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Abstract—This paper describes a model of distributed co-
ordination in which leaders are required to recruit teams of
followers according to a minimum team size constraint. The
objective is to reach a state in which all possible followersre
recruited and all team size constraints are satisfied. We prgose a
simple, distributed algorithm for group formation and anal yze its
performance. The algorithm is suitable to model human behaer,
being memoryless and with minimum computation requiremens.
Our results show that while in any network all followers are
recruited in a time that is linear in the network size, there ae
networks in which ensuring a minimum team size constraint
may require a number of rounds that is exponentially large
in the network size. On the other hand, our algorithm always
converges to anapproximate solution in polynomial time, namely
the leaders quickly form teams in which the total number of
additional followers required to satisfy all team size consaints
is an arbitrarily small fraction of the entire population.
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algorithms, i.e. algorithms that are computationally denp
memoryless and suitable to model human behavior.

Il. PROBLEM DEFINITION

Consider a population whose agents belong to twieint
classes, leaders and followers. Leaders are required toitrec
and maintain teams of followers according to minimum size
requirements, while followers can only accept or rejectlea
ers’ requests. Beyond the individual task of building their
own teams, leaders are given the common tasks of achieving
collective stability, i.e. a situation in whichll followers are
recruited anceveryleader controls a team that isfBaiently
large.

A leader might not be allowed to recruit every follower,
as the recruitment process is constrained by a communicatio
network according to whom only a subset of leader-follower

The discovery of the algorithmic processes governing hpairs can communicate. In addition, the team size requinésne
mans’ behavior over networks is of interest in a variety ghay difer between leaders, and followers can transfer from a
contexts, ranging from sociology and economics to tactictlam to another by accepting leaders’ requests.

scenarios of soldiers deployed in foreign countries. Thisgp

The communication structure of the population is captured

attempts to provide a model of human behavior in a distributéy a bipartite networlG = (L U F, E) whose nodes’ partition
coordination game of team formation. Consider, for exampleepresents the sét of leaders and the sét of followers, and

a set of agents being deployed undercover in a foreign cpuntwhere there exists an edge between folloveand leadert
These agents cannot communicate among each other and litagaed only if f and¢ can communicate between each other.
no access to a central infrastructure. Their objective EheaFor each leadef € L, let N, be the neighborhood af in G,

to recruit a team of multiple followers in order to perfornthat is, the set of the follower§ can communicate with, and

a certain task. Hence, each leader aims to recruit a certihc, > 1 be theminimum sizeof the team( is required to
number of followers, each follower can join only one leadefprm. We also assume that leaders have an infinite capacity
and all leaders want to reach a state in which all team sitte accommodate followers, i.e. there is no upper bound to a
constraints are satisfied. We give a simple mathematicakinoteam’s size.

of the above situation, propose a “human-like” algorithm to A subsetM ¢ E is a matchingof G if for all f € F there
solve this coordination task and study its performancerimse exists at most a singlé € L such that {, f) € M. This is

of convergence to a stable solution. The proposed algoiighnrtonsistent with the fact that a follower can be matched to
suitable to model human behavior, being memoryless and withsingle leader at a time, while a leader is matched to all
minimum computation requirements. Our approach followsllowers in his team. A matchiniy! of G uniquely identifies
the one of our previous work on matching [2] in which the set of teamg$T,(M) : ¢ € L}, whereT,(M) is the team of
coordination task was limited to teams of size two (composé&hder{ € L under the matchingd. More precisely, given

of one leader and one follower only). In [2] we also validated matchingM of G, T,(M) contains all followers that are
theoretical results with experiments on real human subjechatched tof in M, i.e. T,(M) = {f € F : (£, f) € M}. Given
connected over a virtual network. The validation of the alg@onstraints, for all £ € L, it is natural to define the following
rithm proposed here with human experiments is left as part métion of stability of a matching.

future work.

Distributed group formation has been studied extensively
the context of robotics and consensus algorithms, see4]], |

Definition 1. A matching M of G is stable if and only if all
followers are matched in M anfd@,(M)| > ¢, for all £ € L.

We distinguish ourselves by being focused on “human-like” We are only interested in networks which admit stable



matchings. Together with the assumption that> 1 for all Table 2 Stub for followerf € F

¢ € L, this implies thatL| < |F|. if f has incoming requestben
In the remaining part of this work, we propose a simple, CuooseTeam(f)

distributed algorithmic model for group formation in leader- end if

follower networks, and we analyze its performance with re-

spect to convergence to stability. Our first result, Theoflem

states that, in any network withleaders anan followers, all It is interesting to observe that the proposed algorithm
followers are quickly recruited i®(m) rounds of the algorithm s self-stabilizing i.e. once a stable matching is reached,
with high probability. A similar guarantee on the algoritsm |eaders stop recruiting followers. Moreover, it is a singlage
performance does not hold in general for the other conditiefigorithm, that is, agents do not change their behaviod unti
of stability of a matching, that isT,(M) > ¢, for all £ € L.  stability is reached.

To show this, we define a famlly of blpartlte networks and In the model just defined, leaders do not communicate
prove that our algorithmic model requires exponentiallynina petween each other, and the behavior of a leader only depends
rounds with high probability to converge to the unique stabbn the size of his own team and the status of his neighborhood.
matching when starting from a constant fraction of all poissi The collaboration between leaders is therefore minimal and
configurations (Theorems 2 and 3). However, we are alignsists in a leader attempting to recruit new followersyonl
to provide performance guarantees on the convergence toy@en his team size constraint is not met or there are unmétche
arbitrarily close approximation of a stable matching foy anfollowers in his neighborhood. This form donestybetween

graph with unique stable matching, as show by Theorem 4.|bxder is justified by the common goal of reaching a stable
particular, the total number of additional followers reggito  matching.

satisfy all team size constraints is an arbitrarily smadtfion
of the entire population. Computer simulations corrob®atr IV. CONVERGENCE TO STABLE MATCHINGS
theoretical results.

In this section, we analyze the algorithm’s performancé wit
1. A LGORITHMIC MODEL respect to convergence to a stable matching. The following
In this section, we propose a synchronized model for teattaim, whose proof is straightforward, implies that thetfirs
formation, specifying the behavior of leaders and follosvercondition of stability of a matching is reached and mairgdin
The algorithm for leadef € L is shown in Table 1. At each after all followers are recruited for the first time.
round of the algorithm, given the current matchilgof G,
if either £ has a team of siz¢T,(M)| < ¢, or there exists
unmatched follower inN,, then ¢ attempts to recruit a new
follower according to the function #&erurr(¢). In our imple-

mentation, with probability + p, Recrurr(¢) does nothing;  Our first result states that, in any bipartite network with
with probability p, it chooses an unmatched follower My |eaders andhfollowers, all followers are recruited in a number
uniformly at random, if any; otherwise, it chooses a followepf rounds that is linear im.

in N\T,(M) uniformly at random. In words, leaders always

prefer to recruit followers which are currently unmatchegro | €orem 1. In any bipartite network G of n leaders and m
matched ones. followers which admits a stable matching, all followers are

g recruited in m) rounds with high probability.

Claim 1. After follower f is recruited for the first time, he
will not remain unmatched after each successive round of the
algorithm (i.e. f can only switch team).

As for the followers, the algorithm fof € F is represente

in Table 2. At each round of the algorithm, fifhas incoming Proof: Recall that, at each round of the algorithm, if there
recruitment requests, then he chooses the team to join&cciyist unmatched followers i, then leader¢ attempts to
ing to the function @ooseTeam(f). In our implementation, recruit one among them uniformly at random, and that there
CuooseTeam(f) rejects each incoming request independently no maximum allowed team size. Consider any round of the
with probability 1- g. One among the pending requests ig|gorithm and letf € F be any follower who is unmatched at
chosen uniformly at random (antl joins the corresponding the beginning of this round. A6 admits a stable matching,
team) and all the others are rejected. Observe that a fallowgere existsf € L such that (f) € E (i.e., f is connected

is equally likely to join a team when unmatched and tg, g |eader at least). MoreovéN,| < m (i.e. ¢ is connected
switch team when currently matched. We assume this @ m followers at most). Thereford, is recruited during the
the sake of simplicity, and our results hold for more generg),rrent round with probability at leagtg/m (as each’ € L
implementations of the functionsBoseTeam(f). such thatf € N, proposes tof with probability at leastp/m
and f joins a team with probabilityq). By independence of
successive rounds of the algorithm, the number of rounds
needed to recruif is upper bounded by a Geometric random
variable of meanm/pg, and for anyc > 2 is at mostcm with

high probability form large enough. The Theorem follows by
observing that the argument above holds for all unmatched

Table 1 Stub for leader € L
if |T,(M)| < c, or 3 unmatchedf € N, then
Recrurr(£)
end if




followers and that at the first round of the algorithm ail time of the root ofH, when starting from the furthest leaf,
followers are unmatched. B we can derive the exponential bound of Theorem 2.

A similar guarantee on the algorithm’s performance doesTheorem 2 only considers a single matchin@afand raises
not hold in general for the other condition of stability of ahe question whether the exponential convergence is pafper
matchingM, that isT,(M) > ¢, for all ¢ € L. First, we define M;, exclusively. The next result states that the convergence
a sequence of networks such that= 1 for each leader to the stable matching o6, requires exponentially many
and show that, from a specific configuration, convergence steps when starting from a constant fraction of all possible
the stable matching is exponential in the network’s sizdhwitonfigurations (i.e. matchings @, in which there exists a
high probability (Theorem 2). Then, we show that the configmique leader with an empty team).
urations from which convergence is exponential constitute
constant fraction of all possible configurations.

Forn> 1, letG, = (Lh U Fp, En) be the bipartite network,
shown in Figure 1, witn leaders and followers (i.e.L =
{€1,...,ta) @and F = {fy,..., fn}), with edgesE, = {(4, ;) :
1<i<nj<i}, and constraint;, = 1 forall 1<i <n. Gy The proof, which uses the same argument in [2, Theorem
has a unique stable matchimd; = {(4, fi) : 1 <i < n}. 4] and therefore is not reported here, consists in counting a
configurations which correspond to nodeshkdf at a given
distance from the root (that are a constant fraction of all

M = {(6, fie) s 2.< i < U {(6n, F). nodes ofHy). Theorems 2 and 3 alone do not imply that the
number of rounds to convergence to the stable matchirg}, of
Then, the number of rounds required to converge to the stalifeexponential im with constant probability (and therefore in
matching M starting from M, is exponential in n with high expectation), but simulations’ results suggest that thindeed
probability. the case.

Theorem 3. The algorithm requires exponentially many
rounds with high probability to converge to the stable matgh
of G, when starting from a constant fraction of all matchings
of G, with a single unmatched leader.

Theorem 2. Consider the matching Mof G, defined by

V. CONVERGENCE TO APPROXIMATE STABLE MATCHINGS

! f Despite the negative results of Theorems 2 and 3, we are still

f able to provide performance guarantees on the convergence t
arbitrarily close approximations of a stable matching. ur o

P
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S S result, stated by Theorem 4, the notion of approximation of a
la 7 4 stable matching reads in term of tiserplusof a matching,
|5%f5 that we define as follows.
lg é fe Definition 2. Given a bipartite network G- (L U F, E) with
constraints ¢ > O for all £ € L, and a matching M of G, the
Fig. 1. The networkG, for n = 6. The matchingV;, is highlighted. surplus ¢M) of M is defined as
Here we only provide a sketch of the proof, which follows (M) = Z max{o, [T:(M)I - c}.
the same argument of [2, Theorem 3]. Given a matchhg fet
we say that a leadetis poorif T,(M) < ¢, rich if T,(M) > ¢, In words, s(M) sums the numbers of followers each leader

andstableotherwise. Observe that, undéy,, leadert; is poor, ¢ has in excess of its constraint, and each leadef such
leader, is rich, while all other leaders are stable. Accordintghat [T,(M)| < ¢, does not contribute tg(M). Observe that,
to the algorithm, as all followers are matchedNtj, only ¢; if (M) = 0 and all followers are matched i thenM is a
attempts to recruit new followers. Due to the network stizet  Stable matching

£, can only recruitf; (currently inéy's team). If f; accepts,  For a networlG, let 7o(G) be the first round of the algorithm
then £, becomes stable ané, becomes poor (and can inafter which all followers are recruited (notice tha{G) is the
turn attempt to recruit eithef; or f,). After each round of quantity upper bounded by Theorem 1). The following claim,
the algorithm all followers are matched (by Claim 1) anwhose proof is straightforward, states that when all fottosv
there exists a unique poor leader until the stable matchiatg recruited the surplus never increases and is upper bdund
is reached. The stochastic process tracking the position yf the numbem of followers (asc, > 1 for all £ € L).

the poor leader is not a classical random walk lgnand
its transition probabilities depend on the current matghin
Following the approach in [2], we can show that the rando
process defining the position of the poor leadedthe current
matching is equivalent to a random walk on a tiéewhose
size is exponential im. Observing that the time needed to IHowever, in general it is not true that M is stable and all followers are
reach the stable matching &, is equivalent to the hitting matched inM then s(M) = 0.

Claim 2. Given a network G with n leaders and m followers
admiting a stable matching, let () be the matching of G at
Bund t> 0. Then, for all t> 79(G), (M(t)) is non-increasing
in t, and gM(t)) < m.



We focus our attention on bipartite networks such that eatfere exists a surplus-decreasing path relative to M of feng
stable matching has zero surplus. Under this assunfptibe at most2[1/s].
surplus of a matching constitutes some sortistancefrom . .
. . . . >
this matching to the set of the stable matchings. We are now Proof: By Lemma 1, if M) > sm and M" is a stable

ready to state our result about the convergence to arﬂytrarrinatChmg ofG then M — M" containsem follower-disjoint

close approximations of a stable matching surplus-decreasing paths relative My of cumulative length
' at most 2n. Necessarily, there is one of length at mojst/2].
Theorem 4. Let G= (LU F, E) be a bipartite network with ]
n leaders and m followers, and such th@M3§ = O for each We are now ready to present the proof of Theorem 4.
stable matching M of G. Then, for any > 0, a matching Proof of Theorem 4:Consider a bipartite networ® with
with surplus strictly smaller thatm is reached in a number n leaders andan followers. LetM(t) denote the matching &
of rounds that is polynomial in m with high probability. at timet > 0. Recall that we definedy(G) as the first round

For the proof of Theorem 4 we need to introduce the nov%fter which all followers are recruited, and by Theorem 1,

concept ofsurplus-decreasingath, which is the adaptation ofTO(G) 'S O(m) .W'th h|gh probablhty. Moreover, by Claim 2,
: . s(M(t)) is nonincreasing it for all t > 79(G). For all 0< ¢ <
the notion of augmenting path to our setup. 1 let

Definition 3. Given a bipartite network G= (L U F, E) and 7o = Minft > 7o : S(M(t)) < em}
a matching M of G, a cycle-free pathP¢y, f1, (1,. .., f«, tk . . .
(of even length 2k) is a surplus-decreasing path relativéto be the randqm var!able representing the flrst_round of the
if (6, f) e Mforall 1<i<n, £ is a poor leaderfy is a rich algorithm during which the surplus becomes strictly legmth
leader and¢; is a stable leader for alll <i < n, and¢{; # ¢ em. . .
foralli#j f#f foralli#]. Consider any round_l > 70(G). By Claim 2, s(M(t1)) < m,
and therefore there existd < &’ < 1 such thas(M(t;)) = &'m.
In words, a surplus-decreasing path starts from a poor tea@bserve that,, can be equivalently defined as
and an unmatched edge, ends at a rich leader and a matched ,
edge, and alternates unmatched and matched edges cogtainin e = minft >ty M(1) < S(M(ta))},
stable leaders and followers. Observe thag(W) > 0 andP je it is the fist round aftet; during which the surplus
is a surplus-decreasing path relativeNl by switching each gecreases. We show that is polynomial in the network size
unmatched edge d? into a matched edge, and vice versa, Wgith high probbility.
obtain a new matching!” such thats(M’) = s(M) - 1. Let A = max|N¢ : ¢ € L} be the maximum degree of
We say that two paths arfellower-disjointif they do not 5 |eader inG (1 < A < m). Let 2h(t) > 2, be the length
share any follower (however, they might share some leadef). the shortest surplus-decreasing path relativevi). By
The following lemma, needed to prove Theorem 4, iS @orollary 1,h(t) < |1/&'] for all t; < t < 7... We distinguish
adaptation of [3, Theorem 1] to our setup. The symmetrige cases oh(t;) = 1 andh(ty) > 1.
difference of two seté and B is denoted byA - B. Let h(t) = 1. We show that with probability at leagig/A

Lemma 1. Let G = (L U F, E) be a bipartite network with n the surplus decreases of at least one unit during rawnd
leaders and m followers, and such thqivk) = 0 for each Consider a rich leadef € L. ¢ contributes withu > 1 units
stable matching Mof G. Let M be a matching of G with {0 the surplus, and at most < &'m poor leaderss, ..., &
surplus §M) > 0 and let M be a stable matching of G. Then,are at distance 2 frorfialong distinct surplus-reducing paths.

in M—M" there are $M) follower-disjoint surplus-decreasing If follows that with probability at Ieas/tpq/A one among
paths relative to M. {1, ...,¢4, takes a followerf away from¢’s team (by asking

o _ _ _ f with probability at leastp/A and havingf accept with

The proof is similar to the one in [3], with two simplepropability at least). Observe that followers id's team can
adjustments. First, our definition of matching allows for &e recruited only by poor leaders at distance 2 fegmnd that
leader being part of multiple edges. Second, given a maichigpe surplus still decreases by one even if eactyofs, . . ., &

M with s(M) > 0, for each unit of surplus we can connect thgy at distance 2 fornt and successfully recruits a distinct
corresponding rich leader to an auxiliary unmatched follow tg|1ower from ¢'s team.

(to whom the leaders matches as soon as it looses a followef gt now h(ty) > 1. As h(t) < [1/¢’] for all t < t < 7, we

from his team). In this way, reducing the surplus by ongack the length B(t) of the shortest surplus-decreasing path.
corresponds to increasing the matching size by one. We a{gR claim that, with probability at leagigq/A, h(t) decreases
make use the following corollary of Lemma 1. of at least one unit during roundfor all t; <t < 7. Let

Corollary 1. Let G= (LUF, E) be a bipartite network such P = o, f1. &1, fuy, (hy b€ @ shortest surplus-decreasing
that M’) = O for each stable matching Mbf G. Let M be a path relative taM(t), of length A(t) < 2|1/¢’]. With probabil-

matching of G with surplus(d) > em, for somes > 0. Then, ity atleastpa/A, during round, the poor leadef, attempts to
recruit f; and f; accepts, and thug becomes poor. Observe

2This assumption is for sake of simplicity and our result koidso in a
more general formulation. SWe assume: > 0, the case = 0 being trivial.
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Fig. 2. Simulation results on the sequence of netwd@ks Fig. 3. Simulation results on the sequence of netw@kslogarithmic scale.
that, as long asi(t) > 1, ¢y remains rich during round VII. Discussion
because any other surplus-decreasing path endifyg)atould In this work we proposed a “human-like” algorithmic model

have length at leasth2> 2. Thereforeh(t) decreases by oneof distributed team formation in networks of leaders and

with probability at leaspag/A during round. By independence followers. The model is computationally simple, memorgles

of successive rounds of the algorithm (and the upper boundamd suitable to model human behavior, but, despite its sim-

h(t) for t; <t < 7,/), h(t) decreases of one unit in a number oflicity, it provides performance guarantees in the att@nm

rounds that is upper bounded by a Geometric random variablearbitrarily close approximations of a stable matchingiy

with meanm/pg (asA < m), and therefore, for ang > 2, is network. Notice that, in this model, there is no communarati

at mostcmy/ pq with high probability form large enough. between leaders, who act only in response of their own status
Given the result forh(t) = 1 and thath(t) < |1/¢’] for and of the status of their neighborhoods of followers. Thig on

all t; <t < 1, it follows that the procesgh(t),t > t;} hits collaboration between leaders consists in a form of honesty

1 and the surplus decreases of at least one unit in at mdstiving from the common goal of achieving stability.

L1/¢ Jcm/ pq rounds with high probability for ang > 2 and Understanding how communication between leadéiects

for m large enough. Together withy(G) = O(m), this show their coordination and characterizing the trafiebetween

thatr is polynomial inm (and therefore in the network size,performance guarantees and model complexity is left faréut

asm > n) with high probability for all 0< & < 1. m work, as well as the validation of the model through labamato

experiments on human subjects

VI. SIMULATIONS REFERENCES

To validate our theoretical results, we ran our algorithmig] F. Bullo, J. Cortés, and S. MartinezDistributed Control of Robotic
modie on the sequence of netwo defined in Section IV, V201rs APPIEd Mithematies Seies, Prneton Unieriy Precos
Recall thatG, hasn leaders andh followers, and observe that = Human matching behavior in social networks: an algorithpecspective.
its unique stable matching has zero surplus. Figure 1 show]s?Edﬂositr’g]jtissri%nhhmcasrwe%ﬁé:/szd;ﬂodﬁmfIfVc,)rZI?é)l(imum ehings
that the averadenumber of rounds to converge to the stablE n biparrt)ite graphs SIAM Jo%rnal on Cgomputir)¢:225, 1973. 9
matching ofG, is exponential im (triangles joined by dotted [4] N.A. Lynch. Distributed AlgorithmsMorgan Kaufmann Publishers, 1996.
line), while on average all followers are recruited in a tithat
is linear in the network’s size (diamonds joined by dashed
line). Moreover the average time to reach a matching with
surplus at mostm, for ¢ = 0.2, is clearly upper bounded by
a polynomial inn (circles joined by continuous line).

Figure 2 compares, in logarithmic scale, the average time
to converge to the stable matching @f (triangles joined by
dotted line) and the average time to reach a matching with
surplus at mostm), for ¢ = 0.1 (circles joined by continuous
line). The curve corresponding to the approximate matching

clearly shows a polynomial growth.

4Each point in each figure is obtained as the average of 100ations.



