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The intersection between network 
science and algorithmic design with 
the objective of designing 
algorithms to solve or approximate 
hard network science problems from 
a variety of disciplines. 
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Consider this model of an insurgent network… 

If we know where the attacks are occurring, 
Can we locate insurgent command and control and 
depot-level logistics sites (a.k.a. high value targets)? 
 



We use a “tribal relationship 
network” to model the 
relationship among cells. 
 Network with 1,543 

vetices representing 
villages in Helmand, 
Kandahar, and Zabul 

 1 Million edges among 
the vertices, present if 
there exists a tribal 
relationship between the 
two villages and 
weighted by the road 
distance between the two 
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Leveraging geospatial abduction, the SCARE-S2 
software found minimally enclosing rectangles 
around villages of ~100 km2 that were 33x more 
likely to contain a high value targets. 
 
Classified tests were conducted at ARL ALC. 
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Currently, the VRN uses edges that are weighted by the 
shortest path length on a road network. 
 
Can we consider travel time? 
 
Can we consider road conditions? 
 
Can we consider vehicle type? 
 
Yes, using Common Ground, we can create new VRN’s where 
the edges can be weighted using the above ideas. 
 
Classified tests to occur this summer as part of our effort to 
support of the 588th Engineer Detachment. 
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Suppose we use 
“tipping” to model the 
spread of anti-
insurgent sentiment. 
 
Suppose a village node 
“tips” to anti-insurgent 
behavior  when half of 
the adjacent villages 
have that behavior. 
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Initially villages h and j 
are anti-insurgent. 
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Initially villages h and j 
are anti-insurgent. 
 
This leads to g and i 
also becoming anti-
insurgent. 
 
But no others. 
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In 2010, Special Forces trained locals of the village of Gizab 
who revolted against the Taliban. 
 
If we assume a tipping model on the VPN, perhaps we can 
identify a set of nodes that causes all the villages to take 
anti-Taliban action.  
 
Hence, we ask the following question: 
Can we find a minimal set of nodes under the tipping 
model that ensures that the entire population adopts the 
behavior in question? 

 
This the minimum-seed problem. 
 

Shakarian: Algorithmic Network Science 16 



 Minimum-seed is NP-complete. 
 

 Our new pruning heuristic guarantees that the 
result will lead to adoption of the behavior by 
the entire population, but does not guarantee 
minimal size. 
 

 However, experimentally, we find that the set 
returned is often several orders of magnitude 
smaller than the population. 
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Let us consider the 
following network. 
 
First, our algorithm 
identifies the threshold 
for each node to be 
tipped.  If we assume at 
least 50% of each 
neighbor is required, 
then this number is 
shown in red. 
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Next, the distance to 
being tipped is 
computed.  This is 
defined as the node’s 
current degree minus 
the threshold. 
 
It is shown for each 
node in blue 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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The algorithm then 
proceeds as follows: 
 
At each iteration, 
remove the node whose 
distance is the smallest 
but non-negative (and 
the adjacent edges) 
 
Then update the 
distances of its 
neighbors. 
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What other problems can pruning help us solve? 
 

 Consider the protein networks of an organism 
and a pathogen attacking that organism. 
 

 Can we characterize the nodes that are most 
attacked in the organism? 
 

 We use shell-decomposition to study this 
problem. 
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35 

The k-core of a network is a 
subgraph where each node 
is connected to the rest of 
the subgraph by at least k 
edges.   
 
The k-shell is the set of 
nodes in a k-core but not 
the next higher k-core. 
 
The k-shells of a network 
can be identified with a 
simple pruning process. 
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36 

The centrality measures from the literature 
correlate little with the number of pathogens 
targeting a node, in a human protein network, 
we obtained the following: 
 Degree: r2=0.06 , MIC= 0.08 
 Betweenness: r2=0.04 , MIC= 0.11 
 Shell number: r2=0.03 , MIC= 0.07 
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We looked at the different shells of the protein 
networks and compared the average degree of 
the shell with the average number of pathogen 
effectors for that shell and found strong 
correlations for both humans and the Arabidopsis 
thaliana reference plant. 
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We find a strong power-law 
correlation between 
average shell degree and 
average number of 
pathogen attacks. 
 
However, core nodes 
(circled) are significantly 
under-targeted. 
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We also found a log-
relationship between 
information centrality and 
shell-depth (core nodes are 
boxed). 
 
This may indicate that core 
nodes are key spreaders of 
intra-cellular 
communication. 
 
Pathogens may attack these 
nodes less to ensure the 
survival of the host. 
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Our new team dedicated to Algorithmic 
Network Science is tackling a variety of hard 
problems.  Today we discussed the following: 
 Finding high-value targets in Afghanistan 
 Finding seed sets in social networks 
 Identifying proteins likely targeted by pathogens  
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 SCARE-S2: 
 Shakarian, P. and Subrahmanian, V.S., Geospatial 

Abduction Principles and Practice, Springer, NY 2011. 
 Pruning heuristic for the Minimum Seed Problem: 
 Shakarian, P. and Paulo, D., Large Social Networks can 

be Targeted for Viral Marketing with Small Seed Sets, 
submitted 2012. 

 Pathogens and protein networks: 
 Shakarian, P. and Wickiser, J.K., Similar Pathogen 

Targets in Arabidopsis thaliana and Homo sapiens 
Protein Networks, submitted 2012. 
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