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 What are we going to talk about tonight?

Scaling, fractals, allometr

» SCALING RELATIONS  intermittency,....

network property scaling index

NN
Y =aX

size

scaling coefficient

. . . o
» Why are scaling relations important” Would you repeat that”

» What does scaling have to do with consensus and control?



-””EEQM_._,)Consensus, Control and Minority Opinion -‘

» Coarse grained understanding of living networks
* the functionality is related to the size of the organism

« allometry relations are entailed by the interactions within the organism
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* metabolic rate versus body mass for plants, mammals, fish and insects

B=aM”’” ; B~0.75



RDECOM Dconsensus, Control and Minority Opinion -‘

» Scaling also arises in social contexts, very different kinds of interaction
* increase in wages with city size

* increase is creativity with population
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* Not just a metaphor. B=aM”’
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®* What do living systems and social organizations
such as cities have in common?

e Each system consist of a network of networks;
complex at every level.

school of fish

» These complex networks entail the scaling manifest
In allometry relations.

* So what do we know about networks?
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Random Networks A
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Statistics and networks

* Erdds-Renyi; random network,

‘Scale-free’ Networks » Watts-Stogatz; Small-world
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 Carlson & Doyle; HOT,

Scale-rich’ Networks 2000s

Internet
connectivity

Dynamic Networks « Grigolini, Turalska,
West, 2010s

Liquid crystal relaxation
of harmonic perturbation
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Some myths about complex networks

» Topology determines network properties

* €.g., robustness is a consequence of topology Complex
Webs
» A unigue mechanism produces inverse power-law Anticpating the Improbable

Bruce ]. West

distributions. e FA Gty
» Mathews effect, preferential attachment, Yule effect :

» Topology determines the degree distribution & the inter-event
distribution in time.

PK)ock™ =w(r)ct™

* Dynamics is determined by the topology.

* Inter-network influence is determined by energy gradients.
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Two — state Model:
Mean Field Approach
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Dynamics of a unit governed by a transition rate AP = 92 —p1)

g is described by two-state maser equation: d
.2 = 91— p2)

10°
The survival probability function for the 5
sequence of time intervals between £ 10
consecutive changes of state is defined by an g
exponential decrease with rate g: 5 1
Y(r)=e 97 3 "
10° 10' 10° 10°
Waiting time, t

Turalska, Lukovic, West & Grigolini, “ Complexity and synchronization”, Phys. Rev. E 80, 021110 (2009).
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all-to-all coupling

A unit interacts with all other units to which it is
directly connected. Modified master equation is:

d
FeP1 = 912l + 921Dz

d
P2 = 9212 + J121

where transition rates become time dependent:

K

g12(0) = genr 7
K

g21(t) = ge m M)

M - number of nodes connected to given unit
M; - number of nearest-neighbor nodes in state |j)
K - control parameter defining the strength of

the coupling between interacting units
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« DMM networks undergo phase transitions as the control parameter K is
Increased. At the critical value K = K, synchronization between the

elements is achieved: consensus is reached.

fully connected DMM

 The fully connected DMM has \ synchronized
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the critical value K, =1, 100 \
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» The nearest-neighbor DMM on a

025

two-dimensional lattice has the
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critical value K, =1.7, K \
independent
2D regular lattice DMM
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e For finite N with K > K_ , consensus can be
difficult to see, so introduce new variable

S(t) = p.(t)— p,(t)

1.00

Al =y
0.50

¥(1)

* The network becomes unstable and
Is modeled using a Langevin equation
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e In the limit N > ©or K> ® the
consensus becomes perfect

 Fluctuations are produced by finite N not a
thermal background.
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o
Ng = Ng — fy, nodes of All Ny nodes of system P
system S evolve as: % o evolve as:
K, ; _ _ :
gi2(t) = gexp |~ (N — N7) ot gt (t) = gexp N—(M N7)
Vs ] SRk b _
K, : :
921(t) = gexp | 7= (N3 — N7 es g21(t) = gexp N— - (N7 — Nf
(118 | [“YP |
6"
SYSTEM S SYSTEM P
N;; K, N.: K.

Small fraction fy. of nodes of system S is linked to all nodes of
perturbing system P:

s Ks '
gisz(t) = gexp E(Nf - st) + i(Nf - sz)

0510 = gexp [ 25 (N5 — N§) + (N7 = NY)
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Introduction of  coupling
leads to synchronization.
Ks = 1.03 and Kp = 1.06.

Hifse [arb. Lnits]

The influence of the
perturbation is significantly
reduced when system S is
not in complex regime;
Ks = 0.80 and K, = 1.06.

litre [a b, winits]

Perturbation that is not
complex does not exert an
influence on system S ;
Ks = 1.06 and Kp = 0.80.
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Conclusions - |

» all-to-all coupled network of interacting two-state stochastic elements shows
a phase transition with respect to the coupling parameter K.

1 —

« when the number of elements is finite the global \t e —
variable become intermittent and the distribution £ w*} S ~

. Y

density of waiting times is inverse power-law with .| VLN Y
index1.5. IR T 1
ot I:u' |I:|" nI: |I:|‘I ||I:’ 1

* the sequence of transitions between consecutive consensus states is
non-ergodic.

 a network of two-state stochastic elements can be influenced by a perturbing
network if both are in a supercritical condition.
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Two-state DMM:
Two dimensional lattice
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The individuals in the DMM are distributed on the nodes of a two-dimensional
lattice. We study the dynamics of a single complex network and the interaction
between complex networks.

- +e -+ oo e+ The global order parameter is defined as:
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Phase diagrams

1.00

075 [

0.50 [

0.25 [

Onsager solution to Ising model

£, =[L-sinh* (K /2)]"°

0.0

fully connected DMM

K =1

/

 Transition from local short-range
forces to global long-range forces;
water to ice or from a collection of
independent individuals to a lynch
mob.

K

1.50/ 2.00 2.50

2D regular lattice DMM
g, =0.01

K. =2In(l++/2) =1.7627
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* DECISION MAKING MODEL - REGULAR 2D LATTICE
* Phase diagram

PHASE DIAGRAM FOR DECISION MAKING MODEL ON REGULAR LATTICE
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Turallska, West & Grigolini,
Phys. Rev. E 83, 061142
(2011)
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« DMM dynamics generate scale-free statistics in space and time

100x100 lattice network infinite order DMM

consensus

Nno consensus

0.50 1.00 1.50 2.00 2.50

K
Phase trapsition diagram

G
L infinite order DMM

/

correlated | links

Degree distribution for “correlation” DMM Survival probability vs. time



B”EGQM:_,)Consensus, Control and Minority Opinion -‘

Conclusions - Il

Two-state model in the phase space of its parameters incorporates
the behavior of the two-dimensional Ising model.

The onset of phase transition corresponds to the fluctuations of global
order parameter being characterized by extended temporal
complexity.

The temporal complexity is accompanied by long-range correlations.

" The transitions between organized states occur through intermediate
critical state rather than a disorganized phase.
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» Coupling of a committed minority to a DMM in the critical state

=

%" 20x 20 DMM

2

1]

LH

=

A 1% of network replaced
o with committed minority
E

S -1

0 1 2 3 4 5
Time [arb. units]

 This is with 1% coupling.
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» Two complex networks; individuals from P infiltrating S.

* DMM network S not in critical state

BEAN FELD

* DMM network P in critical state

MEAN FIELD

Ll Fr .ﬂ:—’"T.ﬂy# T kulh\,'_.-:l-'-'n.h:-.l‘,—' sk
i | 5 Y
0.2 oA 0.6 nE 1 L] 14 (] 18 2

* 1% of S replaced with elements of P

MEAN FEELD
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e General conclusions

» Complex networks are described by nonlinear
dynamics that undergo phase transitions.

» The dynamics determine the topology of the scale-
free network.

» The degree distribution is inverse power law
with index near 1.0.

» The waiting-time distribution is inverse power
law with index near 1.5.

Complex
» The degree and waiting-time distributions are Webs

Anticipating the Improbable

independent of one another N

and Paolo Grigolini
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