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PART ONE OF THE PAPER: DYADS 

1. Introduction 

In the first half of this paper, we focus on those two-party (dyadic) conflicts 
resulting in a protracted and costly stalemate that neither side prefers, a 
negative-sum situation often referred to as a “war of attrition” in the game-
theoretic literature (e.g., Maynard Smith, 1982). Since such conflicts are 
counter-productive and collectively irrational, they pose a difficult puzzle. What 
is the underlying logic of these conflicts; why do such conflicts occur with such 
regularity in the real world; and what role can game theory and network 
analysis play in these situations? The first half of this paper is divided into four 
parts. Following this introduction, part two provides some background and 
presents some real-world examples of costly and protracted wars of attrition. 
Next, part three presents an idealized two-player war-of-attrition model (sec. 
4.2) as well as a more realistic  -player evolutionary model (4.3), while part 
four identifies areas for further research. The second half of this paper presents 
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the use of even or odd final structural components of networks to determine if 
it is balance or imbalanced and how that affects C2.  

2. Background and summary of previous literature 

Competitive interactions often involve conflicting claims over valuable resources 
(e.g., the division of licensing and television revenues among players and 
owners in sports leagues; disputes over land and water rights in the West 
Bank) or competing preferences over public policy (e.g., Puerto Rico’s territorial 
status; the extent of the national government’s role in the health care system). 
How are these conflicting claims or preferences to be decided or resolved? 

One solution method is “spontaneous order” (Sugden, 1985), or the 
decentralized creation and evolution of self-enforcing norms and conventions 
(Lewis, 1969). Yet the resulting norms or conventions may not necessarily be 
wealth-maximizing or mutually-beneficial, and the conditions necessary for their 
creation and evolution may not be stable or present (Guerra-Pujol, 2009). 
Another solution method is centralized coercion (cf. Hobbes). A coercive 
solution, however, presupposes the existence of an external Leviathan able to 
impose its will, and regardless of the existence of such a Leviathan, coercive 
solutions are often perceived as illegitimate or unfair by the losing side, leading 
to further conflict and unrest (Zajac, 1995). Lastly, a more desirable method of 
resolving competing claims is through bargaining (Coase, 1960). In theory, 
negotiated solutions produce gains from trade in which all sides are made 
better off. In practice, however, bargaining might be unfeasible or unproductive 
for a wide variety of reasons, such as self-serving biases (Babcock & 



Loewenstein, 1997), high transaction costs (Simester & Knez, 2002), and the 
existence of “infeasible” or mutually-incompatible claims (Gächter&Riedl, 2005).1 

Consider, for example, the decades-long debate in Congress over health-care 
reform (Rand Corp., 2009), the disastrous Major League Baseball strike/lock-out 
of 1994-1995(Staudohar, 1997), and the long-standing Israeli-Palestinian conflict 
over West Bank settlements (New York Times, 2009b & 2009c). These types of 
negative-sum conflicts are not amenable to the classic solutions set forth 
above. As a result, when conventions, external coercion, and bargaining are not 
available or practicable solutions, competitive interactions often lead to a costly 
and protracted stalemate among the competing sides. Other real-world 
examples of this phenomenon include civil actions and civil litigation generally. 
Although a large fraction of civil actions are settled out of court (Galanter, 
2004), some civil actions resemble costly and protracted war of attritions in 
which the litigants and their attorneys find themselves locked in a no-win 
situation in which neither side is willing to compromise or back down. Both 
plaintiff and defendant thus end up investing significant resources in the 
contest, but their respective efforts end up cancelling each other out, leading to 
a Pyrrhic victory or no victory at all for either side (e.g. Harr, 1996). 

The “war of attrition” concept, often referred to as the “Hawk-Dove Game,” has 
been extensively treated in the evolutionary biology literature (Maynard Smith & 
Price, 1973; Bishop & Cannings, 1978; Maynard Smith, 1982). In the first half 
of this paper, we present a modified war of attrition model designed to capture 
the essential features of the myriad conflict situations described above. Our 
goal is not only to explain the ultimate source of the impasse over Puerto 
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 For purposes of this background section, we have identified only three major methods of dispute resolution. 

Another possible conflict-resolution method, though less frequently used in practice, is a random resolution method, 

such as a coin toss (see, e.g., New York Times, 2009a). 



Rico’s constitutional status but also to understand the perverse underlying logic 
of costly and protracted wars of attrition generally. 

3. A game-theoretic approach to legislative wars of attrition 

In this section of the paper, we discuss the utility of mathematical models and 
then present a two-player dyadic war-of-attrition model as well as an  -player 
evolutionary model. 

3.1. A few words about the utility of models 

Before proceeding, we wish to make a few points about the utility of game-
theoretic models. Much of the mainstream literature on the problem conflict is 
based on purely verbal arguments. The problem with purely verbal arguments, 
however, is that they tend to be imprecise, fuzzy, and vague (cf. the “level of 
generality” problem set forth in Tribe & Dorf, 1991, pp. 73-80). This “looseness” 
of most verbal arguments leads to confusion and unproductive squabbling 
among scholars, who end up arguing back-and-forth for years about the 
meaning and implications of their verbal models. 

Of course, we recognize at the outset that game-theoretic models and 
mathematical models generally are much simpler than the real-world scenarios 
they are designed to depict. For example, the models in this paper are highly-
stylized and based on a finite set of simplifying assumptions, such as 
symmetrical payoffs and a well-defined strategy set consisting of only two 
choices. In addition, we ignore the psychology of sunk costs, the problem of 
stochastic effects (such as random shocks), and the possibility of altruism or 
“other-regarding” behavior. Nevertheless, what models give up in specificity and 
detail, they gain in tractability and clarity. In the words of two contemporary 
game theorists: “models are simple maps for understanding the consequences 



of a small number of key assumptions” (McElreath & Boyd, 2008, p. 4). In 
addition, formal models may help us uncover the underlying logic or unity of 
structure of seemingly unrelated situations. Then, and only then, after stating 
the operating assumptions of our models up front, do we attempt to explain the 
results of our models in words. 

3.2. A two-player war-of-attrition model 

Our two-player war-of-attrition model consists of a one-shot, simultaneous-move 
game in which the players, whom we designate as Player A and Player B, 
support opposing military objective or opposing positions on a given issue or 
public-policy debate. We begin with this simple scenario first for ease of 
exposition. Later in this subsection (3.2), we consider an infinite version of the 
game. 

First, we make the following set of assumptions: each player prefers that his 
policy position prevail and obtains the positive payoff   if his position indeed 
prevails.2 Also, the players must simultaneously choose between one of two 
possible strategies at the outset of the game: hawk or dove. The hawk strategy 
is the equivalent of fighting, and there is no bluffing in this game: the player 
who fights always pays a cost (  ) to obtain his or her desired policy goal or 
military objective. The dove strategy, in contrast, consists of backing down or 
retreating. By choosing to back down, the player does not pay the cost of 
fighting. Lastly, we assume that the benefit or value of prevailing     is always 
larger than the cost of fighting   . That is, we assume that   is greater than  . 
The intuition behind this assumption is that the players are unlikely to fight 
when the cost of fighting outweighs the utility of prevailing or the value of the 
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 For simplicity, we assume that the intensity of the preferences of each player are equal; that is, we assume that the 

value of   is fixed. 



contested resource, as the case may be. (As an aside, this analysis suggests 
that one way of preventing wars of attrition is by increasing the cost of fighting 
relative to the value of prevailing.) 

Notice that we specify the respective benefits and costs corresponding with 
each strategy in abstract terms—the parameters   and  —rather than expressing 
them in terms of numerical values (such as 1, 2, and 3) in order to illustrate 
the underlying logic and structure of seemingly unrelated problems. In addition, 
another advantage of expressing these values as abstract parameters is 
flexibility and generality; that is, our abstract model permits us to derive results 
for any value that these parameters might actually take (cf. McElreath & Boyd, 
2008, p. 6).Since this is a game-theoretic or interactive model, the payoffs 
depend on the strategies simultaneously chosen by the players at the start of 
play. The game and the payoff-structure can be expressed in “extended form” 
(see Figure 1a) as follows: 



 

 

 

 

 

 

In addition, the payoffs can also be expressed in “normal form” (see Figure 1b) 
as follows: 
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Accordingly, there are four possible interactions in the one-shot game: (1) 
hawk-dove, (2) dove-hawk, (3) dove-dove, and (4) hawk-hawk, resulting in four 
possible payoff combinations. For instance, if Player A chooses hawk and 
Player B chooses dove, then A receives a positive payoff minus the cost of 
fighting (   ), while B obtains a zero payoff.3 This result occurs because 
Player A is more likely to obtain his desired policy change if the other player 
does not fight back, though A still ends up paying the cost of fighting. 
Likewise, if Player A chooses dove while Player B plays hawk, then the payoffs 
are reversed: A gets nothing and B gets    . 

In the event of a dove-dove interaction in which both players choose to back 
down instead of fighting, neither prevails or obtains his preferred policy 
outcome, and thus both players receive a zero payoff. The reason for a zero 
payoff (instead of     as in the classic hawk-dove game) is that in our model 
both players prefer change to the status quo, but when both players back 
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Nadine Sfeir has pointed out, although such a player avoids the cost of fighting, his choice of the dove strategy 

might generate a reputation for backing down or might weaken his ability to fight in future rounds. Nevertheless, 

since our model consists of a single, one-round game, we ignore reputation costs and the like for simplicity. 
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down, the status quo is preserved by default.4 Lastly, if both players choose to 
fight, resulting in a hawk-hawk interaction, then both players end up paying the 
cost of fighting (  ) and neither prevails because, by fighting, their efforts are 
likely to cancel each other out, leading to a preservation of the status quo, a 
state of affairs that neither player prefers. 

At this point, it is worth noting that one aspect of our war-of-attrition model 
shares some similarities with a model often referred to as the “Game of 
Chicken” (e.g.Poundstone, 1993, pp. 197-201). In the Game of Chicken, there 
are two players driving race cars towards each other at high speeds on a one 
lane road. Like the binary strategy set in our model, the strategy set of the 
drivers in the Game of Chicken consists of two choices: swerve or drive 
straight. If both players decide to drive straight, there will be a serious collision 
and thus a cost will be imposed on both drivers. Likewise, if the players in our 
model both decide to fight, both players end up paying the cost of fighting. 

Nevertheless, our model differs from the Game of Chicken in two important 
dimensions. One difference is the treatment of cooperative interactions, such as 
“swerve-swerve” and “dove-dove” interactions. In our model, dove-dove 
interactions produce a zero payoff for both players since both avoid the cost of 
fighting and since neither is able to impose his desired outcome on the other 
player. In the Game of Chicken, however, swerve-swerve interactions produce a 
small positive payoff for both players because both drivers avoid being the sole 
“chicken.” 
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 But as my colleague Carlos del Valle has pointed out, a dove-dove interaction might produce a positive payoff, a 

“peace dividend.” Here, however, we postulate a zero payoff since neither player prefers the status quo. 

Nevertheless, we will relax this assumption in a subsequent paper by presenting a model in which one of the players 

prefers the status quo to change. 



Another difference between our model and the Game of Chicken is the 
treatment of mixed-type interactions, such as “swerve-drive straight” and “dove-
hawk” interactions. In our model, when a dove interacts with a hawk, the 
dove’s payoff is zero. He avoids the cost of fighting, and the other player’s win 
does not impose a cost on the dove. In contrast, the worst possible outcome in 
the Game of Chicken is to swerve if the player is going to drive straight. The 
player that swerves not only obtains a negative payoff (since he has lost the 
contest), but also this negative payoff is greater than the negative payoff 
generated when both players drive straight. The logic of this result is that the 
driver that swerves is the sole “chicken.” That is, although a head-on collision 
also produces a negative payoff, neither player can be called a “chicken,” and 
by definition, being called this epithet is deemed worse than the cost of a 
head-on collision.5 

Before proceeding, it is also worth taking a moment to describe the salient 
differences between the hawk-dove model presented in this paper and the 
traditional or classical hawk-dove model that appears in the game theory 
literature (e.g. Maynard Smith & Price, 1973; Maynard Smith, 1982).6 In brief, 
our modified war-of-attrition model differs from the Maynard Smith model in the 
following respects: 
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The Game of Chicken thus raises an intriguing possibility: under what conditions might the dove strategy in our 

model generate a negative payoff? For example, there might be a cost to backing down (choosing dove) when the 

other player chooses hawk, such as a reputation cost. In addition, backing down at time T1 might affect the outcome 

of a future contest at time T2. That is, one’s choice of strategy may have a “path-dependent effect.” For example, in 

the standard war-of-attritions model in the existing literature (see, e.g., Maynard Smith, 1982), the outcome of 

hawk-hawk and dove-dove interactions are completely random. But one could imagine a more complex or dynamic 

model in which the choice of strategy during one round of play increases or decreases the distribution of payoffs in 

future rounds of the game. The intuition behind this idea is as follows: if I play hawk and you dove during the first 

round of play, I not only win the first round, I am also in a better position to win future rounds of play even if you 

later switch to hawk. Nevertheless, we ignore this possibility in our model for the sake of simplicity. 
6
 The first paper to present the hawk-dove model was Maynard Smith and Price (1973). Maynard Smith (1982) 

presents the hawk-dove model in its traditional or canonical form, which we shall refer to as the “Maynard Smith 

model” for reference, in contrast to our model, which we shall refer to as the modified hawk-dove model.  



(a) biological versus social science approach 

The focus of the classical Maynard Smith model is animal conflict. Specifically, 
the Maynard Smith model is designed to explain the prevalence of “display” 
behavior in nature in which many species of animals settle contests without 
resort to actual fighting. The focus of our model, in contrast, is on actual 
human conflict, such as conflicts over public policy or scarce resources, and 
not on mere display behavior. (In section 4.3 of this paper below, though, we 
do develop an evolutionary or biological war-of-attrition model.) 

(b) dove-dove interactions 

Dove-dove interactions in the Maynard Smith model produce a payoff of     for 
both players because the players are assumed to share the resource or, in the 
alternative, because the winner of the contest is selected at random, so that 
each player wins half of the time. In our model, by contrast, we assume more 
realistically that when both players choose to back down, neither player wins 
the contest, leading to a zero payoff (instead of    ) for both players. 

(c) hawk-hawk interactions 

Lastly, in the Maynard Smith model the outcome of a hawk-hawk interaction is 
determined at random, leading to a payoff of        , because the players are 
assumed to be equally-matched. Our model likewise assumes that the players 
are equally matched, but we reach a fundamentally different conclusion from 
this baseline assumption. We conclude that neither player wins the contest, 
leading to a negative payoff of –   instead of         for both players, since 
their efforts are likely to cancel each other out, producing a costly war of 
attrition and preserving the status quo. 



This approach to hawk-hawk interactions provides the key to understanding the 
inherently negative-sum nature of costly and protracted wars of attrition: when 
both sides choose to fight, neither side wins because a hawk-hawk interaction 
increases the likelihood of stalemate. Why? Because when both sides choose 
to expend resources fighting for their respective policy outcomes, their efforts 
are likely to cancel out, leading to a costly war of attrition with no change in 
the status quo. Consider once again the Puerto Rican status debate and the 
other examples set forth in section two of this paper: the competing health-care 
reform proposals in Congress, the Major League Baseball strike of 1994-1995, 
and the Israeli-Palestinian conflict over West Bank settlements. Both sides in 
these myriad conflicts prefer to see their respective positions prevail, but by 
refusing to negotiate or surrender to the demands of other side, the warring 
factions end up perpetuating a negative-sum conflict in which all sides are 
worse off.7 

Nevertheless, despite these differences, our modified model shares the same 
underlying logic and structure of the Maynard Smith model. In both models, the 
individual players are competing against each other, they are acting as proxies 
for strategies (either hawk or dove), and their strategies are set at the start of 
the game. Also, in both models the hawk strategy (fighting) can be compared 
to defection, while dove (backing down) is more akin to cooperation. That is, if 
both players choose to back down, then neither gets its preferred outcome, but 
neither pays the cost of fighting either, perhaps allowing time for a mutually-
beneficial compromise solution or a negotiated settlement. If both choose to 
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 For example, the existence of military checkpoints and barrier walls between Israel and the West Bank imposes a 

significant cost on both Palestinians and Israelis. Similarly, neither the players nor the owners in the Major League 

Baseball strike benefitted from the cancellation of 1994 World Series. Likewise, Puerto Rico’s main political parties 

have expended considerable resources promoting their preferred status options, but thus far their efforts appear to 

have cancelled each other out, ultimately resulting in no change in the Puerto Rican status quo. 



fight, however, neither obtains its preferred outcome, yet both end up paying 
the cost of fighting. 

Having compared and contrasted the classical Maynard Smith hawk-dove model 
with our modified war-of-attrition model, we now proceed to find the existence 
of Nash Equilibria in the modified model. That is, what is the likely outcome of 
our revised hawk-dove game? 

In summary, there are two pure-strategy equilibria in the modified one-shot 
game. This conclusion becomes apparent once we evaluate each player’s best 
response to the other. Given the payoff structure of our modified hawk-dove 
model (as set forth in Figures 1a and 1b above), hawk is the best response to 
dove because is     is greater than  , while dove is the best response to 
hawk because   is greater than    . That is, Player A prefers to fight if Player 
B is going to back down, and vice-versa, B prefers to back down if A is going 
to fight. Nevertheless, this is not the outcome we observe in the war-of-attrition 
scenarios described in sections two and three above. In the absence of 
conventions, external coercion, or bargaining, we saw that a conflict might often 
escalate into a costly and protracted war of attrition. How can we explain the 
persistence of such wars of attrition, i.e. hawk-hawk interactions, in so many 
myriad types of conflict scenarios? 

One source of this incongruity is the simultaneous-move nature of the modified 
hawk-dove game. Being a simultaneous-move game, neither player can observe 
the other player’s move ahead of time, so the players could end up choosing 
the same strategies (hawk-hawk or dove-dove), leading to sub-optimal payoffs 
for both players. For example, both players might be committed ex ante to 
fighting—hoping in vain that the other player has chosen to back down—leading 
to a costly and pointless war of attrition in which both players end up fighting. 



Another source of negative-sum hawk-hawk interactions is the possibility of 
mixed strategies. In place of a single, pure strategy (i.e. hawk or dove), the 
players might select a probabilistic mix of hawk-dove combinations, playing the 
hawk strategy, for example, with probability   and choosing dove with 
probability    . (In baseball, for example, the pitcher will mix his repertoire of 
pitches—e.g. fastball, curve ball, sinker, slider, etc.—in some probabilistic or 
random manner.) Once we introduce the possibility of mixed strategies, we can 
easily determine the probability of a hawk-hawk interaction, that is, the 
probability that the game will turn into a war of attrition. 

Consider an infinite version of our two-player hawk-dove war of attrition game. 
That is, instead of a one-shot or single-round game, we now imagine a 
potentially never-ending game consisting of an infinite or endless number of 
rounds.8 In summary, the payoff structure of the infinite game is identical to 
that of the one-shot game (cf. Figures 1a and 1b), since each individual round 
of the infinite game provides the same payoffs to the players as the one-shot 
game does. Furthermore, we assume the players avoid the “sunk cost fallacy”; 
in other words, when playing a given round of the infinite game, each player 
ignores his previous payoffs (i.e., his accumulated losses and wins during the 
previous rounds of play) because such previous payoffs are, in essence, sunk 
costs and thus have no bearing on the current round being played.9 
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 For example, returning to some of the conflict scenarios set forth in section two above, we could model the long-

standing debates over Puerto Rican status and health-care reform or the Mideast conflict as an endless hawk-dove 

game. Indeed, this idea is explicit in H.R. 2499, the Puerto Rican status bill currently pending before Congress, 

which proposes a potentially never-ending series of referenda if a majority of the voters fail to approve Option 2, the 

change option. 
9
 The fallacy consists of the assumption that a player’s prior investment in fighting costs commits him to future 

investment. Instead, each player should consider his expected or future payoffs in deciding his optimal strategy and 

thus in deciding whether to continue playing at all (see, e.g., Dawkins, 1989, p.150). Of course, in ignoring sunk 

costs, we are assuming that the players are acting rationally in the homo economicus sense. Later, in section 4.3 

below, we relax this rationality assumption. 



(Before proceeding, notice that the infinite version of the game will end only 
when one or both of the players decide to stop playing the game, either 
because one of the players has accumulated too many losses during the 
course of the game, leading to his voluntary surrender, or because both players 
are able to opt-out of the game altogether through a negotiated settlement or 
compromise solution. In our model, however, we assume that the player have 
an unlimited amount of resources to fight and that negotiations are not 
feasible.) 

What is the optimal strategy in the infinite game? Since neither player knows 
with certainty the strategy of the other player, the optimal approach might 
consist of a mixed strategy in which a player is indifferent to playing either 
hawk or dove.  

Consider Player A first. (In fact, the analysis in the remainder of this section 
applies equally to both A and B since the payoffs in this model are 
symmetrical for both players.) Here, we introduce the related ideas of expected 
payoff and probability. That is, Player A’s expected payoff from playing a given 
strategy (say, hawk) depends on the probability ( ) that Player B might also 
play hawk as well as the probability (   ) that B might choose dove. 

Thus, if Player A chooses hawk, A will pay a cost    with probability   and 
will obtain the payoff     with probability    . (Recall that   is the probability 
that Player B also plays hawk, while     is the probability that B plays dove.) 
Accordingly, the expected payoff   ) to Player A of playing hawk        can 
thus be expressed mathematically as follows: 

                                (1.1) 



Likewise, Player A’s expected payoff from choosing the dove strategy        
can be expressed in the following form: 

                                (1.2) 

That is, if Player A chooses dove, then A receives a zero payoff because, 
regardless of the other player’s strategy, the dove strategy always produces a 
zero payoff against both hawk and dove, given our initial assumptions. 

Lastly, we determine Player A’s optimal mixed strategy       by setting 
equations 1.1 and 1.2 equal to each other, substituting    for  , and solving for 
  as follows: 

                         

                      

            

          

                              (1.3) 

In other words, Player A’s optimal mixed strategy is to play hawk with a 
probability equal to         and dove with probability          . Also, 
notice that the optimal mixed strategy is actually the same for both players—that 
is,       is equal to      —since the payoffs in this modified model are 
symmetrical.10 

Summing up, then, assuming   is greater than  , each player’s optimal strategy 
in the infinite game is to play hawk (fight) with a probability equal to the ratio 
that appears on the right-hand side of the above equation. This ratio is a 
function of the stakes of the contest ( ) and the cost of fighting ( ) and 
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 Also, we present the complete details of our algebraic analysis so that the careful reader can follow each step of 

our analysis. 



increases as the numerical value of   increases and decreases as the value of 
  increases. Thus, when     , there is a proportional relationship between the 
variables    and   but an inverse relation between    and  . 

Having determined the probability that either player will player hawk (cf. 
equation 1.3 above), we now find the probability that any given round of play 
will result in a hawk-hawk interaction, that is, the probability that both players 
will simultaneously play hawk on round   of play, where   is any individual 
round of play. In summary, since both players will choose the hawk strategy 
with probability    due to the symmetrical payoff structure of the game, the 
probability that both players play hawk on any given round of play is simply 
     , or    . (Similarly, the probability that hawk-hawk interactions occur on 
two consecutive rounds of play is        , or    .) 

Since the value of    (and thus the value of     ) is a function of the stakes of 
the contest ( ) and the cost of fighting ( ), our modified model conveys a 
valuable insight about real-world symmetrical wars of attrition. In essence, the 
lesson is this: the larger the stakes of the conflict are (i.e. the higher   is), the 
larger the probability of fighting. By the same token, the larger the cost of 
fighting is (the higher   is), the smaller the probability of fighting. 

Thus far, we have presented a two-player war of attrition of model. In the next 
section, we consider a more realistic  -player evolutionary model. 

4.3.An  -player evolutionary war-of-attrition model 

In place of the two-player model above, we now consider an  - or multi-player 
hawk-dove model. Our  -player model operates on the following assumptions: 
the population consists of a large number of individuals; during each round of 
play, two individuals selected at random from the population meet and engage 



in a micro-conflict; and as before, there are only two possible strategies or 
types of individuals: hawk and dove. Lastly, we further assume that these 
strategies are transmitted through an asexual inheritance mechanism: the victor 
of each two-pair, micro-conflict not only survives but also produces a 
descendant-clone who asexually inherits the victor’s strategy; the loser, in 
contrast, is eliminated from the population. If the conflict ends in a draw or tie, 
both contestants survive but neither produces a descendant. 

Given these assumptions, we ask which strategy will be favored by natural 
selection? To answer this question, we proceed in stages. First, we restate the 
payoff     corresponding to each possible interaction. Since the payoffs are the 
same as before (cf. Figure 1b), and since there are four possible micro-
interactions in all (hawk-hawk, hawk-dove, dove-hawk, and dove-dove), the 
payoffs corresponding to each interaction can be written as follows: 

            (i.e. the payoff to a hawk, given that it interacts with 
another hawk) 

             (the payoff to a hawk, given that it interacts with a 
dove) 

            (the payoff to a dove, given that it interacts with a 
hawk) 

            (the payoff to a dove, given that it interacts with 
another dove) 

On the left-hand side, we have written the payoffs corresponding to each 
interaction in mathematical form, and on the right-hand side, we have 
“translated” the mathematical notation into plain English for the non-



mathematical reader. Notice too that, because of the symmetrical nature of our 
model, for simplicity we state the payoffs of the row player only (Player A). 

In a population model, the fitness of a given strategy is said to be “frequency 
dependent” because the success or fitness of a strategy depends not only on 
the frequency of the other strategy but also on that strategy’s own frequency 
(cf. McElreath & Boyd, 2007, p. 38). When fitness (rate of survival) is 
frequency dependent, we proceed to use evolutionary game theory to determine 
which strategies are “evolutionarily stable strategies” or ESSs and to find the 
long-run evolutionary equilibrium of the population—that is, the frequency of 
hawks and doves over many generations. Specifically, we wish to answer the 
following two questions: 

(a) is either strategy able to resist invasion by the other strategy? 

(b) if no strategy is evolutionarily stable (i.e. able to resist invasion by the other 
strategy), is there an evolutionarily stable mix of strategies? 

Let   be the frequency of hawks in the population and     the frequency of 
doves in the population. First, consider a population in which the frequency of 
hawks is very high      . Under this scenario, hawks rarely interact with 
doves because the frequency of doves is very low        , and thus the 
average fitness of a hawk        is determined by his interactions with other 
hawks as follows: 

                                    

                

            

Before proceeding, note that the parameter    in our equations always refers to 
the “baseline fitness” of all the individuals in the population—that is, the 



probability of survival from generation to generation—and thus reflects the 
strength of selection on a given population (cf. McElreath & Boyd, 2007, pp. 
40-41). For convenience, we assume that    is larger than  , the cost of 
fighting. 

Now, consider the possibility of a rare dove-like mutant. What would happen if 
a hawk were to interact with this rare dove mutant? Will the dove strategy 
begin to spread across the population, gradually displacing the hawks, or will 
the hawk strategy be able to resist invasion? To answer this question, we 
determine the average fitness of the rare dove mutants among the population 
of hawks. Since doves are rare        , the chance one dove will meet 
another dove is likewise small. As a result, the average fitness of a rare dove 
       is determined by his interaction with hawks as follows: 

                

               

Notice, then, that in a population of hawks, the rare doves will on average 
outperform the hawks because      is larger than     . In other words, 
doves will invade the population and displace hawks because the average 
fitness of each dove      is on average higher than the average fitness of 
each hawk       . Hawks will not be able to resist an invasion of doves. 

But can a population of doves resist an invasion of hawks? 

Consider a population in which the frequency of doves is very high        . 
Since doves rarely interact with hawks when the frequency of hawks is low 
     , the average fitness of a dove       is determined by his interactions 
with other doves as follows: 

                                    



                

               

What would happen if a rare hawk-like mutant were to appear on the scene? 
Since hawks are rare      , the hawk mutant will interact mostly with the 
doves and his average fitness        is thus as follows: 

                

               

Thus, in a population of doves, the rare hawks will on average do better than 
the doves because      is larger than      when the baseline fitness is 
larger than the cost of fighting. Just as doves will invade a population of 
hawks, in this case hawks will invade a population of doves and eventually 
displace the doves because the average fitness of each hawk          is on 
average higher than the average fitness of each dove     . Accordingly, these 
results suggest that neither hawk nor dove is an evolutionarily stable strategy 
(ESS) because neither strategy is able to resist invasion by the other. But is 
there is some stable mix of hawks and doves? And if so, what is it? That is, 
in the long-run, what proportion of the population will be hawks, and what 
proportion will be doves? 

To find this mixed or “polymorphic” population equilibrium, we must first 
determine the expected or average payoff     corresponding to each strategy 
across a large number of interactions. Since the expected payoffs depend on 
the overall frequency or proportion of hawks and doves in the population, let   
be the frequency of hawks in the population and     the frequency of doves 
in the population. Then, assuming that individuals interact at random, we obtain 
the expected fitness of a hawk as follows: 

                                     



                             

                      

                          (2.1) 

Similarly, we obtain the expected fitness of a dove as follows: 

                                     

                           

              

                  (2.2) 

(Again, recall that the parameter    in both equations 2.1 and 2.2 is the 
average fitness or baseline fitness of individuals in the population.) 

Having determined the expected fitness of hawks and doves, we now set 
     and           and solve for    to find the frequency at which there is 
an evolutionarily stable mix of hawks and doves in the population: 

           

               

         

                    
 (2.3) 

Notice the striking parallel between the results of our evolutionary population 
model and results of the standard two-player game-theoretic model in the 
previous subsection of this paper. Specifically, under the standard model an 
individual player’s optimal mixed strategy is to play hawk with a probability 
equal to        (cf.equation 1.3 in subsection 4.2 above). Similarly, the 
equivalent evolutionary modeldemonstrates that the evolutionarily stable 



proportion of hawks in a large population is also equal to the same ratio:   

    . 

In addition, like our previous model, the evolutionary model produces two 
qualitatively different outcomes depending on the ratio of   to  . When the 
value of the resource exceeds the cost of fighting     , hawks will displace 
doves from the population, and the larger   is in relation to  , the greater the 
proportion of the population will consist of hawks. But when the cost of fighting 
exceeds the value of the contested resource     , then doves will outperform 
hawks, and the larger   is in relation to  , the greater the proportion of doves 
will be. In both cases, the population will consist of a mix of doves and hawks, 
with the actual proportion of this mix depending on the magnitudes of   and  . 

4. Discussion 

Competing interactions over scarce resources or over the content of public 
policy can result in radically different outcomes. Consistent with Adam Smith’s 
“invisible hand” metaphor of markets, some interactions might lead to a 
positive-sum equilibrium in which everyone benefits from mutual cooperation 
(e.g. Trivers, 1971). Other interactions, in contrast, might produce a negative-
sum Hobbesian equilibrium in which everyone is worse off because of mutual 
defection (e.g. Poundstone, 1993). For example, when conventions, coercion, 
and bargaining are not available for achieving a positive-sum outcome, a 
competitive interaction might result in a costly and protracted war of attrition. 
Furthermore, negative-sum wars of attrition abound in the real world. Consider, 
once again, the centennial debate over Puerto Rico’s constitutional status, the 
impasse in Congress over health-care reform, the stand-off between the player’s 
union and baseball club owners during the Major League Baseball strike/lock-
out of 1994-1995, and the long-standing conflict between Israel and Palestine 



over disputed water rights and the construction of Jewish settlements in the 
West Bank. In all these conflicts, the contending parties are locked in a costly 
and protracted negative-sum war of attrition.  

In this paper, we have attempted to determine the conditions under which a 
hawk-hawk interaction or costly war of attrition is most likely to occur, and we 
have shown that when the payoffs are symmetrical and bluffing is not 
permitted, the probability of a player choosing the hawk strategy (or the 
proportion of the population consisting of hawks) is a function of the stakes of 
the contest ( ) and the cost of fighting ( ) and increases as the numerical 
value of   increases and decreases as the value of   increases. In summary, 
the larger the stakes of the conflict are (i.e. the higher   is in relation to  ), 
the larger the probability of fighting (or the greater the proportion of hawks in 
the population). In the alternative, the larger the cost of fighting is (the higher   
is in relation to  ), the smaller the probability of fighting (or the smaller the 
proportion of hawks in the population). 

In addition, we wish to conclude this paper by identifying the following areas 
for future research: 

(a) what happens when the payoffs are asymmetrical instead of symmetrical? 

In this paper paper, we have assumed for the sake of simplicity that the cost 
of fighting ( ) and the stakes of the contest ( ) are symmetrical for the players. 
In reality, however, although both players might prefer some form of change to 
the status quo, they will oftentimes disagree on the extent of the desired 
change. One player might prefer a radical or “hard” change to the status quo 
(the “hard player”), while the other player might prefer a small or “soft” change 
(the “soft player”). In other words, the stakes of the conflict and thus the cost 
of fighting might be asymmetrical for the players. 



For example, returning to H.R. 2499, the debate over Puerto Rico’s 
constitutional status is, in essence, a strategic contest between hard and soft 
players in which the existing Commonwealth status serves as the status quo 
position. The NPP and the PIP support the statehood and independence 
options, respectively. Both options constitute hard changes to the status quo. 
The PDP, in contrast, prefers an “enhanced” or improved Commonwealth, a 
softer or more incremental change. But many members of the PDP as well as 
the PIP prefer the status quo to statehood; that is, they perceive the 
Commonwealth status as a “lesser evil” than statehood. 

(b) what happens if the values of   and   change over time? 

Another interesting question for future research is to consider the possibility that 
  and   might not be fixed but might change over time. That is, the payoffs 
might be dynamic instead of static. For example, the value of the contested 
resource might grow with time. By the same token, the cost of fighting might 
vary over time as tactics and technology change. Thus, we could build a model 
in which either   or   (or both) change by some constant  . This constant 
might be fixed in which   increases by some factor    during each round of 
play, or it might be probabilistic, varying from 0 to 1 according to some random 
mechanism. 

(c) is there a link between the payoffs in a given round and the outcome of 
future rounds? 

Lastly, another interesting idea for future work is the possibility of the players 
becoming stronger or weaker over time, i.e. during successive rounds of play. 
Consider many popular video games, in which the strength of the life of the 
player is presented visually in the form of a bar at the top of the video screen 
or computer monitor. As the bar becomes smaller, the life of the player is 



more at risk, and conversely, as the bar grows larger, the player’s life is 
stronger. Similarly, one could imagine a model in which previous gains increase 
the probability of future gains—and in which losses during previous rounds of 
play increase the probability of future losses. The intuition here is that one’s 
previous choices will not only have an effect on one’s future choices (cf. “path 
dependence”), but will also affect the likely outcome of the future rounds of the 
game. For example, instead of the outcome of a hawk-hawk interaction or 
dove-dove interaction being decided randomly, as in the Maynard-Smith model, 
the outcome of such interactions might be based on the relative strength of 
each player, which in turn would depend on the outcome of previous rounds of 
play. 

Also, in this paper we do not consider the accumulated payoffs (both losses 
and gains) from previous rounds of play, since such payoffs are, in effect, sunk 
costs. But in real life, the outcomes of previous rounds of play do have an 
effect on the psychology of the players. Moreover, once we assume that the 
selection and implementation of a strategy is not costless (cf. Coase, 1937) 
and that the resources available to the players are scarce or subject to some 
upper limit, then it becomes imperative to keep track of losses and gains 
during the rounds of play. 

One possibility for doing this might be to present the model in visual form. For 
example, whether the players are contesting rights to land, or to access to 
water, or to shares of revenue, the sum value of the contested resource (e.g., 
land, water, revenue) might be presented visually in the form of a circle. This 
circle, in turn, would consist of two colors, such a blue and green, with blue 
representing one player’s share of the contested resource and green 
representing the other player’s share. The idea here is to present visually the 



changes over time to each player’s share of the contested resource during 
successive rounds of play. 

PART TWO OF THE PAPER: TRIADS, EVEN AND ODD NETWORKS  

I.  INTRODUCTION  

The period-doubling and chaos diagrams developed in the field of Complexity 
show stages of bifurcations that occur in natural systems and that consist of a 
steady state, period one, two, four and chaos. 11  The period-doubling and 
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 See: JAMES GLEICK, CHAOS, MAKING A NEW SCIENCE, 69-80 (1987) and TRINH XUAN THUAN, CHAOS AND 

HARMONY, PERSPECTIVES ON SCIENTIFIC REVOLUTIONS OF THE TWENTIETH CENTURY 116-117 (2006). In both of 

these books they present diagrams of the different periods from an equilibrium stage up to a chaotic one. A diagram 

similar to the one presented is the following followed by the description made by James Gleick, Id. at 71:  

 
 

Period-Doublings and Chaos. Instead of using individual diagram to show the behavior of 

populations with different degrees of fertility, Robert May and other scientist used a “bifurcation 

diagram” to assemble all the information into a single picture. 

The diagram shows how changes in one parameter-in this case, a wildlife populations’ “boom-

and-bustiness”-would change the ultimate behavior of this simple system. Values of the parameter 

are represented from left to right; the final population is plotted on the vertical axis. In a sense, 

turning up the parameter value means driving a system harder, increasing its nonlinearity. 

Where the parameter is low (left), the population becomes extinct. As the parameter rises (center), 

so does the equilibrium level of the population. Then, as the parameter rises further, the 

equilibrium splits in two, just as turning up the heat in a convecting fluid causes an instability to 

set in; the population begins to alternate between two different levels. The splitting, or 

bifurcations, come faster and faster. Then the system turns chaotic (right), and the population 

visits infinitely many different values. 

 

I personally have observe bifurcation phases in which a change of symmetry occurs in front of my house with a big 

palm tree and in the back patio with an orange tree I had. When looking at a tree imagine its initial stages starting 

with the planting of the seed. I did just that when I was looking at my former orange tree and then applied the 

Period-Doubling diagram I had just read about and theorized that the seed or the trunk was the steady state that after 

some time and exposure to the soil, water and sun reaches a threshold level upon which it develops a period two 

steady state equilibrium represented in the trunk and/or branches and continues its path until it reaches a fourth 

threshold level bifurcation stage upon which we see the trunk extend into branches or the branches including leaves. 



chaos diagram show a natural pattern that should be studied deeply in C2 time 
and spatial settings. Here we propose that the evolution of the stages follows 
an even and odd structural characteristic that helps us assess balance and 
imbalance in networks.  

 “The life of the law has not been logic; it has been experience” Oliver 
Wendell Holmes, Jr.12 Inspired in these words that continue to have relevance 
to some in the legal profession and in our way of life is taken to another 
epistemological level. Experience will take a leading role in the conservative 
network analysis approach herein developed relying on our three dimensional 
experience with nature, dimensions our evolutionary history has sharpened to 
guide us in our relation with other finite bounded elements of space that share 
infinite self-similar “scale-invariant”13 characteristics. These “scale-invariant” 
features we best perceive in our three dimensional World will let us better 
understand, defend and confront the stresses and challenges natural dynamics 
present. 

The development of network focuses on how a single actor begins relations to 
others forming a network of which focus is given to single vertex, two vertices 
(dyad) and three vertices (triad) with their respective dynamics. An illustration of 
why one actor and two actor relations, as depicted in networks is easier to 
measure, visualize and understand than three actor relations that form a 
triangular Euclidean geometric figure is also presented. The triangle will be 

                                                                               
I then thought of the chaos random phase, what was it? It then struck me, the seeds. In the case of the orange tree, 

the seeds of the orange fruit would be the system reaching chaos since it’s probability of getting planted in fertile 

soil is very random and chaotic. The seed in one form or another shall end up in the terrestrial cortex but when, 

where and how is very complex. 
12

 OLIVER WENDELL HOLMES, JR., THE COMMON LAW 1 (Am. Bar Ass’n, 1963(1881). 
13

 Gleick supra note 3 at 83 et. seq.(chapter on a Geometry of Nature explaining the contribution of Benoit 

Mandelbrot, father of fractal theory which includes these essential self-similarity quality of fractals.)  



correlated with our third dimensional form from which more complex levels of 
relations can be analyzed.  

The exploration of these odd triadic geometrical forms will be further enriched 
by exploring the challenges, frustrations and defeats that triads through the 
“Three-body problem” presented to the epistemology of natural phenomena. 
This will take us into the issue that defeated the main scholars Johannes 
Kepler and Isaac Newton after solving the “Two body-Problem”, a problem that 
Newton gave up on trying to tackle and that also defeated subsequent 
mathematical geniuses that tried to tackle it, such as the father of Graph 
Theory, Leonhard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813) and 
Pierre-Simon de Laplace (1749-1827). The interest to tackle this issue will lead 
us to venture on how Jules-Henri Poincare (1854-1912), while working on the 
“three-body problem” became a pioneer of Chaos theory when revealing that 
indeterminacy and chaos reside at the very heart of Newton’s deterministic 
equations, equations that worked well for single and two body networks but that 
break down when three bodies are involved.14 The nature of the problem 
identified by Poincare I have recently coined as RUI parameters because they 
share the inherent limitations any model of natural phenomena will have of 
being relative, uncertain and incomplete pursuant to the contributions of Albert 
Einstein (1879-1955) with the Theory of Relativity, Werner Heisenberg (1901-
1976) with the “uncertainty principle” and Kurt Gödel (1906-1978) 
“incompleteness theorem.”15  Hence, based on the experience of how systems 
evolve from one, two and three vertex relations we move to how “network 
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CENTURY 73-75, 82, 347(2006)(Describing the history with details of the actors and issues regarding the three-body 

problem) 
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science” adopted the theories of George Simmel, considered the father of 
modern sociology, who developed the idea that triads are the “holy grail” of 
sociological and economical analysis in our complex systems. Nevertheless, 
NetSpids16 working with triads seem to ignore or have at the margin the 
experience of other scholars with the “three body problem.” Hence, this paper 
has the hope to mitigate waste of talent and resources in the analysis of triads 
in network science by presenting in general terms the experience of 
mathematicians with the three body problem while expanding on refined 
epistemological theory of knowledge based on our three dimensional classical 
perception vindicated with the advancement of fractal theory.  

With this exposure we will then have enough elements to have a bird’s eye 
look at why “network science” has been path dependent and hence locked in 
to its past inefficiently and how we can improve “network science” method 
using what our history and experience has perceived in a three dimensional 
World that has worked efficiently for us in a relativistic Universe. We propose 
two models, of which one is the Orlando-Manatí Model (“OM Model”) to be 
developed in this paper as a source of C2.  

In “Network Science” angles are rarely considered when measuring and 
visualizing the structure and operation of vertices/actors and edges/relations.17 
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 In thinking on how to refer to network analysis scholars for this sentence, besides network analyst I thought on 

networks and their most antique and specialized creators in our environment. Vladimir Batagelj and Andrej Mrvar 

have identified that actor to be the spider and as such they named their large network analysis software Pajek, 

Slovene language word for spider. Based on this history I am combining network and spider to produce NETSPID 

for a person that creates and analyzes networks. Finally the further historical development of triads in network 

science during the subsequent decades is out of the scope of this paper.      
17

 During the Sunbelt XXXI, Annual Conference of the International Network for Social Network Analysis held at 

the Trades Winds Island Resorts, St. Pete Beach, Florida during February 8-13, 2011, I asked leading scholars such 

as Katherine Faust expert in triads, the main speaker of the event, Kathleen Carley and Elisha Peterson about the use 

of angle measurements and angle visualization and they expressed absence of such perspective in Network Science. 

In the particular case of Prof. Faust she shared that it was not a proper form of analysis within Graph Theory but 

subsequently accepted being open to receive this paper. Elisha Peterson specifically expressed he considered  angle 

measurement was contrary to Graph Theory and that I should research more on topological studies not network 

graphs. Kathleen Carley demonstrated the most openness and interest in evaluating and considering angle 



Nevertheless, when and odd number of components or nodes greater than one 
is involved in a conflict angles form generating a form of triangulation.  

The justice system is rich in triad relations, conflict generally arises between 
two people and later a law enforcer intervenes, or the two actors have a 
relation that results in a conflict after a third actor enters into the relation, in 
judicial proceedings we regularly have the judge and the parties that will vary 
depending on the civil or criminal nature of the facts. If the matter is of civil 
nature the parties may be plaintiffs, defendant and judge or jury. In the criminal 
context we would have the prosecutor the defendant and the judge or jury. The 
procedure can get more complex if we have counterclaims, third party 
complaints, interpleader and class actions, but as will be developed in this 
paper, triads are the essential unit to evaluate more dynamical proceedings.  

II. MATHEMATICIAN LEONHAR EULER, VERTICES, EDGES, EVEN AND ODD 
NUMBERS AND THE SEED OF NETWORKS AS A SCIENCE 

Leonard Euler (1707-1783) the most prolific mathematician in history,18 in 1736 
wrote a paper in which he solved a problem that originated in Konigsberg, 
eastern Prussia that gave life to graph theory and networks. The issue 
consisted of solving: “Can one walk across the seven bridges and never cross 

                                                                               
measurements in network analysis and visualization as all the other assistants to the conference. I also had the 

opportunity to sit down with Valdimir Batagelj and Anuska Ferligoj to discuss this approach and others related to 

balance or imbalance graphs based on the even or odd number characteristics of its vertices or edges, as well as 

using a more elementary unit to a block, the triangle. A block can be divided by two triangles and as such they could 

subdivide their blockmodeling methods and techniques with two triangles in every block to capture structurally and 

visually triads and all the theory that exist as well as the binary relation of even or odd numbers, by relating the 

triangles with odd and the block with the even structural nature of phenomena. Dr. Patrick Doreian expressed he had 

not considered this perspectives with blockmodeling and that he was willing to entertain it but it would have to be 

called something different. With regards to the approach on even and odd number to balanced or imbalanced graphs 

Arnout van de Rijt, Freeman Award Lecture speaker also enjoyed and was open to this new approach. Finally, Frank 

E. Tutzauer, Jamie F. Olson, Kathryn Coronges, Lukas Zenk, Schumpeter Tamada, Joe Parry, Julie M. Birkholz and 

Susan Lyons between others, all presented interest in the perspective. I am very thankful for their time to hear ideas 

of an outsider being them long time insiders in Network Science.    
18
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the same one twice?” In solving this issue he simplified the problem by 
graphing the topography using vertices (points) for each lot of land and edges 
(lines) for each bridge. Once he graphed the topography he could visualize it 
and think how to solve it. Euler found a solution to this issue using the 
structural characteristics of even and odd numbers.19  

Euler proved that there is no path crossing all seven bridges only once since 
nodes with an odd number of links must be either the starting or the ending 
point of the journey. A continuous path that goes through all bridges can have 
only one starting and one end point. Thus, such a path cannot exist on a 
graph that has more than two nodes with an odd number of links. This result 
depended on the structure of the situation, depicted ingeniously by the graph 
and the pure number theory using the structural nature of even and odd 
numbers, not another, more abstract, intuitive and multidimensional form of 
analysis. 

In a recent paper I explored how we can decipher most types of phenomena 
through the contribution of Euler of “dividing and conquering” creating one-to-
one relationships of actors and relations in social dynamics with numbers and 
then breaking them into two classes, even and odd.20  An even number is a 
whole number that is twice another whole number, while an odd number is not 
divisible by two.21  These are two characteristics of all natural numbers; they 
can be divided into the set of numbers that has no remainder after dividing by 
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two, and the set of numbers that have a remainder of one after dividing by 
two.  This method reduces an infinite collection of things to a finite collection.22 

In addition, numbers are sets of things with order, structure, and quantifiable 
properties.  Numbers’ structure emanates from the operations of arithmetic that 
can be performed among and between them.  In the quest for structures of 
phenomena, such as our previous Euler example of the Konigsberg Bridges, 
addition is an indispensable tool that gives us a unique integer for every pair 
of integers added together. We can classify this pair of integers as well as the 
unique product of their sums as even or odd. In similar fashion to the infinite 
set of integers, we can apply numbers to other problems in C2, law, economics 
and social dynamics, just like we have just described with even and odd 
numbers. The pattern that arises out of these arithmetical applications consists 
of the following three modalities: 1. the sum of any two even integers gives us 
an even integer. EVEN + EVEN = EVEN; 2. The sum of two odd integers 
gives us an even integer. ODD + ODD = EVEN; and 3. The sum of odd and 
even integers gives us odd integers. ODD + EVEN = ODD.  

If we apply this scheme of unique products of addition of even and odd 
numbers to a person’s behavior and social dynamics, we may predict the 
patterns of her effects. This method is remarkable, no matter how we label the 
two categories, be it with integers of even and odd numbers, or with colors 
such as black and white, or as here with types of social classes, the addition 
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would have the same results. This method shares the strength of binary 
analysis that so efficient has resulted in software programming. The only 
difference would be the names; hence, the implications of this methodology 
using numbers for persons would constitute a substantial leap in standard C2 
reactions to crisis. 

In order to apply this methodology to the issues regarding C2 dynamics, we 
should not commit the sin of oversimplifying. I will try to “keep things simple 
but not simpler,”23 hence we would need to go deeper in identifying the even 
and odd structural characteristics and threshold levels of each type of actor or 
cluster.  Once we make this codification, we can review the results by 
reiterating this application, in order to uncover structural characteristics, 
behavioral patterns and limitations just like Euler did with the Konigsberg 
Bridges and we hope to uncover through network science in C2 with the OM 
Model.24  

III. Dyads and two body problems vs. triads and three body problem: 
methodological modern approaches to multiple actor dynamics in network 
science 

In math a triad forms a triangle and triangles are the elements of the simplest 
of the regular solids, the tetrahedron. The tetrahedron has four triangular faces, 
every face is an equilateral triangle, every vertex of a tetrahedron is incident to 
three faces and a three dimensional model of the tetrahedron is equivalent to a 
pyramid over a triangle base, not a square base like the real pyramids of 
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 I have been tinkering with the nature of even and odd numbers and their correlation with symmetric and 

asymmetric, stable and unstable, static and dynamic phenomena.  The present proposal may very well hold the key 

for the independent components of legal analysis as a new paradigm based on static, comparative static and 

dynamics as suggested by Peter Ziegler in A General Theory of Law as a Paradigm for Legal Research, 51 MOD. L. 

REV. 569, 589-592 (1988).  I have personally approached the patterns from the perspective of Complexity theory, 

which is the underlying structure upon which other scholars have developed their theories. I have also developed a 

solution to the grand issue of when a small or large network is balanced or imbalanced based on this method. The 

product of such tinkering will be the subject of a separate paper. 



Egypt and Mexico. The other four tridimensional solids known are the Cube, 
Octahedron, Dodecahedron and Icosahedrons, all regular polyhedral known as 
the Platonic or regular solids.25  

 

Unlike planar figures, which could have infinitely many sides of equal length, 
the three-dimensional solids are limited to just these five.26 However, two 
dimensional planar figures and these three dimensional solids share a common 
pattern that ends in the even number two. The common pattern was discovered 
by Leonhard Euler, who developed a proof by induction known as the Euler 
characteristic based on a planar two dimensional space, such as the 
Konigsberg Bridges graph previously related that supports the unique and 
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square and every vertex is incident with three faces; the octahedron has eight faces, each face is an equilateral 

triangle and every vertex is incident with four faces; the dodecahedron has twelve faces, each face is a pentagon and 

every vertex is incident with three faces; the icosahedron has twenty faces, each face is a triangle and every vertex is 

incident with five triangles.   
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 EDWARD B. BURGER & MICHAEL STARBIRD, THE JOY OF THINKING: THE BEAUTY AND POWER OF CLASSICAL 

MATHEMATICAL IDEAS, COURSE GUIDEBOOK, THE TEACHING COMPANY 43, 48 (2003). (A method of proof on only 

five regular solids involving the triangle as their building block is presented. First it is clarified that each face of a 

regular solid is a regular polygon and that every vertex has the same number of edges and faces incident to it and 

proceeds as follows: 1. Suppose we specify that each face of the solid we are going to construct must be a triangle. 

Could we construct a regular solid in which six equilateral triangles meet at each vertex?; 2. In the tetrahedron, three 

triangles meet at each vertex. In the octahedron, four triangles meet at a vertex, and in the icosahedron, five 

triangles meet at a vertex; 3. If we attempt to make a solid in which six equilateral triangles come together at a 

vertex, we see the impossibility, because those triangles will lie flat. Given that each angle in an equilateral triangle 

is 60 degrees, the total six triangles will be 360 degrees. A second proof with each face being a square is discussed 

but since a square can be subdivided into its simplest part, a triangle, I won’t repeat it here)  



exclusive group of the five Platonic solids based on triangles in our three 
dimensional perception of the World. The Euler characteristic consists of the 
following equation: V - E + F = 2.  The way to put it into practice is as 
follows: First, draw a random shape with or without your eyes closed but 
without lifting the marker off the paper. Second, mark a dot at each point 
where the line drawn crosses itself and at the beginning and ending points. 
Third, count the dots (V for vertices) marked, subtract the edges (E for edges) 
between the dots, and add all the regions of the drawing (F for faces), the 
result will be two (2). When this two dimensional planar method is imported 
into three dimensional space represented by the five Platonic solids, the 
equation again coincides producing a two (2). The importance of this constant 
of two across random shape graphs in two dimensional planar graph and three 
dimensional solids cannot be emphasized enough.27 Hence, we can expand on 
the force and structural patterns of triads as visualized through triangles in two 
dimensional planar graphs that directly depict structural common traits of three 
dimensional solids, of which the elementary structure is the tetrahedral which in 
itself has as elementary structure the triangle.28 

In Network Science with triads we can begin to consider what is known as 
cliques and Bi-components. A clique is a maximal complete sub-network 
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 Id. 48-49 
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 Id. 53-61. A single vertex (point or dot) is equivalent to zero-dimensions, an edge (line) with two vertices has one-

dimension, a triangle with three vertices has two dimensions and a tetrahedron with four vertices has three 

dimensions. If dimensions are degrees of spatial freedom that might be infinite existing methodologies and our 

senses, with reasonable degree of certainty and experience perceive only three dimensions that can be corroborated 

with others directly or through scientific developments. The fourth dimension is beyond our daily experience and 

has predominantly been related to time and others to color but no consensus exist, these speculations are intuitive 

and uncertain. (See: PALLE YOURGRAU, A WORLD WITHOUT TIME, THE FORGOTTEN LEGACY OF GÖDEL AND 

EINSTEIN (2005)). I want to avoid intuitive conclusions that are unverifiable, unfalsafiable and based on analogies. 

Hence, my emphasis in focusing in DiaGrids, triads, triangles, tetrahedral and three dimensional space as simplest 

and most perceived scope of natural phenomena from which to build upon any analysis of any phenomena within 

the boundaries of such World. In specific, when the purpose of developing a method in this paper is to seek an 

interdisciplinary legitimate and reliable approach to identify and judge the actors responsible for the economic crisis. 

In this spirit we hope to surpass the pseudoscientific limitations that discretion in determinations of facts and 

hermeneutics in the meaning of the law lend themselves to, at the mercy of the leading actors of the system.    



containing three vertices or more29 while a Bi-component is a component of a 
minimum size of three that does not contain a cut-vertex.30 It is also when a 
network has three vertices that relations become substantially more complex 
and dynamic as it has been illustrated in physics by the three-body problem.31  

In order to determine if a network such as the solar system has a series that 
is balanced or that is imbalanced and hence its series diverges, the 
calculations would be infinite in large networks such as the solar system. The 
method used would be to complex, inefficient and hence “impossible.” Similar to 
the issue of the Konigsberg Bridges that had entertained or wasted the time of 
many people trying to solve it, the three body problem was also openly brought 
up as an issue on the stability of the solar system in the following two mode 
way: Either the planets are to follow faithfully their orbits around the Sun 
forever, endlessly retracing the same path, in which case the Solar system is 
stable, or, because of the cumulative effects of gravitational perturbations, 
planetary orbits are destined to change radically in the distant future, 
completely altering the organization of the solar system, in which case the 
situation is unstable.32 Does this read similar to the issue of balance or 
imbalance networks? Similar to social networks our Solar System is composed 
of actors and relations.  

Our Solar System is technically composed of the Sun and all the objects that 
are attracted and held by the Sun’s gravity. This includes the eight planets and 
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 TRINH XUAN THUAN, CHAOS AND HARMONY, PERSPECTIVES ON SCIENTIFIC REVOLUTIONS OF THE TWENTIETH 

CENTURY 73-75, 82, 347(2006) 
32

 Id. 75,  The exact phrasing of the issues was as follows: 

Given a system of arbitrarily many mass points that attract each according to Newton’s law, under 

the assumption that no two points ever collide, try to find a representation of the coordinates of 

each point as a series in a variable that is some known function of time and for all of whose values 

the series converges uniformly. 



many other celestial objects,33 it seems we have a dyadic stable network 
composed of the Sun as a leading actor and all the other objects attracted to 
it. Besides the Sun the other existing actors compose a cluster of eight 
planets, an even number and as such using Euler’s method of even and odd 
numbers we would have a balanced network composed of a dyad between the 
Sun in one part of the edge and the eight planets at the other end, cluster 
that is balanced. However, in order to make a more rigorous analysis regarding 
the balanced or imbalanced nature of our Solar System we would need to 
surpass the qualitative classifications of planets vis a vis other objects and take 
a more structural approach in which we count all these actors, planets, 
asteroids and other substantial objects, in order to count them and see if the 
end result is even or odd. If odd, the cluster is imbalanced and dynamical but 
not to a threshold level that makes them scale up to a leading actor, as the 
Sun or the whole cluster of planets and other objects. Hence, under this 
analysis our Solar system is balanced until a third leading actor intervenes into 
a triadic relation with the existing dyad. Thus, it is inherently important to 
explore, quantify and measure our Solar System in order to visualize our solar 
network and hence understand its stages and in what path is heading. This 
same approach is what is proposed for our social dynamics, the composition of 
our justice system and legal analysis.  

Based on this method and for the sake of finding certain comfort, we would 
foresee that our Solar System has local-micro infinite imbalances within the Sun 
and throughout the cluster of planets and other objects, however in order for 
those imbalances to reach a threshold that amounts to a third leading actor 
with power enough to convert the existing dyad into a triadic relation is not 
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 Some of those other objects include asteroids such as: Ceres orbiting between Mars and Jupiter, Pluto that is no 

longer classified as a planet, Charon, 2003 UB 313 and others still under investigation within the Asteroid Belt and 

the Kuiper Belt. See http://www.universetoday.com/43827/our-solar-system/ (February 17, 2011) 



common in the absence of any emergent actor or foreign visiting actor to our 
Solar System. In social-economic terms it would be analogous to the 20/80 rule 
or the Sun being a single body compared to the 20% elite and 80% of the 
social masses being the cluster of planets and other objects, the same social 
elite clusters throughout history have been pretty stable unless a third leading 
actor enters the scene to change the dyadic dynamics into triadic and then 
social dynamics become imbalance and more dynamical. Therefore, finding this 
commonality and this personal reflection as to how to solve the balanced-stable 
or imbalanced-unstable nature of our Solar System, how was the issue 
historically solved?  

Subsequently, the issue posed of the three body problem was solved by Karl 
Friti of Sundman (1873-1949) in 1912 and was generalized to large networks of 
bodies by Quidong Wang.34 Based on the previous experiences with triad, 
triangles and tetrahedral in three dimensional space that we best perceive 
based on our natural and biological sensory system, I find more reliable 
theories based on our three dimensions and less on theories based on 
metaphorical intuitive dimensions. The development of fractal theory supports 
that what we perceive in our three dimensional perception has bounded infinity, 
self replicating and scaling characteristics. Hence if what we perceive in three 
dimensions is self replicating to infinity we may just rely on that three 
dimensional perception that our experience throughout history has best 
perceived and used efficiently. Hence, that is a method that if it works in our 
three dimensional perceived environment it should also efficiently work in other 
infinite settings that are self-replicating in structure but at different scales 
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http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9#The_three-body_problem
http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9#The_three-body_problem


despite our biological and technological limitations to perceive them as we 
perceive three dimensional phenomena. 

With this background we now evaluate the existing network science techniques 
used to study triads as originally developed by George Simmel in his three 
classical functions of third actors as: Mediation, Tertius gaudens and 
Despotism.35 These three functions were later expanded by others36 to cover 
other roles such as: Brokerage, Coordinator, Gatekeeper, Itinerant broker, 
Liaison and Representative. Nevertheless, these qualitative classifications share 
the same flaw confronted by mathematicians with the three body problem, they 
rely on classical analysis fit for dyads analogous to the two body problem 
under Newton’s approach, which as previously described was inappropriate for 
the more dynamical three body problem equivalent to triad analysis for which a 
new approach is needed. The main flaw is that already explained of assuming 
fixed causal relations, that if B is a friend of C and A is a friend of B then A 
is a friend of C. This transitivity law can break down as soon as A meets C. 
For example, assume A and B are good friend and C is a beautiful girl that B 
likes. As soon as A meets C, if C shows any inclination or signals any 
attraction to A or at least B regards or believes some inclination or signal has 
existed, his friendship with A may break down. B might get jealous of A or 
simply feel threatened by A and might cut off the friendship immediately if B 
has substantial interest in C. Thus, the relation between A and B will not be 
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 Mediation is the third element that mediates conflicts and facilitates negotiations. This assumes both members 

perceive him as sufficiently impartial. Tertius gaudens is the third element that exploits the conflictual relation 

between two comparable power bases. If each base attempts to enlist her into alliance against the other, she can play 

both sides, raise the stakes and win out against both when they run out of ammunition. Finally, Despotism is the 

function of ‘divide and conquer’. The third element instigates conflict between the other two so as to preclude any 

alliance against herself. The resulting split underpins her power base, but precariously so, because it vanishes as 

soon as the split heals. Id. 120-121. 
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 Gould, R.V. and Fernandez, R.M., Structure of mediation: a formal approach to brokerage in transactions 

networks, Sociological Methodology, 89-126(1989) 



stable and fix, it can vary. It is this type of flaw that tends to push our 
analysis of balanced or imbalanced networks to a more structural approach 
based on the number of actors or relations, if the numbers of actors are three, 
we have an odd number and hence somebody is left out, either A or B get C 
at certain time and space and hence this network will always be imbalanced 
structurally. Triad and Coalition studies developed by George Simmel, Theodore 
Caplow, W.A. Gamson and R. Burt hint that when a triad exist there is an 
imbalance when they support that “the mere presence of a third element, 
however passive, tends to modify the original dyadic relation. This is why a 
triad can never be reduced to the sum of three dyads.”37 However, these 
authors fail to grasp fully the imbalance and do not provide a method to tackle 
this issue as I do with the use of even and odd nature of actors in the 
network. 

Finally, I would add that the holy grail of analysis of networks is not triads, but 
rather the structural characteristic of a network being of an even or odd nature. 
Hence in such analysis dyads as an even structure and triads as an odd 
structure are merely different stages in time and space as networks evolve 
being both holy grails of network science. Network Science has a need to 
focus research in understanding, measuring and visualizing how even structures 
evolve into odd structures and vice versa to infinity as fractal theory teaches 
us. In that framework we should study Random, Small World, Scale free and 
others yet to be explored types of networks.38 In the study of the various 
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 ALAIN DEGENNE AND MICHEL FORSE, INTRODUCING SOCIAL NETWORKS 122, 119-130 (1999 reprinted 

2004).(Explaining in a concise and simple manner the how triads are the holy grail of network analysis as first 

identified by George Simmel with his writings on triads and coalitions and how others developed it further, such as 

Theodore Caplow, W.A. Gamson and R. Burt.) See also Degnenne and Forse citing T. CAPLOW, TWO AGAINST ONE: 
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 See: ALBERT-LASZLO BARABASI, LINKED, HOW EVERYTHING IS CONNECTED TO EVERYTHING ELSE AND WHAT IT 

MEANS FOR BUSINESS, SCIENCE, AND EVERYDAY LIFE (2003), SIMON REAY ATKINS AND JAMES MOFFAT, THE AGILE 



transitions from even to odd networks existing measurement methods known as 
degree distribution, clustering coefficient, average path length and types of 
preferential attachments are essential in understanding how networks grow and 
evolve over time.39    

 IV. Classical degree measurement and network science, a new perspective40 

The dynamical progressive path of a natural phenomena as depicted in the 
Period-Doublings and Chaos diagrams implies discrete bits of progress and 
stages in sequence that can be depicted with the nature of even and odd 
numbers if applied to dynamical network analysis. I propose the incorporation 
into network science of classic mathematical analysis of one vertex (ego), two 
vertices (dyad) and three vertices (triad) dynamics. The proposed amendment is 
simple but revolutionary. After these three levels of analysis are established a 
foundation for complete large macro level network analysis becomes available.   

The second contribution would be the revival and implementation of using even 
and odd number analysis as networks develop from single vertex to triads and 
get larger. As previously illustrated even and odd number theory help identify 
when a graph or system is balanced or imbalanced. When we don’t have a 
vertex, equivalent to a zero, the nature of the system is neutral, when we have 

                                                                               
ORGANIZATION, FROM INFORMAL NETWORKS TO COMPLEX EFFECTS AND AGILITY 97-102 (2005 reprinted 

2007)(Explaining differences and characteristics between Random, Scale Free and Small World networks) 
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 SIMON REAY ATKINSON & JAMES MOFFAT, THE AGILE ORGANIZATION, FROM INFORMAL NETWORKS TO COMPLEX 
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 Printing September 2007) 
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As part of the paper titled Strategic Network Perspectives for Unstable Regions Through the Justice System, 

presented at the 5
th

 Annual Network Science Workshop organized by the Network Science Center at West Point 

Military Academy, New York, during the 26, 27 and 28 of October, 2010, I consulted with Dr. Vladimir Batagelj 

co-author of EXPLORATORY SOCIAL NETWORK ANALYSIS WITH PAJEK, (2005) about the use of angle measurement 

and he confirmed that he had not seen network visualizations based on measurements of angles even though he has 

implemented in Pajek software the identification of the closest angle of a whole graph and triangles for short cycle 

connectivity. See. V. Batagelj, M. Zaversnik, Short cycle connectivity, Discrete Mathematics 307 (2007) 310-318. 

During the workshop I asked participants, such as: John M. Graham, Chris Arney, Zhen Wen, Dashun Wang, John 

James, Henry Hexmoor, Paul Stanton, Lynndee Kemmet, Mark Thomas, Guenther Kress, Josh Lospinoso and others 

present about this approach in search of feedback and all confirmed the novelty of it as proposed within “network 

science”.  



one vertex, we have an odd number and the system is imbalance towards one 
vertex. If we have two vertices, a dyad forms and the relation is balanced in 
terms of one or the other, we can easily predict in which vertex the resources 
or power is resting. The power or resource relation complicates with three 
vertices, and odd number that is dynamical due to the structural imbalance odd 
numbers depict. Ironically odd structures are very stiff and strong as the 
triangles in the DiaGrid system prove but this strength is the product of stress 
and energy generated by the triad odd imbalanced dynamic, which achieves 
through competition and uncertainty maximal exploitation or performance of the 
actors. 

This type of balance and imbalance of relations based on even or odd number 
of actors and relations has not been exploited in network science nor the law 
or the justice system which has focused on positive and negative relations, 
vertices and edges.41 The use of even and odd analysis solves the existing 
issue regarding the proper efficacy of analysis based on balance and imbalance 
relations made in the previously discussed three levels of analysis (ego, dyad 
and triad) and once networks evolve and become complex.42 The extension of 
the even and odd number of actors applies to large networks because the 
essence and characteristics that make numbers even or odd extend to infinity. 
Furthermore, this method helps identify the network’s dynamical or stable 
structure based on pure structure and not subjective demarcations of positive or 
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 In the law I have proposed the use of even and odd numbers and I have found that such proposal is implicitly 

supported by RICHARD A. POSNER, ECONOMIC ANALYSIS OF LAW 20-23, Sixth Edition (2003). (Illustrating samples 

of game theory applied to economic analysis. The illustration relies on presenting scenarios of a monopolist setting 

prices if ten prospective entrants to a market exist, a person with six shots and ten assailant, twenty five lions and 

one lamb on an island. Under all three scenarios Posner suggest that the number of actors involved would determine 

much of the strategy to follow and/or outcome. Posner specifically expresses in the problem of the lions and the 

lamb if the answer would be different if there were 24 rather than 25 lions? Here Posner is basically playing with the 

method of even and odd numbers without ever developing its potential as in done in this and another paper I 

previously published, supra footnote 20)  
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 See JOHN SCOTT, SOCIAL NETWORK ANALYSIS, A HANDBOOK 7-16 Second Edition (1991 republication of 2007) 



negative relations. Finally, these novel contributions epitomized in the enhanced 
network science method herein identified as the Orlando-Manatí Model (OM 
Model) provides an efficient alternative bottom up approach to C2.  
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