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Abstract—This paper describes a model of distributed co-
ordination in which leaders are required to recruit teams of
followers according to a minimum team size constraint. The
objective is to reach a state in which all possible followersare
recruited and all team size constraints are satisfied. We propose a
simple, distributed algorithm for group formation and anal yze its
performance. The algorithm is suitable to model human behavior,
being memoryless and with minimum computation requirements.
Our results show that while in any network all followers are
recruited in a time that is linear in the network size, there are
networks in which ensuring a minimum team size constraint
may require a number of rounds that is exponentially large
in the network size. On the other hand, our algorithm always
converges to anapproximate solution in polynomial time, namely
the leaders quickly form teams in which the total number of
additional followers required to satisfy all team size constraints
is an arbitrarily small fraction of the entire population.

I. Introduction

The discovery of the algorithmic processes governing hu-
mans’ behavior over networks is of interest in a variety of
contexts, ranging from sociology and economics to tactical
scenarios of soldiers deployed in foreign countries. This paper
attempts to provide a model of human behavior in a distributed
coordination game of team formation. Consider, for example,
a set of agents being deployed undercover in a foreign country.
These agents cannot communicate among each other and have
no access to a central infrastructure. Their objective is each
to recruit a team of multiple followers in order to perform
a certain task. Hence, each leader aims to recruit a certain
number of followers, each follower can join only one leader,
and all leaders want to reach a state in which all team size
constraints are satisfied. We give a simple mathematical model
of the above situation, propose a “human-like” algorithm to
solve this coordination task and study its performance in terms
of convergence to a stable solution. The proposed algorithmis
suitable to model human behavior, being memoryless and with
minimum computation requirements. Our approach follows
the one of our previous work on matching [2] in which the
coordination task was limited to teams of size two (composed
of one leader and one follower only). In [2] we also validated
theoretical results with experiments on real human subjects
connected over a virtual network. The validation of the algo-
rithm proposed here with human experiments is left as part of
future work.

Distributed group formation has been studied extensively in
the context of robotics and consensus algorithms, see [1], [4].
We distinguish ourselves by being focused on “human-like”

algorithms, i.e. algorithms that are computationally simple,
memoryless and suitable to model human behavior.

II. Problem definition

Consider a population whose agents belong to two different
classes, leaders and followers. Leaders are required to recruit
and maintain teams of followers according to minimum size
requirements, while followers can only accept or reject lead-
ers’ requests. Beyond the individual task of building their
own teams, leaders are given the common tasks of achieving
collective stability, i.e. a situation in whichall followers are
recruited andevery leader controls a team that is sufficiently
large.

A leader might not be allowed to recruit every follower,
as the recruitment process is constrained by a communication
network according to whom only a subset of leader-follower
pairs can communicate. In addition, the team size requirements
may differ between leaders, and followers can transfer from a
team to another by accepting leaders’ requests.

The communication structure of the population is captured
by a bipartite networkG = (L ∪ F,E) whose nodes’ partition
represents the setL of leaders and the setF of followers, and
where there exists an edge between followerf and leaderℓ
if and only if f and ℓ can communicate between each other.
For each leaderℓ ∈ L, let Nℓ be the neighborhood ofℓ in G,
that is, the set of the followersℓ can communicate with, and
let cℓ ≥ 1 be theminimum sizeof the teamℓ is required to
form. We also assume that leaders have an infinite capacity
to accommodate followers, i.e. there is no upper bound to a
team’s size.

A subsetM ⊆ E is a matchingof G if for all f ∈ F there
exists at most a singleℓ ∈ L such that (ℓ, f ) ∈ M. This is
consistent with the fact that a follower can be matched to
a single leader at a time, while a leader is matched to all
followers in his team. A matchingM of G uniquely identifies
a set of teams{Tℓ(M) : ℓ ∈ L}, whereTℓ(M) is the team of
leaderℓ ∈ L under the matchingM. More precisely, given
a matchingM of G, Tℓ(M) contains all followers that are
matched toℓ in M, i.e. Tℓ(M) = { f ∈ F : (ℓ, f ) ∈ M}. Given
constraintscℓ for all ℓ ∈ L, it is natural to define the following
notion of stability of a matching.

Definition 1. A matching M of G is stable if and only if all
followers are matched in M and|Tℓ(M)| ≥ cℓ for all ℓ ∈ L.

We are only interested in networks which admit stable



matchings. Together with the assumption thatcℓ ≥ 1 for all
ℓ ∈ L, this implies that|L| ≤ |F |.

In the remaining part of this work, we propose a simple,
distributedalgorithmic model for group formation in leader-
follower networks, and we analyze its performance with re-
spect to convergence to stability. Our first result, Theorem1,
states that, in any network withn leaders andm followers, all
followers are quickly recruited inO(m) rounds of the algorithm
with high probability. A similar guarantee on the algorithm’s
performance does not hold in general for the other condition
of stability of a matching, that is,Tℓ(M) ≥ cℓ for all ℓ ∈ L.
To show this, we define a family of bipartite networks and
prove that our algorithmic model requires exponentially many
rounds with high probability to converge to the unique stable
matching when starting from a constant fraction of all possible
configurations (Theorems 2 and 3). However, we are able
to provide performance guarantees on the convergence to an
arbitrarily close approximation of a stable matching for any
graph with unique stable matching, as show by Theorem 4. In
particular, the total number of additional followers required to
satisfy all team size constraints is an arbitrarily small fraction
of the entire population. Computer simulations corroborate our
theoretical results.

III. A lgorithmic model

In this section, we propose a synchronized model for team
formation, specifying the behavior of leaders and followers.
The algorithm for leaderℓ ∈ L is shown in Table 1. At each
round of the algorithm, given the current matchingM of G,
if either ℓ has a team of size|Tℓ(M)| < cℓ or there exists
unmatched follower inNℓ, then ℓ attempts to recruit a new
follower according to the function Recruit(ℓ). In our imple-
mentation, with probability 1− p, Recruit(ℓ) does nothing;
with probability p, it chooses an unmatched follower inNℓ
uniformly at random, if any; otherwise, it chooses a follower
in Nℓ\Tℓ(M) uniformly at random. In words, leaders always
prefer to recruit followers which are currently unmatched over
matched ones.

As for the followers, the algorithm forf ∈ F is represented
in Table 2. At each round of the algorithm, iff has incoming
recruitment requests, then he chooses the team to join accord-
ing to the function ChooseTeam( f ). In our implementation,
ChooseTeam( f ) rejects each incoming request independently
with probability 1− q. One among the pending requests is
chosen uniformly at random (andf joins the corresponding
team) and all the others are rejected. Observe that a follower
is equally likely to join a team when unmatched and to
switch team when currently matched. We assume this for
the sake of simplicity, and our results hold for more general
implementations of the function ChooseTeam( f ).

Table 1 Stub for leaderℓ ∈ L
if |Tℓ(M)| < cℓ or ∃ unmatchedf ∈ Nℓ then

Recruit(ℓ)
end if

Table 2 Stub for follower f ∈ F
if f has incoming requeststhen

ChooseTeam( f )
end if

It is interesting to observe that the proposed algorithm
is self-stabilizing, i.e. once a stable matching is reached,
leaders stop recruiting followers. Moreover, it is a single-stage
algorithm, that is, agents do not change their behavior until
stability is reached.

In the model just defined, leaders do not communicate
between each other, and the behavior of a leader only depends
on the size of his own team and the status of his neighborhood.
The collaboration between leaders is therefore minimal and
consists in a leader attempting to recruit new followers only
when his team size constraint is not met or there are unmatched
followers in his neighborhood. This form ofhonestybetween
leader is justified by the common goal of reaching a stable
matching.

IV. Convergence to stable matchings

In this section, we analyze the algorithm’s performance with
respect to convergence to a stable matching. The following
claim, whose proof is straightforward, implies that the first
condition of stability of a matching is reached and maintained
after all followers are recruited for the first time.

Claim 1. After follower f is recruited for the first time, he
will not remain unmatched after each successive round of the
algorithm (i.e. f can only switch team).

Our first result states that, in any bipartite network withn
leaders andm followers, all followers are recruited in a number
of rounds that is linear inm.

Theorem 1. In any bipartite network G of n leaders and m
followers which admits a stable matching, all followers are
recruited in O(m) rounds with high probability.

Proof: Recall that, at each round of the algorithm, if there
exist unmatched followers inNℓ then leaderℓ attempts to
recruit one among them uniformly at random, and that there
is no maximum allowed team size. Consider any round of the
algorithm and letf ∈ F be any follower who is unmatched at
the beginning of this round. AsG admits a stable matching,
there existsℓ ∈ L such that (ℓ, f ) ∈ E (i.e., f is connected
to a leader at least). Moreover|Nℓ| ≤ m (i.e. ℓ is connected
to m followers at most). Therefore,f is recruited during the
current round with probability at leastpq/m (as eachℓ ∈ L
such thatf ∈ Nℓ proposes tof with probability at leastp/m
and f joins a team with probabilityq). By independence of
successive rounds of the algorithm, the number of rounds
needed to recruitf is upper bounded by a Geometric random
variable of meanm/pq, and for anyc > 2 is at mostcm with
high probability form large enough. The Theorem follows by
observing that the argument above holds for all unmatched



followers and that at the first round of the algorithm allm
followers are unmatched.

A similar guarantee on the algorithm’s performance does
not hold in general for the other condition of stability of a
matchingM, that isTℓ(M) ≥ cℓ for all ℓ ∈ L. First, we define
a sequence of networks such thatcℓ = 1 for each leaderℓ
and show that, from a specific configuration, convergence to
the stable matching is exponential in the network’s size with
high probability (Theorem 2). Then, we show that the config-
urations from which convergence is exponential constitutea
constant fraction of all possible configurations.

For n ≥ 1, let Gn = (Ln ∪ Fn,En) be the bipartite network,
shown in Figure 1, withn leaders andn followers (i.e. L =
{ℓ1, . . . , ℓn} and F = { f1, . . . , fn}), with edgesEn = {(ℓi , f j) :
1 ≤ i ≤ n, j ≤ i}, and constraintcℓi = 1 for all 1 ≤ i ≤ n. Gn

has a unique stable matchingM∗n = {(ℓi, fi) : 1 ≤ i ≤ n}.

Theorem 2. Consider the matching M′n of Gn defined by

M′n = {(ℓi , fi−1) : 2 ≤ i ≤ n} ∪ {(ℓn, fn)}.

Then, the number of rounds required to converge to the stable
matching M∗n starting from M′n is exponential in n with high
probability.
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Fig. 1. The networkGn for n = 6. The matchingM′n is highlighted.

Here we only provide a sketch of the proof, which follows
the same argument of [2, Theorem 3]. Given a matchingM,
we say that a leaderℓ is poor if Tℓ(M) < cℓ, rich if Tℓ(M) > cℓ,
andstableotherwise. Observe that, underM′n, leaderℓ1 is poor,
leaderℓn is rich, while all other leaders are stable. According
to the algorithm, as all followers are matched inM′n, only ℓ1
attempts to recruit new followers. Due to the network structure,
ℓ1 can only recruitf1 (currently in ℓ2’s team). If f1 accepts,
then ℓ1 becomes stable andℓ2 becomes poor (and can in
turn attempt to recruit eitherf1 or f2). After each round of
the algorithm all followers are matched (by Claim 1) and
there exists a unique poor leader until the stable matching
is reached. The stochastic process tracking the position of
the poor leader is not a classical random walk onLn and
its transition probabilities depend on the current matching.
Following the approach in [2], we can show that the random
process defining the position of the poor leaderand the current
matching is equivalent to a random walk on a treeHn whose
size is exponential inn. Observing that the time needed to
reach the stable matching ofGn is equivalent to the hitting

time of the root ofHn when starting from the furthest leaf,
we can derive the exponential bound of Theorem 2.

Theorem 2 only considers a single matching ofGn and raises
the question whether the exponential convergence is properof
M′n exclusively. The next result states that the convergence
to the stable matching ofGn requires exponentially many
steps when starting from a constant fraction of all possible
configurations (i.e. matchings ofGn in which there exists a
unique leader with an empty team).

Theorem 3. The algorithm requires exponentially many
rounds with high probability to converge to the stable matching
of Gn when starting from a constant fraction of all matchings
of Gn with a single unmatched leader.

The proof, which uses the same argument in [2, Theorem
4] and therefore is not reported here, consists in counting all
configurations which correspond to nodes ofHn at a given
distance from the root (that are a constant fraction of all
nodes ofHn). Theorems 2 and 3 alone do not imply that the
number of rounds to convergence to the stable matching ofGn

is exponential inn with constant probability (and therefore in
expectation), but simulations’ results suggest that this is indeed
the case.

V. Convergence to approximate stable matchings

Despite the negative results of Theorems 2 and 3, we are still
able to provide performance guarantees on the convergence to
arbitrarily close approximations of a stable matching. In our
result, stated by Theorem 4, the notion of approximation of a
stable matching reads in term of thesurplusof a matching,
that we define as follows.

Definition 2. Given a bipartite network G= (L ∪ F,E) with
constraints cℓ ≥ 0 for all ℓ ∈ L, and a matching M of G, the
surplus s(M) of M is defined as

s(M) =
∑

ℓ∈L

max{0, |Tℓ(M)| − cℓ}.

In words,s(M) sums the numbers of followers each leader
ℓ has in excess of its constraintcℓ, and each leaderℓ such
that |Tℓ(M)| ≤ cℓ does not contribute tos(M). Observe that,
if s(M) = 0 and all followers are matched inM then M is a
stable matching1.

For a networkG, let τ0(G) be the first round of the algorithm
after which all followers are recruited (notice thatτ0(G) is the
quantity upper bounded by Theorem 1). The following claim,
whose proof is straightforward, states that when all followers
are recruited the surplus never increases and is upper bounded
by the numberm of followers (ascℓ ≥ 1 for all ℓ ∈ L).

Claim 2. Given a network G with n leaders and m followers
admiting a stable matching, let M(t) be the matching of G at
round t≥ 0. Then, for all t≥ τ0(G), s(M(t)) is non-increasing
in t, and s(M(t)) < m.

1However, in general it is not true that ifM is stable and all followers are
matched inM then s(M) = 0.



We focus our attention on bipartite networks such that each
stable matching has zero surplus. Under this assumption2, the
surplus of a matching constitutes some sort ofdistancefrom
this matching to the set of the stable matchings. We are now
ready to state our result about the convergence to arbitrarily
close approximations of a stable matching.

Theorem 4. Let G = (L ∪ F,E) be a bipartite network with
n leaders and m followers, and such that s(M) = 0 for each
stable matching M of G. Then, for anyε > 0, a matching
with surplus strictly smaller thatεm is reached in a number
of rounds that is polynomial in m with high probability.

For the proof of Theorem 4 we need to introduce the novel
concept ofsurplus-decreasingpath, which is the adaptation of
the notion of augmenting path to our setup.

Definition 3. Given a bipartite network G= (L ∪ F,E) and
a matching M of G, a cycle-free path P= ℓ0, f1, ℓ1, . . . , fk, ℓk
(of even length 2k) is a surplus-decreasing path relative toM
if (ℓi , fi) ∈ M for all 1 ≤ i ≤ n, ℓ0 is a poor leader,ℓn is a rich
leader andℓi is a stable leader for all1 < i < n, andℓi , ℓ j

for all i , j, fi , f j for all i , j.

In words, a surplus-decreasing path starts from a poor leader
and an unmatched edge, ends at a rich leader and a matched
edge, and alternates unmatched and matched edges containing
stable leaders and followers. Observe that, ifs(M) > 0 andP
is a surplus-decreasing path relative toM, by switching each
unmatched edge ofP into a matched edge, and vice versa, we
obtain a new matchingM′ such thats(M′) = s(M) − 1.

We say that two paths arefollower-disjoint if they do not
share any follower (however, they might share some leader).
The following lemma, needed to prove Theorem 4, is an
adaptation of [3, Theorem 1] to our setup. The symmetric
difference of two setsA and B is denoted byA− B.

Lemma 1. Let G= (L ∪ F,E) be a bipartite network with n
leaders and m followers, and such that s(M′) = 0 for each
stable matching M′ of G. Let M be a matching of G with
surplus s(M) > 0 and let M∗ be a stable matching of G. Then,
in M−M∗ there are s(M) follower-disjoint surplus-decreasing
paths relative to M.

The proof is similar to the one in [3], with two simple
adjustments. First, our definition of matching allows for a
leader being part of multiple edges. Second, given a matching
M with s(M) > 0, for each unit of surplus we can connect the
corresponding rich leader to an auxiliary unmatched follower
(to whom the leaders matches as soon as it looses a follower
from his team). In this way, reducing the surplus by one
corresponds to increasing the matching size by one. We also
make use the following corollary of Lemma 1.

Corollary 1. Let G= (L ∪ F,E) be a bipartite network such
that s(M′) = 0 for each stable matching M′ of G. Let M be a
matching of G with surplus s(M) ≥ εm, for someε > 0. Then,

2This assumption is for sake of simplicity and our result holds also in a
more general formulation.

there exists a surplus-decreasing path relative to M of length
at most2⌊1/ε⌋.

Proof: By Lemma 1, if s(M) ≥ εm and M∗ is a stable
matching ofG then M − M∗ containsεm follower-disjoint
surplus-decreasing paths relative toM, of cumulative length
at most 2m. Necessarily, there is one of length at most 2⌊1/ε⌋.

We are now ready to present the proof of Theorem 4.
Proof of Theorem 4:Consider a bipartite networkG with

n leaders andm followers. LetM(t) denote the matching ofG
at time t ≥ 0. Recall that we definedτ0(G) as the first round
after which all followers are recruited, and by Theorem 1,
τ0(G) is O(m) with high probability. Moreover, by Claim 2,
s(M(t)) is nonincreasing int for all t ≥ τ0(G). For all 0< ε <
1, let

τε = min{t ≥ τ0 : s(M(t)) < εm}

be the random variable representing the first round of the
algorithm during which the surplus becomes strictly less than
εm.

Consider any roundt1 ≥ τ0(G). By Claim 2, s(M(t1)) < m,
and therefore there exists3 0 < ε′ < 1 such thats(M(t1)) = ε′m.
Observe thatτε′ can be equivalently defined as

τε′ = min{t > t1 : s(M(t)) < s(M(t1))},

i.e. it is the fist round aftert1 during which the surplus
decreases. We show thatτε′ is polynomial in the network size
with high probbility.

Let ∆ = max{|Nℓ | : ℓ ∈ L} be the maximum degree of
a leader inG (1 ≤ ∆ ≤ m). Let 2h(t) ≥ 2, be the length
of the shortest surplus-decreasing path relative toM(t). By
Corollary 1,h(t) < ⌊1/ε′⌋ for all t1 ≤ t < τε′ . We distinguish
the cases ofh(t1) = 1 andh(t1) > 1.

Let h(t1) = 1. We show that with probability at leastpq/∆
the surplus decreases of at least one unit during roundt1.
Consider a rich leaderℓ ∈ L. ℓ contributes withu ≥ 1 units
to the surplus, and at mostu ≤ ε′m poor leadersℓ1, . . . , ℓu
are at distance 2 fromℓ along distinct surplus-reducing paths.
If follows that with probability at leastpq/∆ one among
ℓ1, . . . , ℓu takes a followerf away fromℓ′s team (by asking
f with probability at leastp/∆ and having f accept with
probability at leastq). Observe that followers inℓ’s team can
be recruited only by poor leaders at distance 2 fromℓ, and that
the surplus still decreases by one even if each ofℓ1, ℓ2, . . . , ℓu
is at distance 2 formℓ and successfully recruits a distinct
follower from ℓ’s team.

Let now h(t1) ≥ 1. As h(t) < ⌊1/ε′⌋ for all t1 ≤ t < τε′ , we
track the length 2h(t) of the shortest surplus-decreasing path.
We claim that, with probability at leastpq/∆, h(t) decreases
of at least one unit during roundt for all t1 ≤ t < τε′ . Let
P = ℓ0, f1, ℓ1, . . . , fh(t), ℓh(t) be a shortest surplus-decreasing
path relative toM(t), of length 2h(t) ≤ 2⌊1/ε′⌋. With probabil-
ity at leastpq/∆, during roundt, the poor leaderℓ0 attempts to
recruit f1 and f1 accepts, and thusℓ1 becomes poor. Observe

3We assumeε > 0, the caseε = 0 being trivial.
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Fig. 2. Simulation results on the sequence of networksGn.

that, as long ash(t) > 1, ℓh(t) remains rich during roundt
because any other surplus-decreasing path ending atℓh(t) would
have length at least 2h > 2. Therefore,h(t) decreases by one
with probability at leastpq/∆ during roundt. By independence
of successive rounds of the algorithm (and the upper bound on
h(t) for t1 ≤ t < τε′ ), h(t) decreases of one unit in a number of
rounds that is upper bounded by a Geometric random variable
with meanm/pq (as∆ ≤ m), and therefore, for anyc > 2, is
at mostcm/pq with high probability form large enough.

Given the result forh(t) = 1 and thath(t) < ⌊1/ε′⌋ for
all t1 ≤ t < τε′ , it follows that the process{h(t), t ≥ t1} hits
1 and the surplus decreases of at least one unit in at most
⌊1/ε′⌋cm/pq rounds with high probability for anyc > 2 and
for m large enough. Together withτ0(G) = O(m), this show
that τε is polynomial inm (and therefore in the network size,
asm≥ n) with high probability for all 0< ε < 1.

VI. Simulations

To validate our theoretical results, we ran our algorithmic
model on the sequence of networksGn defined in Section IV.
Recall thatGn hasn leaders andn followers, and observe that
its unique stable matching has zero surplus. Figure 1 shows
that the average4 number of rounds to converge to the stable
matching ofGn is exponential inn (triangles joined by dotted
line), while on average all followers are recruited in a timethat
is linear in the network’s size (diamonds joined by dashed
line). Moreover the average time to reach a matching with
surplus at mostεm, for ε = 0.2, is clearly upper bounded by
a polynomial inn (circles joined by continuous line).

Figure 2 compares, in logarithmic scale, the average time
to converge to the stable matching ofGn (triangles joined by
dotted line) and the average time to reach a matching with
surplus at mostεm), for ε = 0.1 (circles joined by continuous
line). The curve corresponding to the approximate matching
clearly shows a polynomial growth.

4Each point in each figure is obtained as the average of 100 simulations.
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VII. D iscussion

In this work we proposed a “human-like” algorithmic model
of distributed team formation in networks of leaders and
followers. The model is computationally simple, memoryless
and suitable to model human behavior, but, despite its sim-
plicity, it provides performance guarantees in the attainment
of arbitrarily close approximations of a stable matching inany
network. Notice that, in this model, there is no communication
between leaders, who act only in response of their own status
and of the status of their neighborhoods of followers. The only
collaboration between leaders consists in a form of honesty
deriving from the common goal of achieving stability.

Understanding how communication between leaders affects
their coordination and characterizing the tradeoff between
performance guarantees and model complexity is left for future
work, as well as the validation of the model through laboratory
experiments on human subjects
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