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Abstract: This research provides a novel framework for modeling infectious disease 

propagation throughout a population, and ultimately for determining socially optimal 

vaccine allocation.  Given a fixed stockpile of vaccines, I determine the best geographic 

distribution that minimizes the number of infections in the population.  This approach 

integrates network modeling and statistical analysis.  The analysis reveals both the 

network attributes as well as the demographic characteristics that are critical in 

determining whether one region is more important than another in terms of vaccination.  

Finally, a framework using optimization methods is proposed for finding the nearest-to-

optimal policy that would be amenable to policy-makers representing different 

constituencies. 

 

1. Literature Review and Introduction 

1.1 – Infectious Disease Modeling for a Single Population 

Infectious disease continues to be a great societal concern at the local, national, 

and international levels.  Diseases such as influenza affect large proportions of the 

world’s population and are responsible for 250,000-500,000 deaths each year (World 

Health Organization, 2009).  Governments as well as health organizations are interested 

in understanding the spread of infectious disease and steps that can be taken to minimize 

the loss of life.  The dominant approach to combating infectious disease has been 

vaccination.  However, the vaccination method is imperfect, as the number of susceptible 

individuals within a particular population generally exceeds the number of available 

vaccines.  Thus, governments around the globe are faced with the problem of allocating a 

limited number of vaccines in order to maximize social welfare. 
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The first academic to formally investigate the impact of infectious disease on a 

population was Daniel Bernoulli.  He attempted to estimate the increase in life 

expectancy if smallpox were eradicated from the population (Bernoulli, 1766).  These 

increases were compared to the benchmark of inaction on the part of the government.  

This work was a persuasive piece, which argued for the mass-vaccination of the 

population.  Bernoulli performed a mathematical cost-benefit analysis of smallpox 

vaccines, and found that the benefits of mass-vaccination outweigh the risks associated 

with it.  Bernoulli calculated that such a policy would increase life expectancy by over 

three years. 

About two centuries later, Kermack and McKendrick published their seminal 

paper in epidemic modeling (Kermack & McKendrick, 1927).  They introduced 

Susceptible, Infected, and Removed (SIR) ordinary differential equations models for a 

single population.  These models formed the foundation of epidemic theory and 

mathematical epidemiology.  An SIR model classifies the individuals within a population 

into one of three disease compartments: susceptible, infected, and removed.  Susceptible 

individuals are disease-free, but have the potential to contract the disease should they 

come into contact with an infected individual.  Infected individuals have the disease and 

can spread it to others.  Removed individuals have either developed immunity to the 

disease or have died.  Hence, they are removed from the population in terms of disease 

propagation potential.  An individual transitions through the disease states in the order 

susceptible, infected, removed.  Kermack and McKendrick’s model is given below, 

where x(t), y(t), and z(t) are respectively, the susceptible, infective, and removal functions 
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of time, and β and γ are the infection and removal parameters respectively.  Note that  

β, γ > 0. 
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The population is assumed to be of fixed size N for all time.  That is,  

x(t) + y(t) + z(t) = N for all t.  Further, this single population SIR model assumes 

homogeneous mixing.  In other words, all susceptible individuals in the population are 

equally likely to contract the disease and all infected individuals in the population are 

equally likely to transmit the disease (Frauenthal, 1980).  These disease dynamics lead 

one to inquire as to the circumstances under which disease eradication is possible.  Does 

there exist a scenario in which the epidemic would end when there are a positive number 

of susceptibles left in the population?  The Threshold Theorem reveals that there is.  It 

demonstrates that if x0 > 



, the relative removal rate, then the epidemic will spread 

(Daley & Gani, 1999).  Otherwise, the epidemic will cease to exist within the population.  

Hence, if the initial number of susceptibles could be reduced to some number below the 

relative removal rate, by some measures such as vaccination, then the impact of the 

epidemic would be greatly lessened. 

Vaccination is the prevailing method of halting a mass epidemic.  However, the 

positive externalities associated with vaccination imply that it is unnecessary to vaccinate 

the entire population in order to curb an epidemic.  If an individual is vaccinated, he can 
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no longer spread disease to anyone with whom he comes into contact.  Based upon these 

externalities, there exists a critical proportion of the population receiving vaccines for 

which disease propagation will slow over time.  Anderson and May (1991) derived the 

critical proportion figure through analysis of the average number of secondary cases 

produced by an initially infected individual into an otherwise susceptible population.  

This is known as the basic reproduction number R0 (D. Mollison (Ed.), 1995).  It is 

thought that ]3,1[0 R  (Wu, Riley & Leung, 2007).  In context of the SIR model, R0 = β/γ 

(Sattenspiel, 2009).  For a disease to spread throughout a population, the basic 

reproduction number must be greater than one.  If R0 < 1, then the epidemic will be 

unable to sustain itself as individuals are removed from the population faster than they 

are infected.  Assuming that vaccination confers full immunity, Anderson and May 

determined the critical proportion of vaccination pc = 1 – 1/R0. 

 

1.2 – Multi-City SIR Models and Spatial Heterogeneity 

While ordinary differential equation SIR models provide insight into the 

dynamics of infectious disease, they are limited in scope to a single, immobile 

population.  A model that allows for spatial heterogeneity better captures disease spread, 

as people are highly mobile in today’s modern age.  Hyman and LaForce (2001) 

proposed a multi-city SIR model in which individuals are free to travel from one city to 

another, which generalized the work of Kermack and McKendrick.  Thus, disease 

propagation in a particular city depends on the inflow and outflow of individuals with 

respect to that city.  Intra-city disease dynamics are assumed to operate under 

homogenous mixing, while inter-city disease dynamics operate under heterogeneous 
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mixing.  The aggregate population of all cities under consideration was assumed to be 

constant for all time.  The inter-city model was generalized to n cities via the use of a 

mobility matrix m = (mij), where mij is the number of people per unit time who move 

from city i to city j.  For a multi-city network, Hyman and LaForce determined that the 

basic reproduction number for each city is found by computing the appropriate 

eigenvalue of the Jacobian matrix that corresponds to the spatially heterogeneous SIR 

model.  The maximum eigenvalue of matrix m provides a rough estimate of R0 over all 

cities in the network (Sattenspiel, 2009). 

 

1.3 – Transportation Network Models and Optimal Vaccine Allocation 

Shaw et. al. (2010) modeled influenza spread using a rudimentary air 

transportation network in the United States.  In their model, intra-city disease dynamics 

are governed by a variant of the single population SIR model, a system of ordinary 

differential equations, while inter-city disease dynamics are governed by a Markov 

transition matrix generated from the air transportation network.  The Markov transition 

matrix is derived from the mobility matrix corresponding to the weighted adjacency 

matrix of the air transportation network.  The aggregate population of all cities under 

consideration is assumed to be constant for all time.  Over several flu seasons, the authors 

accurately predicted the geographic spread of influenza throughout the United States 

through an “importance factor” derived out of city population as well as network-

connectedness.  The importance factor was confirmed via weekly influenza maps 

provided by the Center for Disease Control.  Counter-intuitively, the authors found that 

as population size increases, likelihood of spread decreases.  The spread of an epidemic is 
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fast in smaller cities, as it is easier to engulf a small city with disease in comparison to a 

large city.  Therefore, the likelihood of an infected individual flying out of a small city is 

greater than the likelihood of an infected individual flying out of a large city.  The 

authors also found that cities of high incoming traffic were disease propagation hubs 

because high incoming traffic implies a high likelihood of arriving infectives. 

Wu et. al. (2007) attacked the issue of spatial heterogeneity in a slightly different 

manner.  Rather than partitioning the network into nodes by city or airport, they 

partitioned the network into ten nodes by regions, as defined by the United States Office 

of Management and Budget.  The entries of the mobility matrix m = (mij) represent “the 

average proportion of time that a resident of population i spends in population j over one 

year.”  The mobility matrix is more realistically defined than in other works, as it 

incorporates multiple modes of transportation as opposed to only one.  While the mobility 

matrix of this model itself is precisely defined, the transportation network is imprecisely 

defined.  The larger the regional definition of a node, the less the model can hone in on 

spatial heterogeneity.  Spatial heterogeneity at the city level is lost and assumed to be 

spatial homogeneity when cities are grouped together into larger regions. 

An additional approach to modeling optimal vaccine allocation under spatial 

heterogeneity is gravity transportation theoretic models.  In the twenty-first century, 

human mobility spans both short and long distances.  Transportation flows governed by 

representative transportation modes for both short and long distance travel form a more 

realistic basis for the geographic spread of infectious disease.  Balcana et. al. used global 

commuting patterns as well as global air traffic flows to model short and long distance 

travel, respectively (Balcana, Colizza, Goncalvesa, Hud, Ramascob, & Vespignani, 
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2009).  Their analysis revealed that despite the comparatively large volume of 

commuting flow compared to air traffic flow, the most important network when 

considering infectious disease propagation is the long distance air transportation network. 

Colizza et. al. constructed a stochastic global air transportation network model 

using data from the International Air Transport Association (IATA).  An SIR model 

governed the within-node disease dynamics.  Their network consisted of a weighted 

graph in which nodes represented airports and weighted edges represented passenger 

flows between airports (Colizza, Barrat, Barthe´lemy, & Vespignani, 2006).  The air 

transportation network under consideration accounted for 99% of worldwide air 

transportation traffic.  As one would expect, this network exhibited spatial heterogeneity.  

The authors investigated the effects of mobility along the worldwide air transportation 

network and its degree distribution, i.e. the frequency distribution of node degree, on the 

spread of infectious disease.  Passenger flows between cities were governed by a 

stochastic transport operator.  This operator described the net balance of individuals of 

each disease compartment who left and entered a particular city.   

 

1.4 – Network Attributes 

In contrast to multi-city models, infectious disease propagation can be explored 

through a network in which nodes represent individuals.  At any given time, each node 

bears a disease status as susceptible, infected, or removed.  Salathé et. al. examined the 

effects of degree distribution, community structure, betweenness centrality, and random-

walk centrality on the spread of infectious disease along a network (Salathé & Jones, 

2010).  The authors postulated that in networks of high community structure, nodes 
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acting as community bridges are important to vaccinate, where community structure is 

measured by modularity and community bridges are identified via betweenness 

centrality, which is defined below.  Further, the authors concluded that, in general, a 

vaccination policy based upon betweenness centrality would result in fewer total 

infections throughout the population than a vaccination policy based solely upon degree.  

Hence, analysis of degree alone is insufficient to form the basis for vaccine allocation 

policy decisions.  Nodes were ranked for vaccination based upon degree, betweenness 

centrality, and random-walk centrality in decreasing order for each criterion. 

In order to enact socially optimal vaccination policies, policy-makers not only 

need to be well-informed with regard to infectious disease dynamics, but also with regard 

to vaccination policy analysis.  Markov chains, transportation network analysis, and 

simulation have contributed to the most notable developments in efficient vaccine 

allocation methods.  In the model presented above, Shaw et. al. measured the impact of a 

pathogen on a population by the aggregate number of sick days over 450 total days, 

through computer simulation.  Evolutionary algorithms were used to minimize the total 

number of sick days taken throughout the population (Shaw, Spears, Billings, & Maxim, 

2010).  The resulting vaccination policies were then compared to two intuitive 

benchmark policies, namely uniform allocation by city and proportional allocation by city 

population.  Ultimately, Shaw et. al. found that more efficient vaccination policies 

depend on the current disease distribution, the in-degree structure of the transportation 

network, and city population.  Cities were ranked in decreasing order based upon 

importance factors  

i
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where its , the proportion of the disease distribution of city i at time t and ni  the 

population of city i.  This ranking proved to be surprisingly indicative of true city-

importance regarding vaccination.  The model presented demonstrated the importance of 

network structure on the effectiveness of a vaccination policy.  However, this research 

only began to explore the effects of transportation network structure on disease spread.  

Numerous network attributes such as various node centrality measures were left 

unexplored that potentially play critical roles in disease propagation. 

Wu et. al. viewed vaccine allocation as a nonlinear optimization problem in which 

the objective was to minimize the total number of infections across a population (Wu, 

Riley & Leung, 2007).  A portion of the total vaccine supply was designated to be 

distributed pro-rata, which is equitable distribution by population, and the other portion 

of the vaccine supply was to be discretionarily distributed.  The authors found that the 

purely equitable distribution was the least efficient allocation in terms of minimizing the 

total number of infections in the population.  The purely discretionary policy is efficient, 

but highly inequitable.  The improvement over the pro-rata policy is trivial, for a large 

“inequality cost.”  Hence, the authors concluded that the gain in efficiency is insufficient 

to justify the massive inequity corresponding to the completely discretionary allocation 

policy. 

A limitation of the network models presented above is that they are all specific to 

disease propagation.  However, network models applied to more general contexts also 

provide insight into the vaccine allocation problem.  Guimerá et. al. considered the 

worldwide air transportation network using Official Airline Guide (OAG) data.  Nodes 

were defined by city, rather than airport.  They sought to evaluate the global importance 
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of a particular city in reference to the entire network using shortest path length, clustering 

coefficient, betweenness centrality, community structure as defined by modularity, 

within-community degree, and total degree (Guimerá, Mossa, Turtschi, & L.A.N. 

Amaral, 2005).  Using the above attributes, the authors proceeded to classify nodes by 

their connectedness as well as their “participation” in the network.  The main limitation 

of this framework is that many attributes described in the research depend upon a well-

defined notion of community structure.  However, it is exceedingly difficult to detect and 

distinguish communities within a larger network. 

 

1.5 – Policy Evaluation, Feasibility, and Implementation 

While the aforementioned methods provide a framework for determining optimal 

vaccine allocation, it is imperative to investigate the accuracy of disease propagation 

model predictions as well as the feasibility of implementation of theoretical findings.  

First, policy recommendations based upon disease spread models should be tested 

empirically.  For example, Shaw et. al. confirmed their importance factor using Center 

for Disease Control map data (2010).  Next, it may be unreasonable to enact a policy 

recommendation rooted in theory.  For example, the increase in social welfare of a given 

policy might be trivial compared to the inequity associated with it.  Hence, such a policy 

is unlikely to pass in a real-world situation, as Wu et. al. hypothesized (2007).   

One useful method of evaluating vaccination policy feasibility is to compare a 

particular allocation to what individuals would do if left to their own devices.  It is 

important to note that all individuals would not vaccinate themselves under their own 

volition because of the free-rider problem, where it is not always in the best interest of an 
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individual to vaccinate (Heal & Kunreuther, 2005).  Free-riding behavior leads to 

situations that are not necessarily socially optimal.  Heal and Kunreuther investigated the 

conditions under which individuals would act in accordance with socially optimal 

vaccination behavior.   

Galvani et. al. explored the differences between perceived risk of infectious 

disease and actual risk of infectious disease.  They found that there is a “large 

discrepancy between people’s perceptions and the actual epidemiological facts and 

figures” (Galvani, Reluga & Chapman, 2007).  Therefore, individuals likely make great 

errors when making their choices for vaccination.  Thus, these errors must be taken into 

account when considering policy actions to be taken to move toward a socially optimal 

allocation. 

 

1.6 – Network Attribute Extensions 

In order to analyze the relationship between network structure, disease 

propagation, and ultimately vaccination policy, one must define and establish the 

important relevant network attributes.  I believe that degree centrality, closeness 

centrality, betweenness centrality, and node significance are important network attributes 

to consider in context of disease spread.  To my knowledge, these properties have never 

been examined simultaneously in the context of a multi-region spatially heterogeneous 

disease propagation model before.  Spatial heterogeneity implies the existence of target 

regions for vaccination.  Understanding which regions are most important to the network 

would provide insight as to the regions most critical for vaccination such that the impact 
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of the infectious disease on the population is minimized.  Node centrality captures the 

importance of a node to a network.     

First, define the degree centrality of a node i to be the number of adjacencies to 

other nodes i has, where an adjacency is a node that is connected by an edge to i.  Denote 

the degree centrality of i cD(i) = ki, for an unweighted and undirected network (Jackson, 

2008).  If a node i has numerous neighbors, it would have high degree centrality.  Next, 

generalize degree centrality to weighted and directed networks.  A weighted network is a 

graph in which the edges are labeled with non-uniform values that represent some 

attribute, such as passenger flow between two nodes.  A directed network is a graph such 

that each edge bears a direction.  In other words, the existence of an edge (i,j) does not 

imply the existence of an edge (j,i) in general.  Further, if edges (i,j) and (j,i) exist, then 

they differ in weight in general.  When evaluating the degree centrality of a node i in a 

weighted network, both the number of adjacencies as well as the aggregate weight of 

those adjacencies should play a role.  Opsahl et. al. proposed an intuitive and useful 

degree centrality measure for weighted networks: 
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where ki is defined as before, wi is the aggregate weight of node i’s adjacencies, and α is a 

tuning parameter that accounts for the desired impact of degree and weight relative to one 

another on the degree centrality measure (Opsahl, Agneessens, & Skvoretz, 2010).  If a 

node i has both numerous neighbors and high aggregate edge-weight, then it would have 

high degree centrality.  This notion of degree centrality can be generalized for in-degree 

and out-degree by computing )(iCw
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 Now, define the closeness centrality of a node i to be the inverse sum of the 

distances to all other nodes in the network.  Denote closeness centrality  
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where dij is the shortest distance from node i to node j (Golbeck).  If a city i is close to all 

other cities in the network, it would have high closeness centrality.  The sum of the 

distances from i to all other nodes would be small, implying that the reciprocal of this 

sum would be high.  This centrality measure readily generalizes to weighted and directed 

networks without modification. 

 Next, define the betweenness centrality of a node i to be the fraction of shortest 

paths between nodes s and t that include node i.  Denote betweenness centrality 
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where σst(i) is the number of shortest paths from node s to node t that include node i and 

σst is the total number of shortest paths between nodes s and t (Salathé & Jones, 2010).  If 

a node lies on most shortest paths between node pairs in the network, it would have high 

betweenness centrality.  This measure indicates the likelihood of traversing a given node 

when traveling along the network.  This centrality measure readily generalizes to 

weighted and directed networks without modification. 

Finally, define node significance of a node i to be the difference in shortest path 

length between nodes s and t in the network excluding node i and the shortest path length 

between nodes s and t in the network including node i.  Denote node significance  



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where G is the network and dst is the shortest path distance from s to t.  Node significance 

is related to, but more precise than, betweenness centrality.  Rather than merely 

measuring the proportion of shortest paths a node i is a part of, a binary concept, node 

significance measures the level to which shortest path distances are penalized.  If a node i 

lies on a shortest path from s to t, the deletion of i from the network, in general, increases 

the shortest path length, dst.  To the contrary, if i does not lie on the shortest path from s 

to t, then dst is unchanged in G\{i} relative to G.  Two nodes i and j may have the same 

betweenness centrality values, but very different node significance values.  For example, 

j might be more important to the network because its deletion implies massive increases 

in shortest path lengths, despite its betweenness centrality being identical to i’s.  If a node 

is critical in the formation of a shortest path between several node pairs in the network it 

will have high node significance.  This centrality measure readily generalizes to weighted 

and directed networks without modification.  My notion of node significance is a 

variation of the one proposed by Mark and Rushton (2005). 

 

1.7 –Thesis Outline 

I expand upon the optimal vaccine allocation research presented above by 

thoroughly investigating the role of air transportation network structure on disease 

propagation, and ultimately on socially optimal vaccination policies.  This research seeks 

to determine optimal vaccine allocation methods given a fixed stockpile of vaccines in a 

particular country, in this case the United States.  The network under consideration is the 

air transportation network of the United States, generated from the United States Bureau 
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of Transportation Statistics T-100 Domestic Segment dataset (BTS T-100 dataset).  The 

disease under consideration is influenza, defined as any influenza-like-illness (ILI).   

I examine multi-city network attributes and demographic characteristics in an 

effort to reveal the attributes relevant to disease incidence, through statistical analysis.  

Further, I construct a dynamic model that incorporates time and current disease incidence 

to predict activity levels in future periods.  The two methods allow me to predict disease 

incidence.  Based upon these predictions, regions can be ranked by importance for 

vaccination in order to maximize social welfare.   

Finally, the allocation policies proposed will be evaluated with regard to 

feasibility of implementation.  Theoretical and empirical derivations provide a framework 

for solving the optimal vaccine allocation problem, but are insufficient solutions without 

adequate real-world policy assessment.  I am concerned with optimal vaccination policies 

such that these policies are feasible in a real-world context.  I propose a novel 

optimization framework to evaluate a socially optimal, yet potentially inequitable, policy 

with regard to political feasibility. 

 

2 – The Models 

Recall, the infectious disease under consideration is influenza, defined as any 

influenza-like illness (ILI).  However, the disease propagation models presented could 

apply to many other infectious diseases, provided that the disease spreads through 

contact-infection.  I model disease spread between different states within the U.S.  

Disease dynamics are modeled using statistical and dynamic approaches, both of which 

relate to passenger flows along the United States air transportation network. 
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2.1 – Inter-state Disease Models 

Within the United States, inter-state disease dynamics are modeled using both 

statistical and dynamic methods.  These approaches are discussed in Section 3.  The 

domestic air transportation network of the United States, derived from the Bureau of 

Transportation Statistics T-100 Domestic Segment 2011 dataset, is an integral part of 

each.   

To construct the network, I created a mobility matrix in Microsoft Office Excel 

2010 by United States airports via the T-100 dataset.  This mobility matrix
1
 is a weighted 

adjacency matrix m, where each entry mij, represents the number of passengers who 

traveled from airport i to airport j in the first ten months of the year 2011.  However, a 

mobility matrix defined by city, as in Guimerá et al., is more meaningful than a mobility 

matrix defined by airport when discussing infectious disease spread.  Airports do not 

have residents or any social characteristics such as population, whereas cities do.  Thus, I 

constructed a mobility matrix m = mij by city passenger flows from a city i to a city j by 

subtotaling rows and columns of the airport-defined mobility matrix.  If several airports 

are in the same city market, as defined by the Bureau of Transportation Statistics City 

Market ID, their passenger flows were summed in order to reflect true city passenger 

flows.  Finally, all diagonals mii were made zero to reflect that there is no passenger flow 

from a city to itself.  Some diagonals were initially nonzero because of layovers.  For 

example, if a passenger is flying from San Francisco, California to Syracuse, New York 

he or she might have a layover in New York City.  The first leg of the trip might start in 

                                                 
1
 Note that this matrix is not square because not all airports are both origins and destinations, as an airport 

may be exclusively one or the other.  But in order to construct the dynamic model discussed in Section 3.2, 

the mobility matrix must be square.  Therefore, I added zero-rows and zero-columns to the matrix to 

incorporate any purely destination or purely origin airports, respectively.  Thus, the rows and columns of 

the matrix contain all currently operational commercial airports in the United States. 
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San Francisco Airport and end in Newark International Airport.  However, the second leg 

of the trip might start in John F. Kennedy Airport and end in Syracuse airport.  The 

passenger flow of interest of this individual is San Francisco to New York City to 

Syracuse.  Hence, it is sensible to make all diagonal entries mij zero. 

 The resulting mobility matrix m = (mij) is square and 1060 x 1060 in dimension.  

A 5 x 5 matrix, an extraction from the complete mobility matrix, can be found in Table 1 

for illustrative purposes.  Exploration of the network and associated node properties is 

found in Section 2.3.   
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  Kodiak Homer New York 
City 

Pittsburgh Bangor ROW 
SUM 

  AK  AK NY  PA ME  

Kodiak AK 0 278 0 0 0 278 

Homer AK 242 0 0 0 0 242 

New York 
City 

NY  0 0 0 310,105 53,700 363,805 

Pittsburgh PA 0 0 312,054 0 99 312,153 

Bangor ME 0 0 57,921 98 0 58,019 

Table 1: This small mobility matrix is constructed from the mobility matrix mij for illustrative purposes.  

Each entry represents the passenger flow from city i to city j in the first ten months of the year 2011. 

 

 

2.2 – Network Attributes 

 The United States air transportation network and its corresponding mobility 

matrix not only provide passenger flow information, but also provide network centrality 

information.  For purposes of precision and because the data was available, network 

attributes were computed with respect to cities, rather than states.  A city’s importance for 

vaccination greatly depends upon the overall network structure and its position in the 

network.  From a network perspective, the salience of a city can be measured using 

several network attributes.  Therefore, I establish and compute various measures of node 

centrality in order to understand which network attributes are critical to disease 

propagation. 

 Let G = (V,E) be the entire United States air transportation network, V = the 

vertex set consisting of all cities in the U.S. air transportation network, E = the edge set 

consisting of all nonzero passenger flows (i,j) from i to j in the network, and  

|V| = h =1060 be the number of cities in the network.  The network attributes of interest 
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are degree centrality
2
, closeness centrality, betweenness centrality, and node significance.  

Note that paths and distances between nodes are defined by passenger flows, as each 

edge (i,j) bears a label denoting the number of passengers who flew from city i to city j in 

the first ten months of the year 2011.  Since nodes of high passenger inflow and outflow 

are of particular interest, all edge labels have been inverted
3
 prior to computing the 

closeness centrality, betweenness centrality, and node significance so that high passenger 

flow paths have short distance.  Recall the definitions of these attributes in equations (7) 

through (10): 
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where ki is the number of adjacencies of node i, wi is the aggregate weight of node i’s 

adjacencies, and α is a tuning parameter that accounts for the desired impact of degree 

and weight relative to one another on the degree centrality measure (Opsahl, Agneessens, 

& Skvoretz, 2010).  The in-degree and out-degree centrality measures )(iCw
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where dij is the shortest distance from node i to node j (Golbeck). 
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2
 Degree centrality is investigated in three categories: in-degree centrality, out-degree centrality, and net-

degree centrality.  These measures correspond to incoming edges, outgoing edges, and all edges, 

respectively. 
3
 Inverting an edge refers to taking its reciprocal.  For example, if an edge had weight 4 then its inverted 

edge would have weight 0.25. 
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where σst(i) is the number of shortest paths from node s to node t that include node i and 

σst is the total number of shortest paths between nodes s and t (Salathé & Jones, 2010). 


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where G is the network and dst is the distance of the shortest path from s to t.  These 

network attributes, as well as their components, are all bounded below by zero.  This 

feature implies that no particular component of a centrality measure can impact another.  

A negative component to a sum would lower the overall sum, whereas a zero component 

would merely fail to make it greater.  Thus, the above centrality measures accurately 

reflect a city’s importance from a network perspective because no component cancels 

another.  Observe that degree centrality depends upon the choice of α, and closeness 

centrality and node significance depend upon the choice of μ, the distance between nodes 

for which there is no path.  The reader is directed to Appendix 8.7, where these 

parameter-sensitivities are explored and addressed. 

The large size of the United States air transportation network as well as the 

complexity of the network attributes necessitate that network attribute data be generated 

by way of computer programs.  The degree centrality, closeness centrality, betweenness 

centrality, and node significance of each city iV are computed via the Network 

Attribute Suite written in the C++ programming language, created by Lindsay Shankman 

and Julian Aronowitz for this research project (Shankman and Aronowitz, 2012) based on 

my requirements and design.  Given a weighted adjacency matrix m = (mij), programs 

composing this suite compute the aforementioned attributes.  The generated network 

characteristics serve as data for the regression analysis portion of the project, discussed in 

Section 3. 
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2.3 – Social and Demographic Attributes 

 In addition to network attributes, social attributes are relevant to infectious disease 

spread.  The social attributes under consideration are total population, average family 

size, percentage of the population older than 65, median income, percentage of the 

population possessing a bachelor’s degree or higher, percentage of the population 

younger than 5, and average number of vehicles per household.  My rationales for testing 

these specific demographic characteristics are found below.   

1. Sheer population size is a pertinent social variable because disease spread likely 

depends upon the potential number of travelers available.  More individuals allow 

for more social interactions, and thus greater potential for disease spread.   

2. Family size is an appropriate social variable because, to an extent, disease spread 

likely depends upon family interactions.  If one family member contracts 

influenza, then others likely will.  Larger families might imply a higher 

probability having an infected family member, thereby implying an increased 

probability of disease spread.  Alternatively, single individuals might be more 

likely to travel than families, and thus more likely to contract disease.  Both 

hypotheses suppose that average family size is a pertinent to disease propagation.   

3. The proportion of the population sixty-five years or older is a relevant 

demographic variable because retirees are likely the most susceptible to infection 

in a population because of weak immune systems.   
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4. The proportion of the population younger than five years old is a pertinent 

demographic characteristic because young children typically spread germs to one 

another while in school.   

5. The number of cars per household is a pertinent demographic variable because it 

serves as a proxy for short-distance transportation.  A greater number of cars 

might imply more short-distance travel, as compared to long-distance travel 

indexed by the air transportation network, and thus greater opportunity for disease 

spread. 

6. Median income and proportion of the population possessing a bachelor’s degree 

or higher serve as proxies for the population’s hygienic habits.  Good hygienic 

habits might lower the probability of an individual contracting the disease. 

 Data for the social characteristics mentioned above was obtained from the Census 

Bureau’s American Factfinder.  All data are from the 2006-2010 American Community 

Survey and are taken at the state level (U.S. Census Bureau).   

 The dependent variable for this study is the degree of disease spread.  Data on 

influenza spread was obtained through Center for Disease Control weekly influenza 

activity maps.  Activity level definitions were obtained through the Center for Disease 

Control weekly overview.  The maps (CDC, 2011) portray the United States and color 

code each state by its disease activity level: no report, no activity, sporadic, local, 

regional, and widespread.  These activity levels are mutually exclusive.  Sporadic activity 

is defined to be “Small numbers of laboratory-confirmed influenza cases or a single 

laboratory-confirmed influenza outbreak has been reported, but there is no increase in 

cases of ILI.”  Local activity is defined to be “Outbreaks of influenza or increases in ILI 
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cases and recent laboratory-confirmed influenza in a single region of the state.”  Regional 

activity is defined to be “Outbreaks of influenza or increases in ILI and recent laboratory 

confirmed influenza in at least two but less than half the regions of the state with recent 

laboratory evidence of influenza in those regions.”  Widespread activity is defined to be 

“Outbreaks of influenza or increases in ILI cases and recent laboratory-confirmed 

influenza in at least half the regions of the state with recent laboratory evidence of 

influenza in the state” (CDC, 2011).  I excluded the “no report” category, as it represents 

missing data.  

 
Figure 1: CDC weekly influenza activity map. 

 

3 – Methodology 

 In order to determine optimal vaccination policies, I must first explore disease 

dynamics. There are two approaches to understanding disease dynamics: time-invariant 

modeling and time-variant modeling.  The former is analyzed through statistical methods 

and the latter is analyzed through dynamic methods; these are presented in Sections 3.1 

and 3.2, respectively.  The statistical analysis provides insight into the relationship 

between time-invariant factors, namely the demographic and network characteristics, and 

disease incidence.  However, this method pays no heed to how disease spreads from 
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place-to-place in real time.  The dynamic analysis predicts disease incidence in future 

times based upon current activity levels, but does not directly incorporate important time-

invariant factors in its predictions.  Both methods predict disease activity levels for each 

state in the United States.  A socially optimal vaccination policy can be issued based 

upon the understanding of disease dynamics gained from both modeling techniques.  The 

areas predicted to have especially high disease incidence should be the first to receive 

vaccine.   

 

3.1 – Statistical Analysis 

 Statistical analysis provides insight into the characteristics, both network and 

demographic, that play critical roles influencing disease incidence.  However, the 

observational units of the network data initially did not match those of the disease data.  

City is the observational unit of the network data, whereas state is the observational unit 

of the disease data.  State figures were computed based upon the state’s constituent cities’ 

sum, maximum, average, median, and geometric mean.  All five transformations were 

analyzed in an effort to determine which was not only most representative of the state 

level observational unit, but also which generates the greatest statistical relationship to 

influenza incidence. 

 Now both the independent variable as well as dependent variable observations 

bear the same units of observation, and statistical analysis is permissible.  To determine 

the pertinent explanatory variables, multiple linear regression was used for its simplicity 

and ease of interpretation. 
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3.2 – Dynamic Disease Model 

 The disadvantage of the statistical models discussed above is that they are time-

invariant.  Their incidence level predictions remain constant for all time, regardless of the 

current disease distribution.  The inherently static nature of the statistical models 

necessitates an additional dynamic component.  This method attempts to predict the 

disease incidence level in each state at time (t + 1) based upon the incidence level at time 

t.  In order to construct such a model, I make the following assertions: disease prevalence 

for a given state at time (t + 1) depends upon disease prevalence at time t, the number of 

infected individuals traveling to the state in question, and the overall growth rate (positive 

or negative) of disease spread.  Applying these assumptions, the dynamic model is 

proposed below. 

 Let ),...,,( ,52,2,1 tttt ssss 


 be the vector of disease activity levels for the United 

States, where a component si,t denotes the disease activity level of state i at time t.  Define 

a transition probability matrix Q = (Qij), where each entry Qij represents the probability 

that a passenger travels from city i to city j.  That is, given that an individual traveler 

resides at i, the entry Qij represents the probability that he or she will travel to j.  The 

matrix Q is constructed by taking each entry mij from the mobility matrix m = (mij) and 

dividing by its row sum.  The transition probability matrix corresponding to Table 1 can 

be found in Table 2 for demonstrative purposes.  Let θt be the average disease incidence 

level over the United States at time t.  Finally, let ]1,0[  be a parameter for purposes of 

computing a weighted average.  Then the dynamic disease model is the following: 

1

1 ])1([
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       (11) 
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This model computes an expected disease incidence vector for period (t + 1), given 

disease incidence in period t.  Each component of this vector is the expected value of 

disease incidence for its corresponding state.  Put another way, based upon the disease 

activity levels of the current period, this model predicts disease incidence next period.  

The t

T sQ


 term represents the influence of incoming infected passengers on disease 

incidence in time (t + 1).  Each entry of t

T sQ


 denotes the expected value of disease 

incidence as a result of air transport.  The transition probability matrix Q is transposed so 

that each entry correctly represents the probability of passenger arrival into j, rather than 

the probability of passenger departure from i.  Disease activity level in j depends on those 

arriving into j, not those leaving j to go elsewhere.  Ultimately, a weighted average of the 

expected value of disease activity level due to air travel and the disease activity level in 

the current period is taken, based upon γ.  Finally, the factor 
1t

t




 is the growth rate of 

disease propagation with respect to the current period and the one before.  It acts as a 

multiplier to inflate or deflate the expected disease vector based upon the dynamic 

growth rate of disease incidence over time.  Through empirical testing and error analysis, 

I determine γ such that error is minimized between the predicted 1ts


 and the actual 1ts


.   

  Kodiak Homer New 
York City 

Pittsburgh Bangor 

  AK  AK NY  PA ME 

Kodiak AK 0 1 0 0 0 

Homer AK 1 0 0 0 0 

New York 
City 

NY  0 0 0 0.852393 0.147607 

Pittsburgh PA 0 0 0.999683 0 0.000317 

Bangor ME 0 0 0.998311 0.001689 0 

Table 2: This transition probability matrix is constructed from the mobility matrix found in Table 1.  Each 

entry represents the probability of traveling from city i to city j. 
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4 – Policy Evaluation Methodology 

 Given a socially optimal vaccination policy determined by the machinery 

provided above, the fundamental question of “political feasibility” remains.  The socially 

optimal policy might not be ratified by a governing body if it is deemed too inequitable.  

For example, if too many states
4
 receive an insufficient number of vaccines, relative to 

their constituents’ vaccine demands, then the optimal allocation would be voted down.  It 

is important to note that the vaccine supply chain is vastly more complex than simply 

ratifying a bill, but states acquiring vaccines for further redistribution is a part of it.  

Thus, such analysis still provides insight into the “political feasibility” or “passability” 

problem: Given a socially optimal allocation, what is the nearest-to-optimal allocation 

such that it is ratified by Congress?  This politically feasible vaccination policy is a slight 

reallocation of vaccines from the socially optimal one.   

 Reallocated vaccines can be viewed as deviations from the socially optimal 

allocation.  Each state has its own corresponding deviation di, representing the difference 

in number of vaccines of the initial optimal allocation and the politically feasible one.  

Deviations can be either positive or negative.  The goal of the political feasibility 

problem is to minimize the aggregate deviations from the socially optimal vaccination 

policy.  However, there are several constraints as well.  First, no state’s deviation can be 

greater than the number of vaccines prescribed by the socially optimal policy.  That is, 

the minimum number of vaccines a state can have is zero.  Hence, one cannot reallocate 

more vaccines away from a particular state than it has to lose.  Next, a state’s 

representative, e.g. a senator, will only vote for an allocation if the state’s initial 

                                                 
4
 The region under consideration in this research is the state.  However, this optimization machinery could 

be readily applied to a region of any size, in which allocation decisions are made by a representative-voting 

process. 
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allocation plus its deviation are greater than or equal to the state’s vaccine demand.  

Constraints of this form have no unreasonable assumptions associated with them.  The 

only assumption is that a representative will approve a policy if his or her demands are 

satisfied.  This forms a well-defined optimization problem: 

Zd

pd
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iii

ii
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


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)(min 2



          (12) 

where di denotes the vaccine allocation deviation of State i from the socially optimal 

policy, αi denotes the initial socially optimal vaccine allocation to state i, pi denotes the 

vaccine demand of state i, and iE )(  denotes the expected disease activity level of state i. 

 Deviations are squared in the objective function so that the objective function is 

nonzero in general.  If deviations were linear in the objective function, then the number 

of vaccines reallocated away from one state and reallocated to another state would always 

net to zero.  Thus, the quadratic deviation terms in the objective function penalize, i.e. 

increase, the objective value for either a negative or a positive deviation.  An objective 

value of zero means that the socially optimal allocation is also politically feasible. 

 If the objective function were simply 
i

id 2
, then any state’s deviation would be 

treated the same.  Reallocating a vaccine away from a highly salient state would have the 

same impact on the objective function as reallocating a vaccine away from a relatively 

unimportant state.  This assumption would be unrealistic.  It is far worse to reduce the 

vaccine supply of the highly salient state.  Therefore, it is appropriate to weight each term 
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of the objective function by its corresponding salience.  The most intuitive measure of a 

state’s salience is its predicted disease activity level.  To incorporate the predictive power 

of the two frameworks presented above, some weighted average of the predicted levels 

could be computed.  Hence, the objective function is penalized more for a deviation from 

an important state, and takes the form  
i

ii dEA 2)( .   

 All constraints of the form iii pd   need not be satisfied.  A solution 

),...,,( 21 hdddd 


 is politically feasible if and only if T constraints of that form are 

satisfied, where T is the number of votes necessary to pass a bill into law.  In a simplified 

example using the U.S. senate, T = 26 where senators from the same state are assumed to 

vote in the same way.  Thus, this optimization problem cannot be solved using 

conventional methods.  Classical methods can solve optimization problems in which all 

constraints must be satisfied.  Therefore, the optimization problem presented above must 

be broken into several solvable problems so that a solution can be reached.  Since only 26 

constraints of the form iii pd   must be satisfied in the United States, construct all 

possible optimization problems consisting of 26 such constraints that indeed must be 

satisfied.  All possible optimization problems can be constructed by taking all 

combinations 








26

50
 of constraints of the form iii pd  .  Now each problem is in a 

form in which all constraints must be satisfied, and is thus solvable by classical methods.  

Each problem has a respective optimal solution.  Once all problems are solved, the 

optimal solution of the original problem is found by determining the solution d


 that 

satisfies }{min)( * AdA AA


, where A* is a minimum objective value to one of the 
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corresponding optimization problems constructed.  This solution corresponds to the 

minimum objective value over all such minima for all 








26

50
 optimization problems.  

Therefore, it is the optimal solution for (12).  Thus, the nearest-to-optimal politically 

feasible allocation policy has been found.  Hence, the optimization problem presented in 

(12) is mathematically decidable, but computationally impractical because of the 

immensely large number of intermediate constituent optimization problems that must be 

solved.  

 The political feasibility optimization problem and solution method not only apply 

to vaccine allocation, but also to any scarce resource allocation decided by government.  

There are likely unique methods of determining the socially optimal allocation of the 

particular resource.  Yet even after such a policy has been determined, the issue of 

political feasibility potentially remains in conflict with social optimality.  Thus, (12) and 

its solution technique apply in order to determine the allocation that is nearest to socially 

optimal but also politically feasible. 

 

5 – Data and Results 

This section details the results of the two modeling methods described in Section 

3: statistical modeling and dynamic modeling.   

 I use a multiple linear regression to determine the salient factors with regard to 

both disease incidence and propagation.  Note that node significance is not included in 

any regression because it proved to be computationally inefficient to compute.  

Consequently, no node significance data was available for analysis.  I am currently 

working on refining the implementation discussed in Appendix 8.6.   
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A regression coefficient represents the change in average influenza activity level 

on a five point scale, from a one unit change in its corresponding independent variable.  

First, I included only demographic characteristics as my control variables.  Then, I ran a 

regression with only network variables.  Additionally, I used the dynamic model 

proposed in Section 3 to account for influenza incidence changing with time. 

 

5.1 – Descriptive Statistics 

 Descriptive statistics for the demographic and network characteristics can be 

found in Tables 3-8, respectively.  Notice that the percentage of the population younger 

than five and older than sixty-five have means quite different from one another, 6.5% and 

13.3% respectively.  Further, the mean percentage of the population possessing a 

bachelor’s degree or higher is nearly double that of the retirees, at 27.5%.  Network 

attribute mean comparisons are discussed with respect to averages.  Closeness centrality 

has an extremely small mean of 0.00127, while the other measures are many orders of 

magnitude larger.  Out-degree centrality has a mean of 8,8914.3, nearly double that of 

betweenness centrality, 4,892.17.  

Variable Obs Mean 
Std. 
Dev. Min Max 

FluAvg 52 3.130134 0.406328 2.086957 4.04 

VehAvg 52 1.718764 0.17839 0.885344 1.996339 

TotPop 52 6009064 6764460 563626 3.73E+07 

FamilyAvg 52 3.077692 0.140177 2.83 3.56 

PctPoplt5 52 6.513462 0.763128 5.1 9.5 

PctPopgt65 52 13.29423 1.671141 7.8 17.4 

PctPopBach 52 27.46923 5.646743 17.3 49.2 

MedInc 52 51142.06 9455.192 18791 70647 

Table 3: Summary statistics for the demographic variables.  There are only 52 observations because each 

state, including Washington DC and Puerto Rico, is one data point. 
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Variable Obs Mean 
Std. 
Dev. Min Max 

SumofInDeg~y 52 925005.2 1208013 258.4205 5102152 

SumofOutDe~y 52 934258 1223175 208.0227 5202040 

SumofNetDe~y 52 1859862 2431991 467.209 1.03E+07 

SumofClose~y 52 0.025599 0.063293 0.001517 0.4674423 

SumofBetwe~y 52 85300.4 192826.3 0 1057671 

Table 4: Summary statistics for network attribute sums as representative state figures. 

 

Variable Obs Mean 
Std. 
Dev. Min Max 

MaxofInDeg~y 52 635310.5 776792.1 162.5822 2710146 

MaxofOutDe~y 52 642068.5 784706.3 122.4467 2721187 

MaxofNetDe~y 52 1277649 1561760 285.1145 5431475 

MaxofClose~y 52 0.001515 1.43E-05 0.001414 0.0015169 

MaxofBetwe~y 52 62548.77 123867.2 0 513381 

 Table 5: Summary statistics for network attribute maxima as representative state figures. 

 

Variable Obs Mean 
Std. 
Dev. Min Max 

AverageofI~y 52 88314.3 274135.5 64.60512 1988873 

AverageofO~y 52 88914.3 275140.7 52.00568 1995914 

AverageofN~y 52 177265.2 549311.6 116.8023 3985048 

AverageofC~y 52 0.001265 0.000171 0.000865 0.0015169 

AverageofB~y 52 4892.173 13513.94 0 93906 

Table 6: Summary statistics for network attribute averages as representative state figures. 

 

Variable Obs Mean 
Std. 
Dev. Min Max 

MedianInDe~y 52 40619.38 275497.4 4.65317 1988873 

MedianOutD~y 52 40744.84 276474.5 5.278152 1995914 

MedianNetD~y 52 81367.16 552008.2 9.815749 3985048 

MedianClos~y 52 0.001459 0.000125 0.000861 0.0015169 

MedianBetw~y 52 1842 13019.75 0 93906 

Table 7: Summary statistics for network attribute medians as representative state figures. 

 

Variable Obs Mean 
Std. 
Dev. Min Max 

Geo~eCentral 52 39178.41 275683.2 0 1988873 

G~OutDegre~a 52 39209.45 276673.8 0 1995914 

G~NetDegre~a 52 78524.37 552374.9 0 3985048 

Geo~sCentral 52 0.0011 0.000304 0 0.0015169 

Geom~sCentra 52 1805.885 13022.42 0 93906 

Table 8: Summary statistics for network attribute geometric means as representative state figures. 
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5.2 – Demographic Regression 

The statistical model under consideration is given below: 

FluAvg = β0 + β1*TotPop + β2*FamilyAvg + β3PctPopgt65 + β4*MedInc + ε   (13) 

The small number of observations and potential for multi-collinearity required that 

several demographic variables be excluded from the model.  The results for this 

regression are reported in Table 9.  The symbols *,**,*** indicate significance at the 

10%, 5%, and 1% levels, respectively.   

The results in Table 9 suggest that a state’s total population, average family size, 

and median income all contribute to a State’s influenza activity level.  Contrary to the 

results found in Shaw et. al (2010), larger populations are found to increase disease 

incidence, rather than decrease it.  Shaw et al. justify their findings by arguing that a 

small group of infected individuals forms a greater proportion of a small population as 

compared to the same small group in a large population.  This finding is thought to 

explain why disease spreads more quickly within smaller populations.  However, my 

contrasting finding is intuitive because larger populations likely contain more susceptible 

individuals by nature of population composition.  Further, there is greater potential for 

more social interactions within a large population.  Thus, an infected individual has more 

opportunity to spread disease and ultimately infect more people.  This process is assumed 

to occur iteratively.  The results in Table 9 show that a state with a population 10 million 

people greater than another state is expected to have an average influenza activity level 

0.245 points higher on a scale from 1 to 5.   

Additionally, the positive effect of median income on disease incidence agrees 

with theory if the time-frame is before vaccines have been distributed.  A state with 
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median income $10,000 higher than another state is expected to have an average disease 

incidence 0.198 points higher on a scale from 1 to 5.  Wealthier individuals are more 

likely to travel and engage in numerous social interactions.  Thus, if infected, wealthier 

individuals are more likely to spread disease.  However, if the time-horizon is during or 

after vaccine-distribution, then it would make intuitive sense to assume that wealthier 

individuals are the least effective vehicles of disease spread.  As they have access to 

better healthcare, they should be able to afford medicine and vaccines.  Then increases in 

median income would lead to expected decreases in disease incidence level.  In this 

situation, the median income relationship found is inconsistent with theory.     

The effect of average family size on disease incidence acts in contrast to my 

expectations.  It would be sensible to assume that larger families are more likely to 

contract influenza, as more individuals engage in more social interactions and can then 

spread the disease contracted throughout the household.  However, single individuals 

may travel short distances within and across states more often than those who are part of 

a larger family.  Thus, areas with high singles populations may be expected to have 

higher disease incidence levels, resulting from additional short-distance travel.  This 

explanation would validate the statistically significant negative coefficient found for 

average family size.  Further, the negative effect of the proportion of individuals older 

than sixty-five years of age on disease incidence also acts in contrast to theory’s 

predictions, as one might predict that older people are more susceptible to influenza.  

However, the coefficient on this variable is not statistically significant at any 

conventional level.   
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FluAvg Coef. Std. Err. t P>t 

TotPop/10
-8

 2.45 .798 3.07 0.004*** 

FamilyAvg -1.521163 0.480806 -3.16 0.003*** 

PctPopgt65 -0.0378434 0.037014 -1.02 0.312 

MedInc/10
-5

 1.98 .549 3.6 0.001*** 

_cons 7.15604 1.78466 4.01 0 

Table 9: Multiple regression results for demographic characteristics.  All coefficients are statistically 

significant at the 10%, 5%, or 1% levels. 
 

5.3 – Raw Network Attribute Regression 

Observe that closeness centrality values are extremely small with little variation, 

while the rest of the network attributes have very large values with great variation.  As 

seen from Tables 10-12, this trend is not sensitive to the aggregation technique.   

 A regression was run for each of the state-aggregation techniques.  

Unsurprisingly, all three degree centrality measures were perfectly correlated with one 

another for all state aggregated figures, namely sum, maximum, average, median, and 

geometric mean.  For all state aggregated figures, closeness centrality was found to be 

weakly correlated with all degree centrality measures.  Betweenness centrality was found 

to be relatively correlated with all three degree centrality measures for the summation and 

maximum state representative figures.  However, betweenness centrality was found to be 

nearly perfectly, or perfectly, correlated with all three degree centrality measures for the 

remaining state representative figures of average, median, and geometric mean.   

Network attributes were expected to have positive effects on disease incidence.  

That is, an increase in a network variable was expected to increase disease activity level.  

While I found that several network coefficients bear the sign theory would predict, the 

standard error on each tended to be large.  Across all regression models, betweenness 
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centrality and degree centrality seemed to have the greatest explanatory power.  The 

state-aggregation techniques that indicated to the most statistically significant 

relationships were sum, maximum, and average.  The network characteristic regression 

results can be found in Tables 10-12. 

 

FluAvg Coef. Std. Err. t P>t 

SumofBetwe~y/10
-7

 4.78 2.90 1.65 0.106 

_cons 3.089364 0.060703 50.89 0 

Table 10: Regression results for summation as state representative figures.  This is the most informative 

regression of both simple and multiple linear regressions run involving summation data.   

 

FluAvg Coef. Std. Err. t P>t 

MaxofBetwe~y/10
-7

 7.36 4.52 1.63 0.11 

_cons 3.084076 0.062249 49.54 0 

Table 11: Regression results for maxima as state representative figures.  This is the most informative 

regression of both simple and multiple linear regressions involving maxima data. 
 

FluAvg Coef. Std. Err. t P>t 

AverageofB~y/10
-5

 2.25 1.64 1.37 0.178 

AverageofN~y/10
-7

 -6.44 4.04 -1.59 0.118 

_cons 3.134365 0.059723 52.48 0 

Table 12: Regression results for averages as state representative figures.  This is the most informative 

regression of both simple and multiple linear regressions involving averages data. 
 

5.4 – Dynamic Model Results 

 The dynamic model proposed in Section 3.2 was constructed in Microsoft Office 

Excel 2010.  Recall the dynamic disease model: 

1
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      (11)

 

where ),...,,( ,52,2,1 tttt ssss 


 is the vector of disease activity levels for the United States at 

time t, and Q = (Qij) is the transition probability matrix.  Disease vectors at time t input 

into the model came from the Center for Disease Control 2011 data.   
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In order to maximize the predictive power of the model, the parameter γ was 

varied from 0 to 1 in increments of 0.1 for four adjacent periods.  I sought to find the γ for 

which predictive error was minimized, where error is defined to be the sum of squared 

error for each state totaled over the four periods.  Error was minimized for γ = 1, 

implying that the transportation component of the dynamic model is irrelevant, and that 

future disease incidence in a state depends exclusively upon current disease incidence in 

that state.   

This finding makes no intuitive sense, which prompted thorough investigation of 

the Center for Disease Control data.  Not only does the data exhibit little variation from 

state to state by nature of the measurement scale, but also exhibits little to no variation 

across several adjacent weeks.  Since the data was inadequate for analysis, no results are 

provided here.  The lack of variation explains the nonsensical finding that the best 

prediction of disease incidence in period (t + 1) is to predict the exact same disease 

incidence in period t.  A more thorough exploration of the measurement error and general 

problems with the Center for Disease Control data is found in Section 6.1.  The dynamic 

model would likely be best applied to a data set in which the observations are estimations 

of the number of influenza cases by state.  Such a data set would exhibit more variation 

from week to week and from state to state. 

 

6 – Discussion  

6.1 – Data Limitations 

 While the statistical and dynamic methods presented above are sound, the 

influenza data proved to be extremely imprecise.  The data exhibited little to no variation 
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across time within states
5
, and minor variation between states within a particular week.  

Recall that disease data was obtained from Center for Disease Control weekly influenza 

activity maps.  The disease incidence scale is only measured in five broad categories, 

which by nature do not allow for much variation in the influenza data.  The five disease 

activity levels are too general to provide any meaningful comparisons between states or 

weeks.  For example, two states may both be classified as disease category 4, but in 

reality differ greatly from one another regarding disease incidence.  Under the current 

measurement system, one state might truly be a category 4.2 and the other a category 4.9.  

Yet both are expressed as category 4.  Further, if a given state has been at disease activity 

level 5 for four consecutive weeks, there is no way of determining whether disease is 

becoming more or less prevalent there over time.  The broad nature of the disease activity 

level only allows for massive changes in disease incidence to be detected over time.   

There are numerous measures of influenza incidence that are more informative 

than the one published in the Center for Disease Control weekly activity maps.  The ideal 

measure would be the estimated number of cases or deaths within a state.  Such a 

measure would exhibit the true concept of disease incidence, and represent the exact 

impact on a particular state at a particular time.  An alternative measure more along the 

order of the current Center for Disease Control measure would be the percent of localities 

in a particular state infected beyond a certain threshold of infected individuals.  While 

such data would exhibit measurement error, it is much more representative of disease 

incidence than broad categories. 

                                                 
5
 After I completed my analysis, I was alerted by the CDC of some errors in the data.  Through email 

correspondence, the CDC specifically informed me that influenza maps have not always been updated on a 

weekly basis. 



- 39 - 

Next, the observational unit of the Center for Disease Control is the state, rather 

than the city.  Smaller observational units lend themselves to more precise analysis.  The 

size of the observational unit limits the analysis of disease dynamics to the unit itself, and 

larger.  Thus, any insight into socially optimal vaccination policies that empirical analysis 

at the city level could provide is impossible, given the existing public influenza data.  

Hence, if influenza data were available in some form at the city level, more accurate 

statistical and dynamic modeling would be possible.  City level data would allow for 

more observations regarding statistical modeling.  Additionally, it would allow for 

disease vectors of more components, regarding dynamic modeling.  Therefore, more 

precise error analysis could be conducted, making for a more accurate estimation of γ. 

 If more precise influenza data were available, the same statistical specifications 

could be applied, potentially resulting in statistically significant network coefficients.  

Further, the same dynamic model could be applied to influenza data containing 

representative variation.  Then the true role of air transportation on disease propagation 

could be more reliably tested.  It is imperative that the statistical and dynamic modeling 

techniques be applied to influenza data sets with minimal measurement error.   

 

6.2 – Vaccine Allocation Policy 

The statistical and dynamic frameworks presented in this research provide modes 

for understanding heterogeneous multi-region disease dynamics and, ultimately, how to 

rank areas by importance for vaccination.  Areas that are expected to not only have high 

disease incidence, but also lead to disease propagation should be allocated vaccines first.  

Given the scarcity of vaccines, areas must be ranked by expected incidence level.   
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The statistical and dynamic approaches each offer distinct ranking criteria.  The 

statistical models proposed take relevant regional characteristics into account for ranking, 

without any regard to time or current disease incidence.  The dynamic model proposed 

takes time and current disease incidence into account for ranking, without any regard to 

relevant regional characteristics.  Both methods predict disease incidence levels, and 

could be readily applied to data sets of the preferred type discussed in Section 6.1.  Each 

addresses the shortcomings of the other.  Thus, an informed policy decision must 

necessarily incorporate both approaches.  Practically speaking, this means that policy-

makers must take all facets of disease propagation into consideration.  Mathematically 

speaking, one way to rank regions would be by the following decision rule: 

dsf aaa )1(               (14) 

where af, as, and ad denote the final, statistically predicted, and dynamically predicted 

disease incidence levels, respectively, and ]1,0[ is a parameter representing the policy 

maker’s weighting of the two predicted activity levels.  The policy-maker would then 

proceed to rank regions based upon the activity level generated by (14). 

However, the decision rule is not complete without a designated number of 

vaccines to be allocated to an area of high rank.  If a region is selected for vaccination, 

the number of vaccines appropriated should be sufficient to curb the epidemic within the 

given region’s population.  Anderson and May (1991) demonstrated that this figure is 

exactly the critical proportion of vaccination: 

0

1
1

R
pc           (15) 

where R0 is the basic reproduction number, defined in Section 1.1.  This proportion is 

based upon a single-population SIR model, which is discussed at length in Appendix 8.1.  
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For simplicity, the critical proportion is assumed to be uniform across all regions.  To 

challenge this assumption, precise measurements of R0 in each region would be 

necessary.  While the proportion is uniform, the number of vaccines allocated to any two 

selected regions will be different because of the difference in population sizes.   

Now, a complete decision process for socially optimal vaccination policy can be 

defined: 

1. Rank regions
6
 by importance for vaccination by their predicted incidence levels. 

2. If a region is selected
7
 for vaccination, vaccinate it level to pc. 

3. Return to step 1 and continue allocating vaccine until the supply is exhausted. 

The dynamic element of this decision process integrates well with the complexity 

of the vaccine supply chain.  All vaccine doses for a given season are not available at one 

time.  Therefore, policy decisions for allocation cannot be made only once, but must be 

made several times over the course of a season.  As new supplies of vaccines become 

available for distribution, the decision process can be run.  Each time allocation decisions 

are made, the rankings can be updated based upon current disease prevalence. 

The methods presented in this research can be readily applied to determining 

socially optimal vaccination policies with respect to contagious diseases other than 

influenza.  The exact relationships between various factors and influenza incidence may 

not hold for some other infectious disease, but the same methods of analysis can be 

applied to determine the case-by-case relationships.  Similarly, the optimization 

framework presented in Section 4 can also be applied to determining politically feasible, 

                                                 
6
 “Region” refers to the observational unit of the data.  In this research, the CDC data limited me to the 

state, rather than the city.  But the decision process most aptly applies to cities. 
7
 The methods discussed could be applied to an observational unit of any size, depending on the data.  As 

discussed in Section 6.1, the ideal data would be at the city level.  Then every state would likely receive 

vaccines.   
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yet nearly socially optimal, allocations of any scarce resource.  Therefore, the above 

decision process can be revised: 

1. Rank regions by importance for vaccination by their predicted incidence levels. 

2. If a region is selected for vaccination, vaccinate it level to pc. 

3. Return to step 1 and continue allocating vaccine until the supply is exhausted. 

4. Apply (12) to reallocate some vaccines to reach a politically feasible solution. 

But in order to apply the optimization technique, some socially optimal 

benchmark must first be declared.  As discussed in Section 4, the solution technique 

proposed is intuitively appealing, but algorithmically impractical. 

 

7 – Conclusion 

 This research provides novel analytical methods for determining socially optimal 

vaccination policies.  The methods proposed capture both the time-invariant and time-

variant components of disease propagation.  Additionally, the techniques presented 

incorporate both demographic and network characteristics, as opposed to exclusively one 

or the other.   

The computational and algorithmic methods proposed for computing the 

centrality measures themselves solve several algorithmic network problems.  Also, a new 

and precise centrality measure, node significance, was proposed.  The reader is directed 

to Appendices 8.2-8.6 for detailed descriptions of network centrality algorithms.  The 

testing and comparison of these various network attributes to one another with respect to 

disease spread has not been done before.  The ability to compute these centrality 

measures enables future research in the areas of epidemiology and network analysis.   
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xy
dt

dx


y
dt

dz


 This research proposes novel methods and machinery that can be readily applied 

to a myriad of problems in both network analysis and resource allocation.  Regarding 

network analysis, any centrality measure can be tested for relevance to a diffusion 

process along a network using the statistical methods discussed.  Additionally, any time-

variant diffusion process can be analyzed through the dynamic methods discussed.  

Further, the optimization problem proposed in (12) can be applied to resource allocation 

problems, especially when the resource is scarce.  Yet more efficient algorithms for 

solving (12) must first be developed.  The machinery developed in (12) can also be 

extended to resource allocation problems facing any decision-making entity, from a non-

profit organization to a for-profit corporation. 

 

8 – Appendices 

 Appendix 8.1 describes the single-population SIR model indirectly used in this 

research. Appendices 8.2-8.7 describe the algorithms implemented for network attributes. 

Appendix 8.1 – SIR Model 

To model disease propagation within a particular state, I use an SIR ordinary 

differential equations model in which infected individuals can travel.  The model consists 

of the standard disease compartments: Susceptible, Infected, Removed.  Intra-state 

disease dynamics are described by the following system: 

 

(15) 

(16) 

         (17) 

yxy
dt

dy
 
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where x(t), y(t), and z(t) are respectively, the susceptible, infective, and removal functions 

of time, and β and γ are the infection and removal parameters respectively.  Note that 

 β, γ > 0.  I assume that the entire population of a given state is of fixed size N for the 

duration of any influenza season and that individuals mix homogeneously.  The three 

equations below describe the disease compartment distribution for all time.  The entire 

population of any state can be represented by these mutually exclusive disease 

compartments for all time, as seen in (18).  Equation (19) specifies the same relationship 

at the state level.  Finally, I assume that the aggregate population of all states under 

consideration is equal to the total United States population, as seen in (20). 

x + y + z = N          (18) 

xi + yi + zi = ni for all i       (19) 

 
i

i Nn           (20) 

where ni is the population of state i, and xi, yi, and  zi are the susceptible, infected, and 

removed populations of state i respectively.  I also assume all state populations to be 

fixed for the duration of any influenza season. 

This model differs from the SAIR model presented in Shaw et. al. (2010) in that it 

does not include an asymptomatic disease compartment.  My model is the standard SIR 

model, and consequently assumes that removal is the terminal disease state.  That is, once 

an individual leaves the susceptible compartment he cannot return to it and once an 

individual enters the removed disease compartment he cannot leave it.  This model more 

aptly reflects a time horizon of a given influenza season because compartmental change 

from removal would not change until the following season.  The transitions between 

states can be seen in Figure 1. 
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Figure 1: SIR state diagram.  The infection parameters can also be viewed as probabilities 

of transitioning from one disease compartment to another. 

 

Appendix 8.2– Degree Centrality 

The degree centrality program requires determining two parameters and one input 

value: Δα, the size of the mobility matrix m, and the mobility matrix m itself, 

respectively.  These parameters and inputs will be discussed below.  The degree 

centrality measure has two components: the number of edges incident to a node i, and the 

cumulative weight of those edges.  The input to the Degree Centrality program is the 

mobility matrix m.  Without loss of generality, I discuss the algorithm for computing out-

degree centrality in this appendix.  The method for computing in-degree centrality of a 

node i is identical except that it involves a scan of column i, rather than row i.   

To compute the out-degree centrality of a node i, scan through row i of matrix m.  

A zero entry implies that there is no edge from i to j.  Each nonzero entry in row i 

represents an edge originating at node i and terminating at some other node j.  Thus, to 

compute the number of edges, sum the number of nonzero entries in row i.  Every 

nonzero entry detected in row i adds one to the running total of the out-degree edge 

counter for node i.  Simultaneously, the program computes the cumulative out-degree 

edge-weight of node i.  Each time the scan of row i detects a nonzero entry (i,j), the value 

Susceptible 

Infected Removed 

β 

γ 
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of the entry itself is added to the running out-degree edge-weight subtotal.  Hence, when 

the row scan is complete, the program has computed the number of edges incident to 

node i as well as the cumulative edge-weight of edges originating at node i.  Now, the 

program can substitute this information into equation (3).   

The only remaining component of degree centrality left unspecified is the 

parameter α.  For the purposes of this research, it is sensible to declare a node more 

central than another with the same cumulative edge-weight if the former has more 

neighbors.  Therefore, the tuning parameter )1,0( , as discussed in Opsahl et. al. 

(2010).  However, there is no particular value of )1,0(  that can be justified as the 

correct tuning parameter any more than any other.  Thus, it is imperative to compute a 

value for degree centrality that is representative of the open interval (0,1).  This is done 

by computing a degree centrality value for a node i for each value of α in (0,1) in 

increments of Δα, which is a parameter required to be set before running the program.  

The degree centrality value for each α from [0 + Δα, 1 – Δα] is computed so that the 

interval is closed rather than open.  Otherwise, the program would be unable to compute 

the infinite number of values in the open interval (0,1).  Once a degree centrality value 

has been computed for all values of α in [0 + Δα, 1 – Δα] in increments of Δα, the 

program takes an average of these values.  This average degree centrality value is 

representative of the )1,0(  because a node that is frequently central for many choices 

of α should be treated as a highly central node, in terms of degree centrality. 

The program performs the algorithm discussed above for each node Vi , where 

V is the Vertex set.  Recall, there are 1060 nodes in the vertex set of the air transportation 

network under consideration. 
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Appendix 8.3– Dijkstra’s Algorithm and Shortest Path Construction 

 In order to compute the remaining three network attributes, namely closeness 

centrality, betweenness centrality, and node significance, shortest paths between all pairs 

of nodes s and t in the network must be established.  Shortest paths between pairs of 

nodes are computed using Dijkstra’s Shortest Path Algorithm (Dijkstra, 1959).  Note that 

Dijkstra’s Algorithm does not check for the uniqueness of shortest paths.  Theoretically, 

there might exist several shortest paths from a source-node s to a terminal node t.  

Shortest path computation stops once one such shortest path is found.  Hence, this 

implementation potentially does not account for all shortest paths in the network, as some 

may not be unique.  I refer to this as the “shortest path uniqueness problem.”  The 

number of shortest paths in the network unaccounted for is negligible because of the size 

of the network and the variation in passenger flows. 

One at a time, each node in V is designated the source node s.  For each node s, 

Dijkstra’s algorithm outputs a distance array [d1, …, dn] as well as a predecessor array 

[p1, …, pn].  A component dj of the distance array denotes the shortest path distance from 

the source node s to node j.  Recall that all entries of the original mobility matrix m have 

been inverted.  Hence, the shortest path distance from s to j is the sum of the reciprocals 

of the constituent elements of m, which represent the edges in the shortest path.  Put 

another way, the shortest path distance from s to j is the sum of inverted passenger flows 

of intermediate edges in the path.  Therefore, the maximum weight a particular edge can 

have, post-inversion, is 1.  For example, if dj = 5, the shortest path distance from s to j is 

5.  The distance ds from s to itself is always zero.   
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It is convention in the field of network analysis to say that s is distance infinity 

from j if there does not exist a path from s to j.  However, applying this convention would 

homogenize any centrality measure involving distance, thereby rendering the measure 

meaningless.  If nodes j and k have no path to some other node in the network, both j and 

k will have distance infinity as a component of any centrality measure dependent on 

distance.  Thus, both j and k would have a centrality measure of either ∞ or 1/∞ = 0, 

depending on the measure under consideration.  However, the other components of the 

centrality measure may differ greatly between j and k.  But those differences are not 

reflected because they are “overpowered” by the infinity term.  Thus, it is imperative to 

develop a notion for the “infinity distance” that addresses this homogenization problem.  

The infinity distance must therefore be a real number, but not so large that the 

homogenization problem happens anyway.  Yet it must be sufficiently large so as to 

penalize a node’s centrality measure more than a long path distance would.  Additionally, 

the infinity distance should be based upon the network itself.  I designate the infinity 

distance to be d∞ = D , where μ is a parameter set before running the program, and  

D = ijij dmax , the longest length of any finite shortest path in the network.  Since the 

infinity distance must necessarily be greater than the length of any shortest path in the 

network, μ > 1.  Depending on the network, one may have to experiment with varying 

values of μ in order to output a meaningful distance-dependent centrality measure.  For 

purposes of this research, μ was set to 2.  I discuss the rationale in Appendix 8.7.  Finally, 

it is important to note that the infinity distance was not determined recursively.  In order 

to compute D , finite distances must exist for all pairs of nodes in the network.  

Algorithmically, if there does not exist a path from i to j, a distance dij = -1 is designated 
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in the predecessor array.  Then, to determine D, the program scans the distance array and 

locates the largest value.  This value must be the greatest length of a finite shortest path in 

the network because all “infinite” distances have been set to -1. 

A component pj of the predecessor array denotes the predecessor node to j in the 

shortest path from s to j.  For example, if pj = 8, node number 8 is the node that comes 

before node j in the shortest path.  Since predecessor array values are node numbers, they 

must be integers.  A -1 in the predecessor array indicates that either that spot in the 

predecessor array is the source node, or that there is no path from s to j.  If pj = -1, then 

there is no path from s to j.  To determine the path from s to j, we use the predecessor 

array to trace the path backwards from j to s.  In the above example, if pj = 8, the next 

iteration of path tracing is to go to component p8 in the predecessor array.  This is done 

iteratively until a -1 value is reached, indicating the path from s to j has been completely 

traced backwards from j to s. 

 

Appendix 8.4 – Closeness Centrality 

 Closeness centrality is entirely dependent on shortest path distance.  To compute 

the closeness centrality of a node i, the program sets i equal to the source node s in the 

Dijkstra framework.  Dijkstra’s algorithm now outputs a distance array with respect to the 

node i=s.  This array represents the distance from i to all other nodes in the network.  

Summing all components in the array 



n

j

ijinii dddd
1

21 ...  is the cumulative distance 

from i to all other nodes in the network.  The closeness centrality of i is simply the 

reciprocal of this value.  Note that closeness centrality is solely dependent upon shortest 

path distance, irrespective of the actual number of shortest paths.  Hence, closeness 
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centrality is unaffected by the shortest path uniqueness problem discussed in Appendix 

8.3.  

 

Appendix 8.5 – Betweenness Centrality 

 Betweenness centrality is not directly dependent on distance, but on paths 

themselves and their constituent nodes.  Thus, the predecessor array, rather than the 

distance array, is used in the betweenness centrality program.  The program constructs an 

output matrix that keeps track of the betweenness centrality of each node.  As the 

algorithm performs, a running subtotal of the betweenness centrality of each node is 

maintained.  A given predecessor array is with respect to a particular Vs , and specifies 

the nodes in paths to all other Vt .  The program iterates on s from 1 to 1060, 

performing the operations described below for each Vs .  First, the predecessor array 

with respect to s is scanned.  If there is no path from s to that particular t, then the 

program places a null value in component t of the predecessor array.  This null 

component indicates that there is no path from s to t.  If the node number of source node s 

is in component j of the predecessor array, then there is a direct edge from s to j.  Further, 

this direct edge is the shortest path from s to j.  If there is a node number for some node 

sw   in component j of the predecessor array, then w is an intermediary node in the path 

from s to j.  Now, add one to the running betweenness centrality subtotal for w.  Every 

time a node w is detected as part of a path from some s to some t, the betweenness 

centrality subtotal for w is increased by one.  This process is conducted by scanning 

through the shortest paths from s to all t in the predecessor array.  Within a given 

predecessor array, a particular t is specified one at a time.  The path from s to t is traced 
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backwards and the betweenness centrality output matrix of all nodes w in the path from s 

to t, σst, is updated until node s is reached in the predecessor array.  Now, for the same s, 

the program iterates on t until all t from 1 to 1060 have been investigated.  Once this 

process is completed for all nodes t, s is increased by one and the process is repeated until 

all s from 1 to 1060 have been investigated.  Note that shortest paths to all t are 

investigated for each s, and there is a predecessor array generated and scanned for each s.  

Thus, all possible node pairs (s,t) have been checked.  Note that betweenness centrality is 

affected by the shortest path uniqueness problem discussed in Appendix 8.3. 

 

Appendix 8.6 – Node Significance 

 The node significance program uses two adjacency matrices, multiple stacks, and 

an output matrix for its computations.  The adjacency matrix elements are edge weights, 

which are passenger flows, post-inversion.  One of the adjacency matrices, mf, will be 

fixed and the other, mc, changeable.  The relationship between the two matrices is 

described below.  All computations necessary for node significance are performed 

simultaneously with those for betweenness centrality.  The node significance program 

computes based upon a running subtotal for each node.  The node significance of all 

nodes is initialized to be zero in the node significance output matrix.  First, all negative 

terms of the summation are found and added together.  Then, all positive terms of the 

summation are found and added to the running subtotal, resulting in the node significance 

for node i. 

 Stacks are formed for each node Vi , based upon the betweenness centrality 

output matrix.  Initially, the stack corresponding to each node is empty.  When i is 
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detected to be in the shortest path from some s to some t, that particular pair of s and t are 

added to the top of the i
th

 stack.  When s and t are added to the i
th

 stack, the program calls 

the distance array corresponding to the node on the top of the stack, denoted s1 as it is in 

the first source-node position on the stack.  This distance array tells us the distance from 

s1 to all other nodes in the network.  The t1 component of the array, dt1, is the shortest 

path distance from s1 to t1 in the original network G.  Thus, the negation of this value is 

the negative part of the summation term for the path from s1 to t1.  The positive part of 

this term is computed after all negative terms of the summation have been computed.  

The value –dt1 is then added to the running subtotal for cs(i).  This process is done 

iteratively for all Vts , . 

 Now, all negative terms of the node significance summations have been found.  

The current node significance values for any node Vi  are either negative or zero.  If 

the original stack size for node i was zero, then the node significance of i is zero because 

i is never part of a shortest path from some s to some t in the network.  Thus, its removal 

from the network does not penalize the length of any shortest path.  All nodes for which 

the j
th

 stack was nonempty currently have a negative value for node significance.  The 

positive terms must be computed and added to the summation in order to compute 

accurate node significance values.  Now, the program scans all stacks in order of node 

number, from 1 to 1060.  If a stack is empty, then the program continues scanning onto 

the next stack.  If the i
th

 stack is nonempty, the i
th

 row and i
th

 column of the changeable 

adjacency matrix mc are set to zero.  This “zeroing” of the i
th

 row and column effectively 

removes i from the network because all edges incident to i are removed by replacing their 

weight with zero in mc.  Denote this matrix as mc’.  Hence, node i is now isolated in that 
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there is no path from or to i from any other node.  Dijkstra’s algorithm is then applied to 

mc’.  Now, the distance array corresponding to the source node s on top of stack i, 

denoted s1, is viewed.  The distance array generated by Dijkstra’s algorithm represents 

the distance from s1 to all other nodes in the network, given that node i has been 

removed.  The element dt1 of that distance array, corresponding to the terminal node on 

top of stack i, is the positive term of the node significance summation from s1 to t1.  This 

term is added to the running subtotal for i in the node significance output matrix.  Once 

this process is complete, s1 and t1 are removed from stack i.  The process is repeated for 

s2 and t2, the new top of stack i.  If at this point, s2 = s1, remove s2 from the stack and 

check the associated t2 on the stack.  Since s2 = s1, the same distance array generated with 

respect to s1 can be used to determine the positive term to be added to the node 

significance output matrix for i.  Now, the element dt2 will be added to the node 

significance of i.  Note that t2 is necessarily different than t1.  The program iterates until 

stack i is empty.  Then it proceeds to the next stack, (i+1), iteratively.  When all stacks 

have been checked, the node significance for each node in the network has been 

computed.  Note that node significance is solely dependent upon shortest path distance, 

irrespective of the actual number of shortest paths.  Hence, node significance is 

unaffected by the shortest path uniqueness problem discussed in Appendix 8.3. 

 

Appendix 8.7 – Sensitivity Analysis of Network Attribute Parameters 

 Before any statistical analysis could be performed on the network attributes, the 

attributes themselves had to be accurately computed.  The exact values of the network 
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attributes degree centrality
8
 as well as closeness centrality are affected by the choice of 

the parameters Δα and μ, respectively.  Thus, I performed a sensitivity analysis for each 

measure to determine how the rank of a given city was affected based on the parameter 

change.  It is important to note that for these sensitivity analyses no aggregation 

technique was used.  The raw network data at the city level was analyzed.  Hence, I am 

confident in the results of these analyses.  All cities were ranked in descending order 

based upon their in-degree centrality, out-degree centrality, and net-degree centrality for 

Δα = 0.01, 0.001.  That is, the city of highest degree centrality was ranked number 1, the 

next highest ranked number 2, and onwards.  Cities were also ranked in descending order 

based upon their closeness centrality for μ = 2,3.   

 Next, I found the correlation between the rankings corresponding to each 

parameter of each of the degree and closeness centrality measures.  The results of these 

sensitivity analyses can be found in Table 13.  As seen in Table 13, the centrality measure 

rankings are not sensitive to changes in parameters.  All rankings for a particular measure 

are nearly perfectly correlated, indicating that virtually no rankings change based upon a 

parameter change.  Consequently, for precision Δα = 0.001 was selected and for 

heterogeneity μ = 2 was selected for purposes of the statistical analysis of this research.  

A small Δα ensures a precise measurement of degree centrality, as more outputs are 

computed and averaged to form a representative figure.  A small μ ensures that a large, 

penalizing distance is assigned to pairs of nodes for which there exists no path, but not 

too large.  If too large a distance had been designated the “infinity distance,” then the 

                                                 
8
 All degree centrality measures are affected by the choice of α, namely in-degree centrality, out-degree 

centrality, and net-degree centrality. 
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closeness centrality of most cities would be nearly identical.  If this were the case, then 

the closeness centrality measure would hold no meaning.  

Centrality 
Measure Correlation 

In-degree 0.99999737 

Out-degree 0.99999713 

Net-degree 0.99999681 

Closeness 0.99999562 

Table 13: Correlations between rankings corresponding to Δα = 0.01, 0.001 for each degree centrality 

measure, and rankings corresponding to μ = 2,3 for the closeness centrality measure. 
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