
Toward Efficient Search for a Fragment
Network in a Large Semantic Database
M. Goldberg, J. Greenman, B. Gutting, M. Magdon-Ismail, J. Schwartz, W. Wallace

Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180.
Email: {goldberg, green7, guttiba, magdon, schwaj3}@cs.rpi.edu; wallaw@rpi.edu

Abstract—In this paper, we present a novel indexing
scheme for semantic graphs, which is based on the notion
of the i-degree of a node. We apply this scheme to
identify in a large semantic graph, the database, a fragment
network, which may represent incomplete information that
an analyst collected on an adversary network of interest.

I. I NTRODUCTION.

We present an approach to searching in a large
semantic graph, thedatabase, for a subgraph which
approximately matches a small network, thefragment.
The following practical situation motivates the problem.
An intelligence analyst has discovered a small hidden
network that connects people, events, places, etc., and
presented the result of the investigation as the fragment
graph. Suppose the analyst wishes to compare the data
s/he has collected so far (the fragment) with the data
in a central database which contains the union of ac-
cumulated intelligence. While the information collected
by the analyst might be scarce, incomplete, and even
unreliable, the information in the database accumulated
by other analysts over a long period of time should
be more complete and reliable. Inversely, the newly
accumulated data may contain items not found, or not
available, earlier. The task is to find, in the central
database, statistically significant approximate matches to
the fragment.

The difficulty of the problem arises from its close
relation to the classical NP-hard computational problem
of identifying, in a given large graph, a subgraph which
is isomorphic to a given fragment graph ([1, 2]). On the
other hand, the nature of the input– semantic graphs with
labeled nodes and edges– offers a possibility to achieve
efficiency for an average input. However, the theoretical
aspect of the problem is only one part of the challenge.
The main difficulty of the problem stems from the lack
of a strict definition of an “approximate match”. In the
real life situation, the analyst working on the problem
relies on his/her intuition and experience to identify
a significant “likelihood” of his/her guess. Thus, to
develop a system that helps the analyst, it is necessary to
create a tool which can easily incorporate this knowledge
and intuition. Our approach can easily accommodate the
analyst’s input, orhints, during deployment.

A similar problem is that of querying a database of
graphs. Given a graph query, the task is to quickly
retrieve graphs from a large database which contain the
query. The traditional approach ([4, 6]) is to perform the
search via graph-based indices. We apply the general
indexing idea to our problem of searching for a sub-
structure (a fragment match) in a large structure (the
database graph), and present it as a two-stage process:
(a) an off-line indexing of the graph database; and(b)
an on-line search which employs the results of indexing.
In the practical setting, indexing would be performed
infrequently, while the indexing-enabled search would
have to be executed for every specific search request,
and is expected to be very fast.

We index an arbitrary semantic graph via the com-
puting of i-degrees of its nodes. Thei-degrees of the
nodes are used to construct a hierarchical set of node-
partitionings, where each next partitioning is a sub-
partitioning of the previous one. It turns out, that for the
classes of graphs that we tested (large random graphs
and the Wikipedia-graph on 1.1 million nodes) even
the 3-degree partitioning splits the node set in partitions
of average size close to 2. This implies that when the
fragment contains a near-complete information about
some node, it can be located in the database almost
uniquely. This property is useful even if the information
is not complete.

Our search algorithm starts by computing thei-
degrees of the nodes of the fragment and selecting some
representative node,the anchor. The i-degrees of the
anchor is then compared to that of the database nodes,
and a few “closest” nodes are returned. The identification
of a match for the anchor is an important first step
in the general fragment identification problem. This
anchor search can be complemented by findingnetwork
communities that the anchor is a member of (see [3]).

We test our search algorithms on two classes of inputs:
randomly generated graph and the Wikipedia-graph (see
Section IV.) It turns out that the search on randomly
generated graphs yields very good results. Thus random
graphs are easy, as opposed to the real life graphs. It
is considerably harder to achieve good accuracy for the
Wikipedia-graph due to its non-uniformity. It is likely

that any successful search would have to be based
on assumptions provided by an analyst related to the
“shape” of the subgraph to match a given fragment.

II. D EFINITIONS

We assume that the nodes of the input graph are
labeled by non-confusable “types” such as “person,”
“place,” “event,” and so on. The types are distinct
from general labels that may be incorrect. Thus, while
a person is not confused with an event, the names
(labels) “John” and “Josef” can be confused. In real
application, the user may deal with labels that s/he
considers completely reliable, so those labels can be
used as types. For convenience, we assume that types are
enumerated1, 2, 3, . . . , t, wheret is the total number of
types used. Our graphs are directed; all notations used
but not defined here can be found in [5].

i-deg: given nodex, thei-deg(x) is a vector of length
t, where thekth coordinate is the number of paths of
length i that start atx and end at nodes of typek. By
extension, 0-deg(x) is the vector representing the type
of x.

i-dist: this function computes the “similarity” of two
nodes of the same type by comparing theiri-degrees.
This is calculated by the Manhattan distance between
the vectors:
i-dist(v, w) =

∑i

j=1

∑t

k=1 |j-deg(v)[k]− j-deg(w)[k]|

Dominating i-Distance: this, like i-distance, is also a
measure of “similarity,” but requires that the first node’s
i-deg dominates the second, that is at everykth position
the first is not less than the second; else, the dominating
i-distance is considered to be some very large constant.

Fuzziness: this is a measure of the number of nodes
within a graph for which a particular nodev is similar
to. Two nodes may be consideredr-fuzzy to each other
if similarity(v, w) < r for somer ≥ 0.

Indexing: indexing is the process of assigning values
to nodes as a preprocessing step. Each node is assigned
i-degrees fori = [0, k]; indexing yields a hierarchical
partitioning of the node-set.

N(x): this denotes the set of neighbors ofx. The
neighbors are the nodes that have incoming edges from
x. That is:v ∈ N(x) iff (x, v) ∈ E

Diversity: dvst(x) is the count of the unique types
in N(x); a node x is more diverse than a nodey
if dvst(x) > dvst(y) or if dvst(x) = dvst(y) and
|N(x)| > |N(y)|.

The problem we are solving is that of detecting the
location of the fragment anchor in the database.Input:
semantic graphsG andF ; and a nodez ∈ V (F); Output:
a nodec ∈ V (G), which is “similar” to z.

III. SEARCH ALGORITHM

This section details the algorithm used for locating
anchors within the database. We assume the database has
been pre-processed; each node is assignedi-degrees, for
i = [0, k], wherek is a preselected integer.

Before the query step, we have an indexed database
graphG, and a query fragment graphF . We indexF
using the same rangei = [0, k] as was used for indexing
G. Also, we are either given, or obtain algorithmically,
an anchor nodex from F . Two possible methods of
determiningx include: choosing the most diverse node
in F , or the node with the largest neighborhood.

Once an anchorx is specified, we search for a match
to x within the database. All nodes of the database
are ranked using the preselected similarity method,i-
distance or dominatingi-distance. Then the topn can-
didates are returned, wheren is predetermined.

Searching for a single node using similarity ofi-deg
is the basic approach we use. A more advanced method
makes use of some number of neighbors of the anchor,
m. These nodes are them most diverse neighbors ofx.

Algorithm 1 Fragment Search
Require: 1. fragment graphF

2. anchor nodex ∈ F
3. database graphG
4. i for the maximumi-degree to compare
5. n for the number of candidates to return
6. m for the number of neighbors to use in the search
7. a similarity functionSimilarity(node, node)

Let D be the sorted list of them most diverse nodes
in N(x)
for v s.t. v ∈ G AND type(v) = type(x) do

d← Similarity(v, x)
for j : 1→ m do

dtemp ← minw∈N(v)(Similarity(w,D[j]))
d← d + dtemp

candidates← candidates∩ pair(d, v)
return the bestn candidates

IV. GRAPH GENERATION

Wikipedia Graph
The main graph we used for testing was constructed

from Wikipedia. Each page is a node and page-links
are edges. Some, but not all, pages also have semantic
information, including types. Only pages with semantic
type information are used in the graph.

We used DBpedia.org, a website which stores a variety
of Wikipedia databases. We used “Ontology Infobox
Types” to gather the node and type information and
“Raw Infobox Properties” for the edges. Nodes which

had neither incoming nor outgoing neighbors were re-
moved from the graph. The resultant graph has the
following properties.

TABLE I
WIKIPEDIA GRAPH PROPERTIES

Nodes Types Max Outdegree Edges
1188437 26 649 3614485

Random Graph
The random graphs are the second type of graphs used

for experimentation; we generate them using statistics
collected from the Wikipedia graph. To do this we re-
distributed all the incoming edges uniformly amongst the
nodes, and then reassigned the types randomly between
nodes. Since the edges are uniformly distributed, this
alters theiri-degrees, which in particular, develops more
uniquei-degs. This graph has the same number of edges,
but slightly fewer nodes, 1187004, because some nodes
were isolated during the random edge distribution, and
these nodes are removed by post-processing.

V. PARTITIONING

The search for an anchor (or the fragment) is influ-
enced by the number of nodes with the samei-deg. If
this number is too large, the search may require ann
which is larger than is reasonable for an analyst to use.
Thus, it is important that the partitioning of the database
by i-degrees yields small, on average, partitions. The
partitioning data for the Wiki graph is presented in
TABLE II.

TABLE II
WIKIPEDIA GRAPH PARTITIONING STATISTICS

#Parts Max size Avg. size Std. Dev
0-deg 26 368775 457009 96913
1-deg 18077 103073 65.7 1418
2-deg 327609 17672 3.6 63.8
3-deg 469097 13421 2.5 36.4

This tables shows us that partitioning by 1-deg pro-
vides on average 65.7 nodes with the same 0-deg and
1-deg. A partitioning by 3-deg shows an average of 2.5
nodes with the same 0-,1-,2-, and 3-deg. This however
only solves part of the problem. Because we are attempt-
ing to locate fragments which may be missing data or
contain new information, we must consider that nodes
can have differenti-degs. That is, even ify ∈ G is the
ideal match tox ∈ F , x may not have identicali-degrees
to y.

Considerr-fuzziness, as we increase maximum differ-
ence,r, these groups grow very quickly. This indicates
that searching for a node byi-deg alone will not guar-
antee good precision.

TABLE III
3-DISTANCE FUZZINESS FOR100 RANDOMLY SAMPLED NODES

r 0 1 2 3 4
Avg. 1.6 4.6 16 40 62
Max 54 211 1717 5354 6968

VI. FRAGMENT GENERATION ALGORITHMS

As part of our testing methodology, we sought to
extract fragments from the database, anonymize them,
and relocate them within the database using our algo-
rithm. The algorithms below describe different methods
of creating fragments. Note that the subgraphs generated
are induced subgraphs on the nodes: all possible edges
that existed in the database graphG will exist in the
fragment graphF .

Algorithm 2 Fragment Generation ’e’ (exact 1-
Neighborhood):
Require: 1. large graphG;

2. a maximum fragment sizen

F ← (V ← ∅, E ← ∅)
Randomly selectx ∈ G such that|N(x)| < n
V (F)← {x} ∪N(x)
if |2−N(x)|+ |V (F)| > n then

choosen− |V (F)| nodes at random from2-N(x)
else

add all2-N(x) to F .

The first fragment generation method, ’e’, guarantees
that the 1-deg(x) will remain the same. The second
method, ’n’, is a variation on the first in that it does
not guarantee complete information about the structure
of N(x). The final generation method uses a random
walk with restarts. In our testing we usedp = 0.9 and
α = 0.7.

VII. VALIDATION AND RESULTS

To validate the accuracy of the algorithm we test it
with several different input parameters: fragment gen-
eration methods; search parameters; levels ofi-dist in-
dexing, etc. In table IV, fragment size is listed across the
top. Bold text represents searches using the dominatingi-
dist, instead of thei-dist. Each cell represents a query for
100 anchor nodes,x, with m neighbors form=0..3. The
fragment samples are generated around the same 100
anchor nodes across all tests and were constructed from
theP -random walk algorithm unless otherwise specified.

For each of these tests, increasingm increases the
precision. The greatest benefit for this database is seen
when increasing from 0 neighbors to 1 neighbor. Fur-
thermore, if we look at the difference between thei-
dist and dominatingi-dist, we see a great improvement

Algorithm 3 Fragment Generation ’n’
Require: 1. a graphG

2. a maximum sizen

Randomly selectx ∈ G such that|N(x)| > 3
Add x to V (F)
m ∈ [3,min(|neighbors(x)|, n− 1)]
Choose at randomm nodes fromN(x) and add these
nodes toF
if |V (F)| < n then

V ← {v|v ∈ G AND v /∈ F AND ∃(u, v) where
u ∈ F}
if |V |+ |V (F)| ≤ n then

add allv ∈ V to F
else

select at randomn− |V (F)| unique nodes from
V and add each toV (F)

Algorithm 4 Fragment Generation P-Random Walk ’p’
Require: 1. graphG

2. maximum sizen
3. probabilityp
4. constantα

Choose randomlyx ∈ G such that|N(x)| > 2
Add x to V (F)
u← x
previousSize← 1
while |V (F)| < n ∧ p >= p ∗ (αn) do

Choose at random a nodew from N(u ∈ G)
Attempt to addw to V (F)
u← w
restart← false
With probability p, restart← true
if restartthen

u← x
if |V (F)| = previousSize then

p← p× α
previousSize = |V (F)|

TABLE IV
PRECISIONAFTER 60 TRIES. RANDOM GRAPH, SEARCH: 2-DIST

m 20 20 30 30 40 40
0 0.93 0.37 0.98 0.78 1.00 0.84
1 0.97 0.51 0.99 0.86 1.00 0.89
2 0.97 0.60 1.00 0.87 1.00 0.90
3 0.89 0.67 1.00 0.91 1.00 0.96

in precision. This is to be expected because more in-
formation is guaranteed. Also we notice that the larger
the fragment, the higher the precision. This is to be
expected, because the information of the fragment will
more closely resemble the graph.

Fig. 1. RandomGraph, Search: 2-dist, Fragment Size:20

Figure 1 shows the precision of our algorithm over 60
guesses. This demonstrates that as we search for more
neighbors we get better results, however we do not need
all 60 guesses to obtain this performance. Many of the
successful searches occur within the first few guesses.
On the other hand, in some databases it may be desirable
to have more than 60 results returned.

Fig. 2. RandomGraph, Search: Dominating 2-dist, Fragment Size:20

In Figure 2, even though after 60 guesses the dom-
inating searches all reach over 90% success, many of
the correct guesses were within the first 5 guesses.
This reveals how much more reliable a search is with
dominatingi-dist. Though we can’t say this trend will
be true of all graphs, in our experiments the precision
curves followed this general trend.

Fig. 3. RandomGraph, Search: Dominatingi-dist, Fragment Size:20

When using the dominatingi-dist (Figure 3), the pre-
cision increases asi increases. When using the simplei-
dist, however, the precision increases untili = 3 at which

point the likelihood of success decreases significantly.
This is because we weight all penalties equally. However,
the potential for error of a fragment node’s 3-deg is
higher than that of its 2- or 1-deg. When not using
dominatingi-dist, this over penalizes the incompleteness
of the fragment.

TABLE V
PRECISIONAFTER 60 TRIES. WIKI GRAPH, SEARCH: 2-DIST

m 20 20 30 30 40 40
0 0.31 0.09 0.39 0.15 0.45 0.20
1 0.41 0.14 0.50 0.23 0.54 0.26
2 0.46 0.21 0.49 0.28 0.56 0.28
3 0.52 0.23 0.62 0.35 0.64 0.33

More nodes in the fragment yield better results, and
searching for more neighbors also yields better results.
In TABLE V, we see that for these parameters, the
results are lower than for the random graph, due to
the more difficult nature of the Wiki-graph’si-degree
distribution. This is an obstacle which we hope to
overcome.

Fig. 4. WikiGraph, Search: Dominating 2-dist

Fig. 5. WikiGraph, Search: Dominating 2-dist, Fragment Size:20

In figure 5, we show the performance of our algorithm
for each of our fragment generation methods. We can see
that the methods all produce similar patterns of precision
over 60 guesses. Method ‘e’, however, has higher pre-
cision because it contains the full1-deg of the anchor
node. This information is slightly more distinguishing
than the random-walk information.

Finally, in TABLE VI is the time requirement to run
100 tests for various fragment sizes, andm values. The

Fig. 6. WikiGraph, Search: 2-dist, Fragment Size:20

TABLE VI
SECONDS FOR100 QUERIES. WIKI GRAPH, SEARCH: 2-DIST

m 20 30 40
0 133 134 135
1 294 301 324
2 397 388 385
3 428 430 432

increase in run time when increasing the fragment size is
negligible, because only a few nodes from the fragment
are used. However, increasingm greatly increases the
runtime.

VIII. F UTURE WORK

Our experiments indicate that the probability of the
search to be successful increases with the size of the
fragment, which should be expected since a bigger size
decreases the possibility of confusing the search. We
notice that selecting “special” neighbors of the anchors
has a positive affect on the search. This feature is a
partial implementation of the total alignment of the
fragment in the database graph. Although incorporating
the total alignment should improve the accuracy, the
difficulty of this improvement relates to the computa-
tional complexity of this operation. The only practical
algorithm available is based on the backtracking strategy,
and is time consuming, as a result. Thus, to make the
operation fast, the backtracking needs to be restricted,
which may negatively affect the accuracy of the resulting
procedure. Another important observation is related to
the role of guesses by the user. We expect that any
software system for solving the fragment identification
problem to be very flexible when accommodating the
users’ suggestions.
Acknowledgment. This research was sponsored by the
Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-09-2-0053.
The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] M. R. Garey and D. S. Johnson. Computers
and intractability: A guide to the theory of np-
completeness.W.H. Freeman and Company, 1979.

[2] M. Goldberg. The graph isomorphism problem.
Handbook of Graph Theory, pages 68 – 78, 2003.

[3] M. Goldberg, S. Kelley, M. Magdon-Ismail, and
W. Wallace. Overlapping communities in social
networks. Proc. 2nd Confernence on Social Com-
putation (SocialCom), pages 104–113, 2010.

[4] J. Y. Shijie Zhang, Meng Hu. Treepi: A novel
graph indexing method.Proc. of ICDE 2007; 23rd
IEEE International Conference on Data Engineer-
ing, pages 966–975, 2007.

[5] D. B. West. Introduction to graph theory.Prentice
Hall, Upper Saddle River, NJ, 2003.

[6] J. H. Xifeng Yan, Philip S. Yu. Graph indexing:
a frequent structure-based approach.Proc. of the
2004 ACM SIGMOD International Conference on
Management of Data, pages 335–346, 2004.

