
L-SAOMs for Relational Events

Latent Stochastic Actor Oriented Models for
Relational Event Data

J.A. Lospinoso12 J.H. Koskinen2 T.A.B. Snijders2

1Network Science Center
United States Military Academy

2Department of Statistics
University of Oxford

March 15, 2012



L-SAOMs for Relational Events

SAOMs & Relational Events

Introduction

A convenient and powerful combination...

Using relational event datasets to study social network
dynamics can have many practical up-sides.

SAOM effects (which are based on digraphs) are convenient
(evidenced by the large amount of effects that have already
been studied).
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SAOMs & Relational Events

Practical considerations

Practical considerations for relational event data

Collecting high quality relational event datasets can be cheap
and easy.

Datasets can be quite large (and correspondingly contain lots
of information).

We can “follow the sound of marching feet.”
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SAOMs & Relational Events

Practical considerations

Practical considerations for “relational event history
models”

Butts [2008] proposes to study relational event histories with a Cox
model.

Devising good effects with relational event histories can be less
convenient than with SAOMs:

How do we handle the passing of time? How much more
important is something that happened last week than last
year?

How do we model “second order terms” like transitivity,
balance, and betweenness?
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SAOMs & Relational Events

Binning

Idea: model the evolution of the affective network with
SAOMs

...but where are the digraphs?

A fairly common practice is to do some “binning” to make
data that looks like digraph panel data

Intuitively, we suppose that more interaction in a time interval
signals an affective tie.
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SAOMs & Relational Events

Binning

We can easily construct weighted networks over some time
intervals...
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SAOMs & Relational Events

Binning

And use some “threshold” to yield a digraph:
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SAOMs & Relational Events

Binning

Here’s a higher threshold:
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SAOMs & Relational Events

Binning

But really we’ve traded one set of difficulties for another:

How much interaction constitutes a tie?

How do you choose intervals?

How do we minimize information loss?

How can we be sure that artifacts don’t creep into our results?
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Data

Background

Data: The Ikenet Study

Kate Coronges, in collaboration with the USMA Network
Science Center, collected the email traffic among 22
mid-career Army officers over a 13-month period

We will use one covariate which indicates whether the officer
is a captain (lesser rank) or a major (greater rank).

For emails that are not (a) broadcast emails (i.e. those emails
sent to the whole group) or (b) self-sent emails, we add one
“relational event” per recipient in a random order. This
process yields 8819 events.

Bonus: friendship surveys are collected at each month
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Data

Descriptives
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Ikenet Analysis with Binning

Some a priori decisions

Binning

It’s not obvious how we determine

time intervals

dichotimization thresholds

to create waves out of this data.

To simplify the example, we (quite arbitrarily) decide to create
intervals by month of the year, yielding 13 digraphs in the panel.
How do various threshold values affect these digraphs?
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Ikenet Analysis with Binning

Thresholds

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Ties in Each Wave at Various Thresholds

1

2

3

4

5

6

7

8

9

10

15

20

30

50

90

Threshold

Month

Sum of Ties per Actor



L-SAOMs for Relational Events

Ikenet Analysis with Binning

Model

Model

Since there is no clear choice of a threshold at which the network
density is uniquely plausible, we’ll run estimations of the following
model at various thresholds:

Outdegree: “do I like to have ties?”

Reciprocity: “do I like to have ties to match incoming ties?”

Trans. Triplets: “do I like to have ties to ties-of-ties ?”

Balance: “do I like my ties to match my current alters’ ties?”

In. Popularity: “do I like to tie to alters with lots of incoming
ties?”

In. Activity: “do I like to create more ties when I recieve lots
of ties?”

Same Rank: “do I like to create ties with other officers of the
same rank?”
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Ikenet Analysis with Binning

Results

MoM Estimation [Snijders, 2001] Results

Threshold 1 2 3 4 5 6
Outdegree -1.51 -1.71 -2.00 -2.52 -2.74 -3.11
Reciprocity 1.64 1.75 2.07 2.49 2.66 3.19
Trans. Triplets 0.03 0.06 0.08 0.05 0.09 0.17
Balance 0.00 -0.01 -0.03 -0.01 -0.04 -0.07
In. Popularity 0.03 0.05 0.07 0.12 0.12 0.07
In. Activity 0.01 -0.01 -0.03 0.00 -0.01 0.01
Same Rank -0.01 -0.04 -0.06 -0.07 -0.05 -0.09

Threshold 7 8 9 10 15
Outdegree -3.51 -3.83 -4.14 -4.61 -6.54
Reciprocity 3.37 3.82 4.44 4.77 6.64
Trans. Triplets 0.11 0.26 0.38 0.42 0.52
Balance -0.04 -0.08 -0.14 -0.14 -0.18
In. Popularity 0.13 0.15 0.16 0.22 0.51
In. Activity 0.07 -0.01 -0.13 -0.13 -0.24
Same Rank -0.08 -0.06 -0.07 -0.01 0.39
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Ikenet Analysis with Binning

Summary

Summary on binning

We get convenient SAOM-based inference (easy to interpret
effects) out of relational event data, but...

Choice of binning parameters is not obvious and may have
important consequences on results

How much information was lost by binning?

Did we introduce artifacts?
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Introduction

Bringing relational events into the SAOM

Let’s consider how we might bring the relational events into the
SAOM:

We consider the relational event mode as just another aspect
over which ego has complete control.

An ego may then choose to modify her outgoing ties, or to
send a relational event to an alter.

As the network is unobserved, this is a hidden Markov model
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Notation

We can think of this process in terms of ordered ministep tuples
v = (i , j , k , t) ∈ V where:

i ∈ N indexes the ego

j ∈ N indexes the alter

k ∈ K indexes the aspect

t ∈ R indexes time

where N is the actor set, K is the set of networks and modes.

For convenience, these indices can be used as functions, e.g. i(v5)
refers to the ego of the 5-th ministep.

Also for convenience, let Vτ = {vb ∈ V : t(Vb) < τ}
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Model

If we let

p0(X ∗) = p0(X ∗|θ) represent the PMF of the initial network

fv (vb) = fv (vb|Vt(vb), x
∗, θ) represent the conditional PDF

given all ministeps occurring before vb and the initial network.

then the likelihood is

L(θ|V, x∗) = p0(x∗)
∏
vb∈V

fv (vb) (1)
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Model

For p0(x∗), we are free to choose anything. In the context of the
Ikenet data, we use a simple, dyad-independent model:

p0(X ) =
∏

i ,j 6=i∈N
p(Xij = xij ,Xji = xji |θ) (2)

We include terms in p(Xij = 1|xji , θ) for density and reciprocity.
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Model

For fv (vb), we decompose the joing wait-time/ego/aspect density,
and alter selection density:

fv (vb) = fikt
{
i(vb), k(vb), t(vb)

}
fj |ikt

{
j(vb)

}

Just as in the regular SAOM, we suppose fikt is a negative
exponential process, and we have a different rate for each aspect
K.
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Model

For a network aspect k , our alter selection density is the SAOM
alter selection density:

fj |ikt
{
j
}

=
g(i  j)∑

n∈N g(i  k)
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Model

For a relational event mode aspect k , our alter selection density
can be anything, but we choose a parsimonious “observation
function”

fj |ikt
{
j
}

=
exp{γxij(t)}∑

n 6=i∈N exp{γxin(t)}
.

The “network effect” γ represents the tendency for an ego to want
to send relational events to alters with whom they have a network
tie.
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Model

DAG for the L-SAOM
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Estimation

In principle, estimation is a straightforward MCMC-MLE scheme
[Snijders et al., 2010].

We’ve added a few proposals to the MCMC scheme to account for
the lack of so-called “parity” conditions. The details are pretty
involved.

For the sake of time, we’ll surf right over these details. They are
implemented in a .NET port of RSiena:

github.com/JLospinoso/sie

github.com/JLospinoso/sie
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Results

Estimation results

θ̂ s.e. θ̂ θ̂ s.e. θ̂

Network Dynamics Observation
Outdegree -3.19 0.70 Network 2.30 0.71
Reciprocity 0.84 0.15 Initial Network
Trans. Triplets -0.03 0.06 Outdegree -3.49 0.53
Balance 0.04 0.07 Reciprocity 7.24 0.94
In. Popularity 0.07 0.01 Pacing
In. Activity 0.07 0.08 Network 4.73 1.05
Same Rank 0.15 0.06 Email 5.99 0.27
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Compared to friendship data

How do these compare with the actual friendship survey data?

Email Friendship

θ̂ s.e. θ̂ θ̂ s.e. θ̂

Outdegree -3.19 0.70 -0.95 0.20
Reciprocity 0.84 0.15 1.12 0.19
Trans. Triplets -0.03 0.06 -0.24 0.23
Balance 0.04 0.07 0.21 0.13
In. Popularity 0.07 0.01 0.09 0.03
In. Activity 0.07 0.08 0.03 0.10
Same Rank 0.15 0.06 0.24 0.09
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Compared to friendship data

Binning results again:
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Summary

Summary

Using SAOM effects to model relational event data is a
convenient and powerful combination.

Binning might not be such a great idea.

We can extend SAOMs to include a relational event mode and
use an observation function.

In our study, inferential results are very similar for friendship
and email data.
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Summary
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