suggested by Gelman & Hill (2007), in order to circumvent numerical difficulties, we constrain 
for each i, the probability that a student belongs to a certain grade cluster to be between 0.001 and 0.99. 
We also constrain the grade difference between the grade clusters to the same values. Furthermore, we 
truncate the average value of the second grade cluster to be at least 0.1 based on historical observations. 

 In both of the models, we monitor Gelman and Rubin’s    statistic (Rubin & Gelman, 1992) as well 

as Brooks and Gelman multivariate    convergence statistics (Gelman & Brooks, 1997) for each of the 
parameters in the three independent chains. In the models that do not make use of covariates, 

convergence is reached quickly and all of the parameters have    values between 1 and 1.01 as point 
estimates. As could be expected, the model with an additional layer of hierarchy and with the covariates 
took longer to reach convergence. We ran the MCMC simulation until all of the parameters have a point 

estimate and the multivariate    value that is less than 1.2. 
 We investigate six models that have no covariates in order to determine the optimum number of 
grade clusters, K. We use the Harmonic Mean Index introduced in Equation 12 as our measure of fit. It 
can be seen in Table 1 that the model with 5 grade clusters seems to provide the best trade-off between 
model complexity and fit. 

Table 1: Number of Clusters vs. Harmonic Mean 

Number of Grade Clusters Harmonic Mean 

K = 2 5.14 

K = 3 5.68 

K = 4 5.97 

K = 5 6.07 

K = 6 5.90 

 
 We apply the model we introduced in Equation 11, where we model the expected grade in each 
grade cluster for each student in addition to the set of probabilities that a student belongs to a particular 
grade cluster. Recall that the average grade of student n, in grade cluster k, γn,k, is computed as the ratio 
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of ψn,k divided by the sum of all the K ψ terms. Furthermore, recall also that we model the logarithm of 
K−1 ψ and η terms with a linear equation involving a χk term and M * ρ term, where all of the K’th grade 
cluster’s coefficients are set to 0 to improve convergence and efficiency. This means that all the χ and ρ 
coefficients are estimated relative to the K’th grade cluster values. As mentioned above, we have both M 
and K as equal to 5. 
 In Figure 3, we show the distribution of letter grades for 12 sets of hypothetical, non-Hispanic, male 
students with an average GPA. We divide the HLS minutes studied into 12 equidistant points within two 
standard deviations of the average HLS minutes logged. As can be expected, we observe in Figure 3 the 
letter grade distributions of the hypothetical students slowly get a more right skewed distribution as the 
number of HLS minutes logged increases.  

 
Figure 3: Posterior Predictive Letter Grade Probability Distributions of 12 Sets of Students 

  
 Using these models, we can compare multiple students with various characteristics. Assume four 
hypothetical students:  Student 1 has average age, a GPA that is 2 standard deviations below the mean 
(2.05), utilizes the HLS 3 standard deviations above the average minutes (5893.2) and is a Hispanic 
female; Student 2 also has the average age, a GPA that is 2 standard deviations above the average 
(3.81), utilizes the HLS an average number of minutes (2535) and is non-Hispanic male; Student 3 has 
average age, average GPA, utilizes the HLS 3 standard deviations above the average minutes and is a 
Hispanic female; Student 4 has average age and a GPA that is 1 standard deviation above the mean 
(3.37). In Table 2, we obtain the posterior predictive probability distributions of these students. 
 

Table 2: Posterior Predictive Letter Grade Probability Distributions of Four Students 

 Student 1 Student 2 Student 3 Student 4 

F 0.562 0.346 0.361 0.269 

D 0.070 0.109 0.092 0.092 

C 0.081 0.126 0.114 0.122 

B 0.101 0.155 0.144 0.162 

A 0.186 0.264 0.288 0.354 

 
 

4. CONCLUSIONS 
 
 In this paper, we described a Bayesian methodology to predict the final exam scores of a set of 
students. Our methods are based on the assumption that every semester there are a fixed number of 
grade clusters that each student belongs to. We demonstrated how to use the Harmonic Mean Index to 
identify the number of grade clusters that provides the ”best” tradeoff between complexity and fit. We 
constructed a realistic model to predict the grade distribution of students. We used numerous covariates 
to predict the probability that a student will belong to a particular grade cluster as well as the score he/she 
will get in that cluster. Our findings indicate that even though there is still a large posterior variance, GPA 
and HLS logged minutes are especially important. This is consistent with our belief that a high GPA or 
spending time on HLS does not guarantee learning actually occurs. These methods can be used to 
explain to the students that even though HLS minutes logged definitely helps, it is not enough by itself. 
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