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Geospatial abduction problems (GAPs) involve the inference of a set of locations that “best
explain” a given set of locations of observations. For example, the observations might include

locations where a serial killer committed murders or where insurgents carried out Improvised

Explosive Device (IED) attacks. In both these cases, we would like to infer a set of locations that
explain the observations, e.g., the set of locations where the serial killer lives/works, and the set

of locations where insurgents locate weapons caches. However, unlike all past work on abduction,

there is a strong adversarial component to this—an adversary actively attempts to prevent us from
discovering such locations. We formalize such abduction problems as a two-player game where both

players (an “agent” and an “adversary”) use a probabilistic model of their opponent (i.e., a mixed

strategy). There is asymmetry as the adversary can choose both the locations of the observations
and the locations of the explanation, while the agent (i.e., us) tries to discover these. In this

paper, we study the problem from the point of view of both players. We define reward functions
axiomatically to capture the similarity between two sets of explanations (one corresponding to the

locations chosen by the adversary, one guessed by the agent). Many different reward functions

can satisfy our axioms. We then formalize the optimal adversary strategy (OAS) problem and
the maximal counter-adversary strategy (MCA) and show that both are NP-hard, that their

associated counting complexity problems are #P-hard, and that MCA has no fully polynomial

approximation scheme unless P=NP. We show that approximation guarantees are possible for
MCA when the reward function satisfies two simple properties (zero-starting and monotonicity)

which many natural reward functions satisfy. We develop a mixed integer linear programming

algorithm to solve OAS and two algorithms to (approximately) compute MCA; the algorithms
yield different approximation guarantees and one algorithm assumes a monotonic reward function.

Our experiments use real data about IED attacks over a 21 month period in Baghdad. We are able

to show that both the MCA algorithms work well in practice; while MCA-GREEDY-MONO is both
highly accurate and slightly faster than MCA-LS, MCA-LS (to our surprise) always completely and

correctly maximized the expected benefit to the agent while running in an acceptable time period.
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1. INTRODUCTION

Geospatial abduction problems (GAPs) were introduced by Shakarian et al. [2010]
to find a set of locations that “best explain” a given set of locations of observa-
tions. We call these inferred sets of locations “explanations”. There are many such
applications in a wide variety of domains.

—In criminology, serial killers carry out murders at various locations; these corre-
spond to the observations we make. The goal of the police is to identify a set
of locations that best “explain” the observations. Thus, the police look for the
killer’s home and office locations. The killer, of course, goes to considerable effort
usually to ensure that he cannot be easily found by the police.

—In military applications, insurgents (such as those in Iraq and Afghanistan) carry
out improvised explosive device (IED) attacks at various locations—these corre-
sponding to our observations. Multinational forces operating in these countries
would like to identify many locations associated with these attack locations—one
such class of locations correspond to the locations of weapons caches that provide
logistics support for the attacks and enable the attackers to carry them out. As
in the case of the serial killer, the insurgents reason carefully about their choice
of weapons cache locations to minimize the probability of being detected.

—In a wildlife application, a rare animal or bird might be spotted at several loca-
tions (observations). We would like to infer the location of the creature’s nest or
den. Many animals take considerable care to keep their den/nest hidden as these
often hold young ones or eggs and, in some cases, food.

[Shakarian et al. 2010] defined geospatial abduction problems (GAPs) and studied
a version of the problem where the adversary (the “bad guy” or the entity that
wishes to evade detection) does not reason about the agent (the “good guy” or the
entity that wants to detect the adversary). Despite this significant omission, they
were able to accurately predict the locations of weapons caches in real-world data
about IED attacks in Baghdad. In this paper, we introduce adversarial geospatial
abduction problems where both the agent and the adversary reason about each
other. Specifically, we:

(1) Axiomatically define reward functions to be any functions that satisfy certain
basic axioms about the similarity between an explanation chosen by the adver-
sary (e.g., where the serial killer lives and works or where the insurgents put
their IED caches) and define notions of expected detriment (to the adversary)
and expected benefit (to the agent).

(2) Formally define the optimal adversary strategy (OAS) that minimizes chances
of detection of the adversary’s chosen explanation and the maximal counter-
adversary strategy (MCA) that maximizes the probability that the agent will
detect the adversary’s chosen explanation.

(3) Provide a detailed set of results on the computational complexity of these prob-
lems, the counting complexity of these problems, and the possibility of approx-
imation algorithms with approximation guarantees for both OAS and MCA.

(4) Develop mixed integer linear programming algorithms (MILPs) for OAS and
two algorithms, MCA-LS and MCA-GREEDY-MONO, to solve MCA with certain
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approximation guarantees. MCA-LS has no assumptions, while MCA-GREEDY-
MONO assumes monotonicity.

(5) Develop a prototype of our MILP algorithms to solve the OAS problem, using
our techniques for variable reduction on top of a integer linear program solver.
We demonstrate the ability to achieve near-optimal solutions as well as a correct
reduction of variables by 99.6% using a real-world data set.

(6) Develop a prototype implementation that shows that both MCA-LS and MCA-
GREEDY-MONO are highly accurate and have very reasonable time frames.
Though MCA-GREEDY-MONO is slightly faster than MCA-LS, we found that
on every single run, MCA-LS found the exact optimal benefit even though its
theoretical lower bound approximation ratio is only 1/3. As MCA-LS does
not require any additional assumptions and as its running time is only slightly
slower than that of MCA-GREEDY-MONO, we believe this algorithms has a
slight advantage.

The main contributions of the paper are as follows. Section 2 first reviews the
GAP framework of [Shakarian et al. 2010]. Section 3 extends GAPs to the ad-
versarial case using axiomatically defined reward function (Section 2). Section 4
complexity results and several exact algorithms using MILPs for the OAS problem.
Section 5 provides complexity results and develops exact and approximate methods
MCA—including an approximation technique that provides the best possible guar-
antee unless P=NP. We then briefly describe our prototype implementation and
describe a detailed experimental analysis of our algorithms. Finally, related work
is then described in Section 7.

2. OVERVIEW OF GAPS

In this section, we briefly describe the theory of GAPs introduced by [Shakarian
et al. 2010]. With the exception of the counting complexity results (Lemma 2.1
and Theorem 2.2), everything in Section 2 appeared in [Shakarian et al. 2010].
Throughout this paper, we assume the existence of integers M,N > 0 that jointly
define a 2-dimensional gridded space. We use N,R,R+ to respectively denote the
sets of natural numbers, all real numbers, and non-negative reals.

Definition 2.1 Space. Suppose M,N ∈ N. The space S is the set {1, . . . ,M}×
{1, . . . , N}.
Throughout this paper, we assume that M,N,S are arbitrary, but fixed. This
representation of the space S as a set of integer coordinates is common in most
geospatial information systems (GIS). We use 2S to denote the power set of S. We
assume that S has an associated distance function d which assigns a non-negative
distance to any two points and satisfies the usual distance axioms.1

Definition 2.2 Observation Set. An observation set O is any finite subset
of S.

For instance, in our IED application, an observation set is simply the set of locations
where attacks occurred. In the serial killer example, the observation set is the set
of locations where the killings occurred.

1d(x, y) ≥ 0; d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).
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Definition 2.3 Feasibility Predicate. A feasibility predicate is any func-
tion feas : S → {TRUE,FALSE}.

Feasibility predicates encode domain knowledge. For instance, a feasibility pred-
icate in the IED application might rule out the caches being on US bases or in
bodies of water or (in the case of Baghdad where our data set contains Shiite at-
tacks) Sunni neighborhoods. Throughout this paper, we assume an arbitrary, but
fixed, function feas that assigns either true or false to every point in S. In our
complexity results, we assume feas is computable in constant time.

Definition 2.4 (α, β)-explanation. Given a finite set of observations O and
real numbers α ≥ 0, β > 0, a finite set of points E ⊆ S is an (α, β)-explanation of
O iff:

(1 ) (∀p ∈ E) feas(p) = TRUE

(2 ) (∀o ∈ O)(∃p ∈ E) α ≤ d(p, o) ≤ β

Intuitively, E is an (α, β)-explanation of O if every point in E is feasible and every
observation in O is neither too close nor too far from a point in E . For a given
observation, o, we will refer to point p as a partner iff feas(p) and d(o, p) ∈ [α, β].
α and β are parameters that can be easily learned from historical data (as was

done in Shakarian et al. [2010]). Both criminologists Rossmo and Rombouts [2008]
and military experts US Army [1994] have noted that partner locations are not too
close to an observation location nor are they too far.2 Note that having α, β actually
increases the generality of our approach as users can always opt not to use them
by setting α = 0 and β to any number exceeding

√
M2 +N2. Given an integer

k > 0, a k-explanation is an (α, β)-explanation of cardinality k or less. Often we will
fix k—in this situation we will use the terms “k-explanation” and “explanation”
interchangeably. Alternatively, another requirement that can be imposed on an
explanation is irredundancy.

Definition 2.5. An explanation E is irredundant iff no strict subset of E is
an explanation.

Intuitively, if we can remove any element from an explanation, and this action
causes it to cease to be a valid explanation, we say the explanation is irredundant.

Example 2.1. Figure 1 shows a map of a drug plantation depicted in a 18 ×
14 grid. The distance between grid squares is 100 meters. Observation set O =
{o1, o2, o3, o4, o5} represents the center of mass of the poppy fields. Based on an
informant or from historical data, drug enforcement officials know that there is a
drug laboratory located 150−320 meters from the center mass of each field (i.e., in a
geospatial abduction problem, we can set [α, β] = [150, 320]). Further, based on the
terrain, the drug enforcement officials are able to discount certain areas (shown in
black on Figure 1, a feasibility predicate can easily be set up accordingly). Based on

2In the case of IED attacks, this is because the location around an IED attack is usually cordoned

off and searched and the insurgents do not want their weapons caches to be found, thus leading

to α. In contrast, the insurgents do not want their caches to be too far away as they then run the
risk of detection at checkpoints and random search points while transporting munitions, leading

to β.
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Fig. 1. Map of poppy fields for Example 2.1. For each labeled point pi, the “p” is omitted for

readability.

Figure 1, the set {p40, p46} is an explanation. The sets {p42, p45, p48} and {p40, p45}
are also explanations.

We now formally recall the definition of a GAP from Shakarian et al. [2010].

The k Spatial (α, β) Explanation Problem (k-SEP).
INPUT: Space S, a set O of observations, a feasibility predicate feas, reals numbers
α ≥ 0, β > 0, and natural number k.
OUTPUT: “Yes” if there exists an (α, β) explanation forO of size k, “no” otherwise.

[Shakarian et al. 2010] shows this problem to be NP-Complete based on a reduc-
tion from the known NP-Complete problem Geometric Covering by Discs (GCD)
seen in [Johnson 1982]—also known as the Euclidean m-center on points in [S. Ma-
suyama 1981]. The problem is defined as follows.

Geometric Covering by Discs. (GCD)
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers
b > 0 and K < |P |.
OUTPUT: “Yes” if there exists K discs of diameter b centered on points in P such
that there is a disc covering each point in P , “no” otherwise.

As with most decision problems, we define the associated counting problem,
#GCD, as the number of “yes” answers to the GCD decision problem. The result
below, which is new, shows that #GCD is #P-complete and, moreover, that there
is no fully-polynomial random approximation scheme for #GCD unless NP equals
the complexity class RP .3

3RP is the class of decision problems for which there is a randomized polynomial algorithm that,

for any instance of the problem, returns “false” with probability 1 when the correct answer to the
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Lemma 2.1. #GCD is #P-complete and has no FPRAS unless NP=RP.

We can leverage the above result to derive a complexity result for the counting
version of k-SEP.

Theorem 2.2. The counting version of k-SEP is #P-Complete and has no
FPRAS unless NP=RP.

3. GEOSPATIAL ABDUCTION AS A TWO-PLAYER GAME

Throughout this paper, we view geospatial abduction as a two-player game where
an agent attempts to find an “explanation” for a set of observations caused by the
adversary who wants to hide the explanation from the agent.

Each agent chooses a strategy which is merely a subset of S. Though “strategy”
and “observation” are defined identically, we use separate terms to indicate our
intended use. In the IED example, the adversary’s strategy is a set of points where
to place his cache, while the agent’s strategy is a set of points that he thinks hold
the weapons caches. Throughout this paper, we use A (resp. B) to denote the
strategy of the adversary (resp. agent).

Given a pair (A,B) of adversary-agent strategies, a reward function measures
how similar the two sets are. The more similar, the better it is for the agent. As
reward functions can be defined in many ways, we choose an axiomatic approach so
that our framework applies to many different reward functions including ones that
people may invent in the future.

Definition 3.1 Reward Function. A reward function is any function rf :
2S × 2S → [0, 1] that for any k-explanation A 6≡ ∅ and set B ⊆ S, the function
satisfies:

(1 ) If B = A, then rf(A,B) = 1

(2 ) For B,B′ then
rf(A,B ∪ B′) ≤ rf(A,B) + rf(A,B′)− rf(A,B ∩ B′).

We now define the payoffs for the agent and adversary.

Observation 3.1. Given adversary strategy A, agent strategy B, and reward
function rf , the payoff for the agent is rf(A,B) and the payoff for the adversary is
−rf(A,B).

It is easy to see that for any reward function and pair (A,B), the corresponding
game is a zero-sum game [Leyton-Brown and Shoham 2008]. Our complexity anal-
ysis assumes all reward functions are polynomially computable. All the specific
reward functions we propose in this paper satisfy this condition.

The basic intuition behind the reward function is that the more the strategy of
the agent resembles that of the adversary, the closer the reward is to 1. Axiom 1
says that if the agent’s strategy is the same set as adversary’s, then the reward is
1. Axiom 2 says that adding a point to B cannot increase the reward to the agent
if that point is already in B, i.e., double-counting of rewards is forbidden.

problem instance is false, and returns “true” with probability (1 − ε) for a small ε > 0 when the

correct answer to the problem instance is “true.”
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Fig. 2. Dashed circles encompass all feasible points within 100 meters from explanation {p40, p45}.

The following theorem tells us that every reward function is submodular, i.e., the
marginal benefit of adding additional points to the agent’s strategy decreases as
the cardinality of the strategy increases.

Proposition 3.1 Submodularity of Reward Functions. Every reward func-
tion is submodular, i.e., if B ⊆ B′, and point p ∈ S s.t. p /∈ B and p /∈ B′, then
rf(A,B ∪ {p})− rf(A,B) ≥ rf(A,B′ ∪ {p})− rf(A,B′).

Some readers may wonder why rf(A, ∅) = 0 is not an axiom. While this is true of
many reward functions, there are reward functions where we may wish to penalize
the agent for “bad” predictions. Consider the following reward function.

Definition 3.2 Penalizing Reward Function. Given a distance dist, we
define the penalizing reward function, prfdist(A,B), as follows:

1

2
+
|{p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ dist}|

2 · |A|
− |{p ∈ B| 6 ∃p

′ ∈ A s.t. d(p, p′) ≤ dist}|
2 · |S|

Proposition 3.2. prf is a valid reward function.

Example 3.1. Consider Example 2.1 and the explanation A ≡ {p40, p46} (re-
sembling actual locations of the drug labs), the set B ≡ {p38, p41, p44, p56} (repre-
senting areas that the drug enforcement officials wish to search), distance dist =
100 meters. There is only one point in A that is within 100 meters of a point
in B (point p40) and 3 points in B more than 100 meters from any point in A
(points p38, p44, p56). These relationships are shown visually in Figure 2. Hence,
prfdist(A,B) = 0.5 + 0.25− 0.011 = 0.739.

prf penalizes the agent if he poorly selects points in S. The agent starts with
a reward of 0.5. The reward increases if he finds points close to elements of A;
otherwise, it decreases.

A reward function is zero-starting if rf(A, ∅) = 0, i.e., the agent gets no reward
if he infers nothing.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Definition 3.3. A reward function, rf , is monotonic if (i) it is zero-starting
and (ii) if B ⊆ B′ then rf(A,B) ≤ rf(A,B′).

We now define several example monotonic reward functions.
The intuition behind the cutoff reward function crf is simple: for a given distance

dist (the “cut-off” distance), if for every p ∈ A, there exists p′ ∈ B such that
d(p, p′) ≤ dist, then p′ is considered “close to” p.

Definition 3.4 Cutoff Reward Function. Reward function based on a cut-
off distance, dist.

crfdist(A,B) :=
card({p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ dist})

card(A)

The following proposition shows that the cutoff reward function is a valid, mono-
tonic reward function.

Proposition 3.3. crf is a valid, monotonic reward function.

Example 3.2. Consider Example 3.1. Here, crfdist(A,B) returns 0.5 as one
element of A is within 100 meters of an element in B.

By allowing a more general notion of “closeness” between points p ∈ A and
p′ ∈ E , we are able to define another reward function, the falloff reward function,
frf . This function provides the most reward if p = p′ but, unlike the somewhat
binary crf , gently lowers this reward to a minimal zero as distances d(p, p′) grow.

Definition 3.5 Falloff Reward Function. Reward function with value based
on minimal distances between points.

frf(A,B) :=

{
0 if B = ∅∑

p∈A
1

|A|+minp′∈B(d(p,p
′)2) otherwise

with d(p, p′) :=
√

(px − p′x)2 + (py − p′y)2. In this case, the agent’s reward is in-

versely proportional to the square of the distance between points, as the search area
required grows proportionally to the square of this distance.

Proposition 3.4. frf is a valid, monotonic reward function.

In practice, an agent may assign different weights to points in S based on the
perceived importance of their partner observations in O. The “weighted reward
function” wrf gives greater reward for being “closer” to points in A that have high
weight than those with lower weights.

Definition 3.6 Weighted Reward Function. Given weight function W :
S → R+, and a cut-off distance dist we define the weighted reward function to be:

wrf (W,dist)(A,B) :=

∑
{p∈A|∃p′∈B s.t. d(p,p′)≤dist}W (p)∑

p′∈AW (p′)

Proposition 3.5. wrf is a valid, monotonic reward function.

It is easy to see that the weighted reward function is a generalization of the cutoff
reward function where all weights are 1.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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It is important to note that we have introduced reward functions axiomatically.
There are numerous other reward functions that satisfy the axioms given in Defini-
tion 3.1 that can be defined in an application. There is no guarantee that the few
specific instances of a reward function we have defined are the only good ones—
application developers are welcome to use their own.

3.1 Incorporating Mixed Strategies

In this section, we introduce pdfs over strategies (or “mixed strategies” [Leyton-
Brown and Shoham 2008]) and introduce the notion of “expected reward.” We first
present explanation/strategy functions which return an explanation (resp. strategy)
of a certain size for a given set of observations.

Definition 3.7 Explanation/Strategy Function. An explanation (resp.
strategy) function is any function ef : 2S × N → 2S (resp. sf : 2S × N → 2S)
that, given a set O ⊆ S and k ∈ N, returns a set E ⊆ S such that E is a k-
sized explanation of O (resp. E is a k-sized subset of S). Let EF be the set of all
explanation functions.

Example 3.3. Following from Example 2.1, we shall define two functions ef1, ef2,
which for set O (defined in Example 2.1) and k ≤ 3, give the following sets:

ef1(O, 3) = {p42, p45, p48}
ef2(O, 3) = {p40, p46}

These sets may correspond to explanations from various sources. Perhaps they
correspond to the answer of an algorithm that drug-enforcement officials use to
solve GAPs. Conversely, they could also be the result of a planning session by the
drug cartel to determine optimal locations for the drug labs.

In theory, the set of all explanation functions can be infinitely large; however,
it makes no sense to look for explanations containing more points than S—so we
assume explanation functions are only invoked with k ≤M ×N .

A strategy function is appropriate for an agent who wants to select points resem-
bling what the adversary selected, but is not required to produce an explanation.
Our results typically do not depend on whether an explanation or strategy function
is used (when they do, we point it out). Therefore, for simplicity, we use “expla-
nation function” throughout the paper. In our complexity results, we assume that
explanation/strategy functions are computable in constant time.

Both the agent and the adversary do not know the explanation function (where
is the adversary going to put his weapons caches? where will US forces search for
them?) in advance. Thus, they use a pdf over explanation functions to estimate
their opponent’s behavior, yielding a “mixed” strategy.

Definition 3.8 Explanation Function Distribution. Given a space S, real
numbers α, β, feasibility predicate feas, and an associated set of explanation func-
tions EF, an explanation function distribution is a finitary4 probability distribution
efd : EF→ [0, 1] with

∑
ef∈EF efd(ef) = 1. Let EFD be a set of explanation function

distributions.

4That is, efd assigns non-zero probabilities to only finitely many explanation functions.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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We use |efd| to denote the cardinality of the set EF associated with efd.

Example 3.4. Following from Example 3.3, we shall define the explanation
function distribution efddrug that assigns a uniform probability to explanation func-
tions in the set ef1, ef2 (i.e., efddrug(ef1) = 0.5).

We now define an “expected reward” that takes into account these mixed strategies
specified by explanation function distributions.

Definition 3.9 Expected Reward. Given a reward function rf , and expla-
nation function distributions efdadv, efdag, the expected reward is the function

EXRrf : EFD× EFD→ [0, 1] defined as follows:

EXRrf (efdadv, efdag) =
∑

efadv∈EFadv

(
efdadv(efadv) ·

∑
efag∈EFag

efdag(efag) · rf(efadv, efag)
)

However, in this paper, we will generally not deal with expected reward directly,
but two special cases—expected adversarial detriment and expected agent benefit—
in which the adversary’s and agent’s strategies are not mixed respectively. We
explore these two special cases in the next two sections.

4. SELECTING A STRATEGY FOR THE ADVERSARY

In this section, we study how an adversary would select points (set A) in the space
he would use to cause observations O. For instance, in the IED example, the
adversary needs to select A and O so that A is an explanation for O. We assume
the adversary has a probabilistic model of the agent’s behavior (an explanation
function distribution) and that he wants to eventually find an explanation (e.g.,
where to put his weapons caches). Hence, though he can use expected reward to
measure how close the agent will be to his explanation, only the agent’s strategy is
mixed. The adversary’s actions are concrete. Hence, we introduce a special case of
expected reward: expected adversarial detriment.

Definition 4.1 Expected Adversarial Detriment. Given any reward func-
tion rf and explanation function distribution efd, the expected adversarial detri-
ment is the function EXDrf : EFD× 2S → [0, 1] defined as follows:

EXDrf (efd,A) =
∑

ef∈EF

rf(A, ef(O, k)) · efd(ef)

Intuitively, the expected adversarial detriment is the expected number of partner
locations the agent may uncover if efd is correct. Consider the following example.

Example 4.1. Following from the previous examples, suppose the drug cartel
is planning three drug labs. Suppose they have information that drug-enforcement
agents will look for drug labs using efddrug (Example 3.4). One suggestion the ad-
versary may consider is to put the labs at locations p41, p52 (see Figure 1). Note that
this explanation is optimal w.r.t. cardinality. With dist = 100 meters, they wish
to compute EXDcrf (efddrug, {p41, p52}). We first need to find the reward associated
with each explanation function (see Example 3.3):

crfdist({p41, p52}, ef1(O, 3)) = 1

crfdist({p41, p52}, ef2(O, 3)) = 0.5

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Thus, EXDcrf (efddrug, {p41, p52}) = 0.5 · 1 + 0.5 · 0.5 = 0.75. Hence, this is probably
not the best location for the cartel to position the labs w.r.t. crf and efd, because
the expected adversarial detriment of the drug-enforcement agents is large.

The expected adversarial detriment is a quantity that the adversary would seek
to minimize. This is now defined as an optimal adversarial strategy below.

Definition 4.2 Optimal Adversarial Strategy. Given a set of observa-
tions O, natural number k, reward function rf , and explanation function distribu-
tion efd, an optimal adversarial strategy is a k-sized explanation A for O such
that EXDrf (efd,A) is minimized.

4.1 The Complexity of Finding an Optimal Adversarial Strategy

In this section, we formally define the optimal adversary strategy (OAS) problem
and study its complexity.

OAS Problem
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations
O, natural number k, reward function rf , and explanation function distribution
efd.
OUTPUT: Optimal adversarial strategy A.

We show that the known NP-hard problem Geometric Covering by Discs (see
Section 2) is polynomially reducible to OAS, which establishes NP-hardness.

Theorem 4.1. OAS is NP-hard.

The proof of the above theorem yields two insights. First, OAS is NP-hard even
if the reward function is monotonic (or anti-monotonic). Second, OAS remains
NP-hard even if the cardinality of EF is small—in the construction we only have
one explanation function. Thus, we cannot simply pick an “optimal” function from
EF. To show an upper bound, we define OAS-DEC to be the decision problem
associated with OAS. If the reward function is computable in polynomial time,
OAS-DEC is in NP.

OAS-DEC
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations
O, natural number k, reward function rf , explanation function distribution efd,
and number R ∈ [0, 1].
OUTPUT: “Yes” if there exists an adversarial strategyA such that EXDrf (efd,A) ≤
R, “no” otherwise.

Theorem 4.2. If the reward function is computable in PTIME, then OAS-DEC
is NP-complete.

Suppose we have an NP oracle that can return an optimal adversarial strategy—
let’s call it A. Quite obviously, this is the best response of the adversary to the
mixed strategy of the agent. Now, how does the agent respond to such a strategy?
If we were to assume that such a solution were unique, then the agent would simply
have to find an strategy B such that rf(A,B) is maximized. This would be a special
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case of the problem we discuss in Section 5. However, this is not necessarily the case.
A natural way to address this problem is to create a uniform probability distribution
over all optimal adversarial strategies and optimize the expected reward—again a
special case of what is to be discussed in Section 5. However, obtaining the set of
explanations is not an easy task. Even if we had an easy way to exactly compute an
optimal adversarial strategy, finding all such strategies is an even more challenging
problem. In fact, it is at least as hard as the counting version of GCD, which we
already have shown to be #P-hard and difficult to approximate. This is shown in
the following theorem.

Theorem 4.3. Finding the set of all adversarial optimal strategies that provide
a “yes” answer to OAS-DEC is #P-hard.

4.2 Pre-Processing and Naive Approach

In this section, we present several algorithms to solve OAS. We first present a simple
routine for pre-processing followed by a naive enumeration-based algorithm.

We use ∆ to denote the maximum number of partners per observation and f
to denote the maximum number of observations supported by a single partner. In
general, ∆ is bounded by π(β2 − α2), but may be lower depending on the feasible
points in S. Likewise, f is bounded by min(|O|,∆) but may be much smaller de-
pending on the sparseness of the observations.

Pre-Processing Procedure. Given a space S, a feasibility predicate feas, real
numbers α ≥ 0, β > 0, and a set O of observations, we create two lists (similar to
a standard inverted index) as follows.

—Matrix M . M is an array of size S. For each feasible point p ∈ S, M [p] is a list
of pointers to observations. M [p] contains pointers to each observation o such
that feas(p) is true and such that d(o, p) ∈ [α, β].

—List L. List L contains a pointer to position M [p] in the array M iff there exists
an observation o ∈ O such that feas(p) is true and such that d(o, p) ∈ [α, β].

It is easy to see that we can compute M and L in O(|O| ·∆) time. The example
below shows how M,L apply to our running drug example.

Example 4.2. Consider our running example concerning the location of drug
laboratories that started with Example 2.1. The set L consists of {p1, . . . , p67}.
The matrix M returns lists of observations that can be associated with each feasible
point. For example, M(p40) = {o3, o4, o5} and M(p46) = {o1, o2}.

Naive Approach. After pre-processing, a straightforward exact solution to OAS
would be to enumerate all subsets of L that have a cardinality less than or equal to
k. Let us call this set L∗. Next, we eliminate all elements of L∗ that are not valid
explanations. Finally, for each element of L∗, we compute the expected adversarial
detriment and return the element of L∗ for which this value is the least. Clearly,
this approach is impractical as the cardinality of L∗ can be very large. Further,
this approach does not take advantage of the specific reward functions. We now
present mixed integer linear programs (MILPs) for wrf and frf and later look at
ways to reduce the complexity of solving these MILPs.
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Fig. 3. Set L of all possible partners for our drug laboratory location example.

4.3 Mixed Integer Linear Programs for OAS under wrf , crf , frf

We present mixed integer linear programs (MILPs) to solve OAS exactly for some
specific reward functions. First, we present a mixed integer linear program for the
reward function wrf . Later, in Section 4.4, we show how to improve efficiency—
while maintaining optimality—by reducing the number of variables in the MILP.
Note that these constraints can also be used for crf as wrf generalizes crf . We
also define a MILP for the frf reward function.

While these mixed integer programs may appear nonlinear, Proposition 4.4 gives
a simple transformation to standard linear form. For readability, we define the
MILPs before discussing this transformation.

Definition 4.3 wrf MILP. Given real number dist > 0 and weight function
W , associate a constant wi with the weight W (pi) of each point pi ∈ L. Next, for
each pi ∈ L and efj ∈ EF, let constant ci,j = 1 iff ∃p′ ∈ ef(O, k) s.t. d(p′, pi) ≤ dist
and 0 otherwise. Finally, associate an integer-valued variable Xi with each pi ∈ L.
Minimize: ∑

efj∈EF

efd(efj) ·
∑
pi∈L

(
Xi ·

wi · ci,j∑
pi∈L wi ·Xi

)
subject to:

(1 ) Xi ∈ {0, 1}
(2 ) Constraint

∑
pi∈LXi ≤ k

(3 ) For each oj ∈ O, add constraint∑
pi∈Ld(oj ,pi)∈[α,β]

Xi ≥ 1

Example 4.3. Continuing from Examples 4.1 (page 10) and 4.2, suppose the
drug cartel wishes to produce an adversarial strategy A using wrf . Consider the
case where we use crf , k ≤ 3, and dist = 100 meters as before (see Example 4.1).
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Clearly, there are 67 variables in these constraints, as this is the cardinality of
set L (as per Example 4.2). The constants ci,1 are 1 for elements in the set
{p35, p40, p41, p42, p43, p44, p45, p46, p49, p49, p50, p52, p56} (and 0 for all others). The
constants ci,2 are 1 for elements in the set {p33, p37, p40, p41, p45, p46, p47, p48} (and
0 for all others).

We can create a MILP for frf as follows.

Definition 4.4 frf MILP. For each pi ∈ L and efj ∈ EF, let constant ci,j =
min

p′∈ef(O,k)(d(pi, p
′)2). Associate an integer-valued variable Xi with each pi ∈ L.

Minimize: ∑
efj∈EF

efd(efj) ·
∑
pi∈L

(
Xi ·

1

ci,j +
∑
pi∈LXi

)
subject to:

(1 ) Xi ∈ {0, 1}
(2 ) Constraint

∑
pi∈LXi ≤ k

(3 ) For each oj ∈ O, add constraint∑
pi∈Ld(oj ,pi)∈[α,β]

Xi ≥ 1

The following theorem tells us that solving the above MILPs correctly yields a
solution for the OAS problem under both wrf or frf .

Proposition 4.1. Suppose S is a space, O is an observation set, real numbers
α ≥ 0, β > 0, and suppose the wrf and frf MILPs are defined as above.

(1 ) Suppose A ≡ {p1, . . . , pn} is a solution to OAS with wrf(resp. frf). Consider
the assignment that assigns 1 to each X1, . . . , Xn corresponding to the pi’s and
0 otherwise. This assignment is an optimal solution to the MILP.

(2 ) Given the solution to the constraints, if for every Xi = 1, we add point pi to
set A, then A is a solution to OAS with wrf(resp. frf).

Setting up either set of constraints can be performed in polynomial time—where
computing the ci,j constants is the dominant operation.

Proposition 4.2. Setting up the wrf/frf constraints can be accomplished in
O(|EF|·k ·|O|·∆) time (provided the weight function W can be computed in constant
time).

The number of variables for either set of constraints is related to the size of L,
which depends on the number of observations, spacing of S, and α, β.

Proposition 4.3. The wrf/frf constraints have O(|O|·∆) variables and 1+|O|
constraints.

The MILPs for wrf and frf appear non-linear as the objective function is frac-
tional. However, as the denominator is non-zero and strictly positive, the Charnes-
Cooper transformation [Charnes and Cooper 1962] allows us to quickly (in the order
of number of constraints multiplied by the number of variables) transform the con-
straints into a purely integer-linear form. Many linear and integer-linear program
solvers include this transformation in their implementation.
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Proposition 4.4. The wrf/frf constraints can be transformed into a purely
linear-integer form in O(|O|2 ·∆) time.

We note that a linear relaxation of any of the above three constraints can yield
a lower bound on the objective function in O(|L|3.5) time.

Proposition 4.5. Given the constraints of Definition 4.3 or Definition 4.4, if
we consider the linear program formed by setting all Xi variables to be in [0, 1],
then the value returned by the objective function will be a lower bound on the value
returned by the objective function for the mixed integer-linear constraints, and this
value can be obtained in O(|O|3.5 ·∆3.5) time.

Likewise, if we solve the mixed integer linear program with a reduced number of
variables, we are guaranteed that the solution will cause the objective function to
be an upper bound for the original set of constraints.

Proposition 4.6. Consider the MILPs in Definition 4.3 and Definition 4.4.
Suppose L′ ⊂ L and every variable Xi associated with some pi ∈ L′ is set to 0. The
resulting solution is an upper bound on the objective function for the constraints
solved on the full set of variables.

4.4 Correctly Reducing the Number of Variables for crf

As the complexity of solving MILPs is closely related to the number of variables in
the MILP, the goal of this section is to reduce the number of variables in the MILP
associated above with the crf reward function. We note that all results in this
section apply only for the crf reward function. In this section, we show that if we
can find a certain type of explanation called a δ-core optimal explanation, then we
can “build-up” an optimal adversarial strategy in polynomial time. It also turns out
that finding these special explanations can be accomplished using a MILP which
will often have significantly fewer variables than the MILPs of the last section.
First, we consider the wrf constraints applied to crf which is a special case of wrf .
The objective function for this case is:

∑
efj∈EF

efd(efj) ·
∑
pi∈L

(
Xi ·

ci,j∑
pi∈LXi

)
where for each pi ∈ L and efj ∈ EF, ci,j = 1 iff ∃p′ ∈ efj(O, k) s.t. d(p′, pi) ≤ dist
and 0 otherwise. If we rearrange the objective function, we see that with each Xi

variable associated with point pi ∈ L, there is an associated constant consti:

consti =
∑

efj∈EF

efd(efj) · ci,j .

This lets us rewrite the objective function as:∑
pi∈LXi · consti∑

pi∈LXi
.

Example 4.4. Continuing from Example 4.3, consti = 0.5 for the following
elements: {p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56}; consti = 1 for these ele-
ments: {p40, p41, p45, p46, p48}, and 0 for all others.
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In many covering problems where we wish to find a cover of minimal cardinality,
we could reduce the number of variables in the integer program by considering
equivalent covers as duplicate variables. However, for OAS, this technique can not
be easily applied. The reason for this is because an optimal adversarial explanation
is not necessarily irredundant (see Definition 2.5, page 4). Consider the following.
Suppose we wish to find an optimal adversarial strategy of size k. Let P be an
irredundant cover of size k − 1. Suppose there is some element p′ ∈ P that covers
only one observation o′. Hence, there is no p ∈ P − {p′} that covers o′ by the
definition of an irredundant cover. Suppose there is also some p′′ /∈ P that also
covers o′. Now, let m =

∑
pi∈P−p′ consti. In our construction of an example

solution to OAS that is not irredundant, we let const′ be the value associated with
both p′ and p′′. Consider the scenario where const′ < m

k−2 . Suppose by way of
contradiction that the optimal irredundant cover is also the optimal adversarial
strategy. Then, by the definition of an optimal adversarial strategy we know that
the set P is more optimal than P ∪ {p′′}. This would mean that m+const′

k−1 <
m+2·const′

k . This leads us to infer that m < const′ ·(k−2), which clearly contradicts
const′ < m

k−2 . It is clear that a solution to OAS need not be irredundant.
Even though an OAS is not necessarily irredundant, we are able to reduce the

size of the set L by looking at certain aspects of an OAS. Our intuition is that
each OAS contains a core explanation which has fewer redundant elements than
the OAS and low values of const for each element in that set. Once this type of
explanation is found, we can build an optimal adversarial strategy in polynomial
time. First, we define a core explanation.

Definition 4.5 Core Explanation. Given an observation set O and set L of
possible partners, an explanation Ecore is a core explanation iff for any pi ∈ Ecore,
there does not exist pj ∈ L such that:

(1 ) ∀o ∈ O if o, pi are partners, then o, pj are also partners.

(2 ) constj < consti

We now show that any optimal adversarial strategy contains a subset that is a
core explanation.

Theorem 4.4. If A is an optimal adversarial strategy, there exists a core expla-
nation Ecore ⊆ A.

Example 4.5. Continuing from Example 4.4, consider the set A ≡ {p34, p38, p57}
(which would correspond to drug lab locations as planned by the cartel). Later, we
show that this is an optimal adversarial strategy (the expected adversarial detriment
associated with A is 0). Consider the subset p34, p38. As p34 explains observations
o3, o4, o5 and p38 explains observations o1, o2, this set is also an explanation. Obvi-
ously, it is of minimal cardinality. Hence, the set {p34, p38} is a core explanation
of A.

Suppose we have an oracle that, for a given k, O, and efd returns a core expla-
nation Ecore that is guaranteed to be a subset of the optimal adversarial strategy
associated with k, O, and efd. The following theorem says we can find the optimal
adversarial strategy in polynomial time. The key intuition is that we need not
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Algorithm 1 BUILD-STRAT

INPUT: Partner list L, core explanation Ecore, natural number k, explanation func-
tion distribution efd
OUTPUT: Optimal adversarial strategy A

(1) If |Ecore| = k, return Ecore
(2) Set A = Ecore. Let k′ = |Ecore|
(3) Sort the set L−Ecore by consti. Let L′ = {p1, . . . , pk−k′} be the k−k′ elements

of this set with the lowest values for consti, in ascending order

(4) For each pi ∈ L′ let Pi be the set {p1, . . . , pi}
(5) For each Pi let Si =

∑
j≤i constj

(6) Let ans = minpi∈L′({
k′·EXDrf

(efd,Ecore)+Si

k′+i })
(7) Let Pans be the Pi associated with ans

(8) If ans ≥ EXDrf (efd, Ecore), return Ecore, else return Ecore ∪ Pans

concern ourselves with covering the observations as Ecore is an explanation. The
algorithm BUILD-STRAT follows from this theorem.

Theorem 4.5. If there is an oracle that for any given k, O, and efd returns a
core explanation Ecore that is guaranteed to be a subset of the optimal adversarial
strategy associated with k, O, and efd, then we can find an optimal adversarial
strategy in O(∆ · |O| · log(∆ · |O|) + (k − |Ecore|)2) time.

We now introduce the notion of δ-core optimal. Intuitively, this is a core expla-
nation of cardinality exactly δ that is optimal w.r.t. expected adversarial detriment
compared to all other core explanations of that cardinality.

Definition 4.6. Given an integer δ > 0, an explanation distribution function
efd, and a reward function rf , a core explanation Ecore is δ-core optimal iff:

—|Ecore| = δ

—There does not exist another core explanation E ′core of cardinality exactly δ such
that EXDrf (efd, E ′core) < EXDrf (efd, Ecore)

We now define some subsets of the set L that are guaranteed to contain core
explanations and δ-core optimal explanations as well. In practice, these sets will
be much smaller than L and will be used to create a MILP of reduced size.

Definition 4.7 Reduced Partner Set. Given observations O and set of pos-
sible partners L, we define the reduced partner set L∗∗ as follows:

L∗∗ ≡ {pi ∈ L| 6 ∃pj ∈ L s.t. (constj < consti) ∧ (∀o ∈ O s.t. o, pi are partners,

o, pj are also partners)}

We define L∗ as follows:

L∗ ≡ {pi ∈ L∗∗| 6 ∃pj ∈ L∗∗ s.t. (constj = consti) ∧ (∀o ∈ O s.t. o, pi are partners,

o, pj are also partners)}
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Supported Observations consti = 0 consti = 0.5 consti = 1

o1 p4 − p6, p12 − p16, p22 − p23, p30 − p31 p44
o1, o2 p38 p37, p52 p45, p46
o2 p64, p67 p47
o2, o3 p57
o3 p17 − p19, p24 − p26, p32, p39, p58 − p59
o3, o4 p27 − p28 p33
o4 p1 − p3, p7 − p11, p20 − p21, p29, p51 p50
o3, o4, o5 p34, p53 − p54 p49 p40 − p41
o5 p36, p60 − p66 p35
o4, o5 p42 − p43
o3, o5 p55 p56 p48

Table I. The set L partitioned by consti and supported observations.

Lemma 4.6. (1 ) If explanation E is a core explanation, then E ⊆ L∗∗.
(2 ) If explanation E is δ-core optimal, then E ⊆ L∗∗.
(3 ) If for some natural number δ, there exists an explanation of size δ, then there

exists a δ-core optimal explanation E s.t. E ⊆ L∗.

The reduced partner set can be computed in polynomial time. We also note
that under the assumption that |O| << |L|, which we have found to be true in
practice, determining the set L∗∗ or L∗ can be accomplished faster (in terms of
time complexity) than solving even a relaxation of the original MILP.

Proposition 4.7. Given set L, set L∗ and L∗∗ can be found in O(|L|2 · |O|2)
time.

Example 4.6. Let us continue from Example 4.5. Based on pre-processing and
the computation of consti, we can easily produce the data of Table I in polynomial
time. Based on this, we obtain a reduced partner set L∗ ≡ {p34, p38, p57}.

Next, the following lemma tells us that an OAS must contain a core explanation
that is δ-core optimal.

Lemma 4.7. Given an optimal adversarial strategy A, there exists some δ ≤ |A|
s.t. there is a δ-core optimal explanation that is a subset of A (using the crf reward
function).

Thus, if we can find the δ-core optimal explanation that is contained in an OAS,
we can then find the OAS. If we know δ, such an explanation can be found using a
MILP. We now present a set of integer-linear constraints to find a δ-core optimal
explanation. Of course we can easily adopt the constraints of the previous section,
but this would offer us no improvement in performance. We therefore create a
MILP that should have a significantly smaller number of variables in most cases.

To create this MILP, we take a given set of possible partners L and calculate the
set L∗—the reduced partner set—which often will have a cardinality much smaller
than L. Next, we use L∗ to form a new set of constraints to find a δ-core optimal
explanation. We now present these δ-core constraints. Notice that the cardinality
requirement in these constraints is “=” and not “≤”. This is because Lemma 4.7
ensures a core explanation that is δ-core optimal, meaning that the core explanation
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must have cardinality exactly δ. This also allows us to eliminate variables from the
denominator of the objective function, as the denominator must equal δ as well.

Definition 4.8 δ-core MILP. Given parameter δ and reduced partner set L∗,
we define the δ-core constraints by first associating a variable Xi with each point
pi ∈ L∗, then solving:
Minimize:

1

δ

∑
pi∈L∗

Xi · consti

subject to:

(1 ) Xi ∈ {0, 1}
(2 ) Constraint

∑
pi∈LXi = δ

(3 ) For each oj ∈ O, add constraint∑
pi∈L∗d(oj ,pi)∈[α,β]

Xi ≥ 1

Example 4.7. Using set L∗ from Example 4.6, we can create δ-core constraints
as follows:
Minimize:

1

δ
(X34 · const34 +X38 · const38 +X57 · const57)

subject to:

(1 ) X34, X38, X57 ∈ {0, 1}
(2 ) X34 +X38 +X57 = δ

(3 ) X38 ≥ 1 (for observation o1)

(4 ) X38 +X57 ≥ 1 (for observation o2)

(5 ) X34 +X57 ≥ 1 (for observation o3)

(6 ) X34 ≥ 1 (for observations o4, o5)

In the worst case, the set L∗ ≡ L. Hence, we can assert that:

Proposition 4.8. The δ-core constraints require O(∆·|O|) variables and 1+|O|
constraints.

Proposition 4.9. Given δ-core constraints:

(1 ) Given set δ-core optimal explanation Ecore ≡ {p1, . . . , pn}, if variables
X1, . . . , Xn—corresponding with elements in A—are set to 1 and the rest of the
variables are set to 0, the objective function of the constraints will be minimized.

(2 ) Given the solution to the constraints, if for every Xi = 1, we add point pi to
set Ecore, then Ecore is a δ-core optimal solution.

We now have all the pieces required to leverage core explanations and reduced
partner sets to find an optimal adversarial strategy. By Theorem 4.5, we know
that any optimal adversarial strategy must have a core explanation. Further, by
Lemma 4.7, such a core explanation is δ-core optimal. Using a (usually) much
smaller mixed integer linear program, we can find such an explanation. We can
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then find the optimal adversarial strategy in polynomial time using BUILD STRAT.
Though we do not know what δ is, we know it must be in the range [1, k]. Fur-
ther, using a relaxation of the OPT-KSEP-IPC constraints for solving geospatial
abduction problems (as presented in [Shakarian et al. 2010]), we can easily obtain
a lower bound tighter than 1 on δ. Hence, if we solve k such (most likely small)
mixed-integer-linear programs, we are guaranteed that at least one of them must
be a core explanation for an optimal adversarial strategy. We note that these k
MILPs can be solved in parallel (and the following k instances of BUILD-STRAT
can also be run in parallel as well). An easy comparison of the results of the paral-
lel processes would be accomplished at the end. As L∗ is likely to be significantly
smaller than L, this could yield a significant reduction in complexity. Furthermore,
various relaxations of this technique can be used (e.g., only using one value of δ).

Example 4.8. Continuing from Example 4.7, where the cartel members are at-
tempting to find an OAS to best position drug laboratories, suppose they used the
relaxation of OPT-KSEP-IPC (from [Shakarian et al. 2010]) to obtain a lower bound
on the cardinality of an explanation and found it to be 2. With k = 3, they would
solve two MILPs of the form of Example 4.7—one with δ = 2 and one with δ = 3.
The solution to the first MILP would set X34 and X38 both to 1 while the second
MILP would set X34, X38, and X57 all to 1. As the expected adversarial detriment
for both solutions is 0, they are both optimal and running BUILD-STRAT is not
necessary. Either {p34, p38} or {p34, p38, p57} can be returned as an OAS.

5. FINDING A COUNTER-ADVERSARY STRATEGY

Now that we have examined ways in which the adversary can create a strategy based
on probabilistic knowledge of the agent, we consider how the agent can devise an
“optimal” strategy to counter the adversary. As before, we use a special case of
expected reward (Definition 3.1 from Section 3.9).

Definition 5.1 Expected Agent Benefit. Given a reward function rf and
explanation function distribution efd, the expected agent benefit is the function
EXBrf : 2S × EFD→ [0, 1] defined as follows:

EXBrf (B, efd) =
∑

ef∈EF

rf(ef(O, k),B) · efd(ef)

Example 5.1. Following from Examples 2.1 and 3.4, suppose drug-enforcement
agents have information that the cartel is placing drug labs according to efddrug.
(Such information could come from multiple runs of the GREEDY-KSEP-OPT2 al-
gorithm of [Shakarian et al. 2010]). The drug-enforcement agents wish to consider
the set B ≡ {p41, p52}. First, they must calculate the reward associated with each
explanation function (note that k = 3, dist = 100 and rf = crf).

crfdist(ef1(O, 3), {p41, p52}) = 0.67

crfdist(ef2(O, 3), {p41, p52}) = 0.5

(As an aside, we would like to point out the asymmetry in crf—compare these
computations with the results of Example 4.1). Hence, EXBcrf ({p41, p52}, efddrug) =
0.634.
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We now define a maximal counter-adversary strategy.

Definition 5.2 Maximal Counter-Adversary Strategy (MCA). Given a
reward function rf and explanation function distribution efd, a maximal counter-
adversary strategy, B, is a subset of S such that EXBrf (B, efd) is maximized.

Note that MCA does not include a cardinality constraint. This is because we
do not require reward functions to be monotonic. In the monotonic case, we can
trivially return all feasible points in S and be assured of a solution that maximizes
the expected agent benefit. Therefore, for the monotonic case, we include an extra
parameter B ∈ {1, . . . , |S|} (for “budget”) which will serve as a cardinality require-
ment for B. This cardinality requirement for B is necessarily the same as for A
as the agent and adversary may have different sets of resources. Also, we do not
require that B be an explanation. We discuss the special case where the solution
to the MCA problem is required to be an explanation in the appendix.

5.1 The Complexity of Finding a Maximal Counter-Adversary Strategy

We now formally define the problem of finding a maximal counter-adversary strat-
egy.

MCA Problem
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations
O, natural numbers k,B, reward function rf , and explanation function distribution
efd.
OUTPUT: Maximal counter-adversary strategy B.

MCA is NP-hard via a reduction of the GCD problem.

Theorem 5.1. MCA is NP-hard.

The proof of the above result shows that MCA is NP-hard even if the reward
function is monotonic. Later, in Section 5.3, we also show that MCA can encode
the NP-hard MAX-K-COVER problem [Feige 1998] as well (which provides an
alternate proof for NP-hardness of MCA). We now present the decision problem
associated with MCA and show that it is NP-complete under reasonable conditions.

MCA-DEC
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations
O, natural numbers k,B, reward function rf , explanation function distribution efd,
and number R ∈ [0, 1].
OUTPUT: Counter-adversary strategy B such that EXBrf (B, efd) ≥ R.

Theorem 5.2. MCA-DEC is NP-complete, provided the reward function can
be evaluated in PTIME.

Not only is MCA-DEC NP-hard, under the same assumptions as above, the count-
ing version of the problem is #P-complete and moreover, it has no fully polynomial
random approximation scheme.
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Theorem 5.3. Counting the number of strategies that provide a “yes” answer
to MCA-DEC is #P-complete and has no FPRAS unless NP=RP.

Theorem 5.3 tells us that MCA may not have a unique solution. Therefore,
setting up a mixed-strategy of all MCAs to determine the “best response” to the
MCA of an agent by an adversary would be an intractable problem. This mirrors
our result of the previous section (Theorem 4.3, page 12).

5.2 MCA in the General Case: Exact and Approximate Algorithms

We now describe exact and approximate algorithms for finding a maximal counter-
adversary strategy in the general case. Note that throughout this section (as well
as in Section 5.3), we assume that the same pre-processing for OAS is used (cf.
Section 4.2). We will use the symbol L to refer to the set of all possible partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach
to the MCA problem would simply consider all subsets of L and pick the one which
maximizes the expected agent benefit. Obviously, this approach has a complexity

O(
∑|S|
i=0

(|L|
i

)
) and is not practical. This is unsurprising as we showed this to be an

NP-complete problem.
Approximation in the General Case. Despite the impractical time complex-
ity associated with an exact approach, it is possible to approximate MCA with
guarantees—even in the general case. This is due to the fact that when efd is fixed,
the expected agent benefit is submodular.

Theorem 5.4. For a fixed O, k, efd, the expected agent benefit, EXBrf (B, efd)
has the following properties:

(1 ) EXBrf (B, efd) ∈ [0, 1]

(2 ) For B ⊆ B′ and some point p ∈ S where p /∈ B′, the following is true:

EXBrf (B ∪ {p}, efd)− EXBrf (B, efd) ≥ EXBrf (B′ ∪ {p}, efd)− EXBrf (B′, efd)

(i.e., expected agent benefit is sub-modular for MCA)

It follows immediately that MCA reduces to the maximization of a submodular
function. We now present the MCA-LS algorithm that leverages this submodularity.

The following two propositions leverage Theorem 5.4 and Theorem 3.4 of [Feige
et al. 2007].

Proposition 5.1. MCA-LS has time complexity of O( 1
ε · |L|

3 · F (efd) · lg(|L|)
where F (efd) is the time complexity to compute EXBrf (B, efd) for some set B ⊆ L.

Proposition 5.2. MCA-LS is an ( 1
3 −

ε
|L| )-approximation algorithm for MCA.

Example 5.2. Let us consider our running example where drug-enforcement
agents are attempting to locate illegal drug laboratories in the area depicted in Fig-
ure 1. The agents have information that there are k or fewer drug laboratories
that support the poppy fields (set of observations O) and that they are positioned
according to efddrug (see Example 3.4, page 10). The agents wish to find a maximal
counter-adversarial strategy using the prf reward function (see page 7). They decide
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Algorithm 2 (MCA-LS)

INPUT: Reward function rf , set O of observations, explanation function distribu-
tion efd, possible partner set L, real number ε > 0
OUTPUT: Set B ⊂ S
(1) Set B∗ = L, for each pi ∈ B∗ let inci = EXBrf ({p}, efd)− EXBrf (∅, efd).
(2) Sort the pi’s in B∗ from greatest to least by inci (i.e., p1 is the element with the

greatest inci).

(3) B = {p1}, B∗ = B∗ − {p1}, cur val = inc1 + EXBrf (∅, efd), flag1 = true, i = 2

(4) While flag1
(a) new val = cur val + inci
(b) If new val > (1 + ε

|L|2 ) · cur val then

i. If EXBrf (B ∪ {pi}, efd) > (1 + ε
|L|2 ) · EXB

rf (B, efd) then:
B = B ∪ {pi}, B∗ = B∗ − {pi}, cur val = EXBrf (B ∪ {pi}, efd)

(c) If new val ≤ (1 + ε
|L|2 ) · cur val or if pi is the last element then

i. j = 1, flag2 = true, number each pj ∈ B
ii. While flag2

A. If EXBrf (B − {pj}, efd) > (1 + ε
|L|2 ) · EXB

rf (B, efd) then:
B = B − {pj}, cur val = EXBrf (B − {pj}, efd)
For each pi ∈ B∗ let inci = EXBrf (B ∪ {pi}, efd)− EXBrf (B, efd).
Sort the pi’s in B∗ from greatest to least by inci
i = 0, flag2 = false

B. Else,
If pj was the last element of B then set flag1, f lag2 = false
Otherwise, j ++

(d) i++

(5) If EXBrf (L− B, efd) > EXBrf (B, efd) then set B = L− B
(6) Return B

to use MCA-LS to find such a strategy with ε = 0.1. Initially (at line 3), the algo-
rithm selects point p48 (renumbering as p1, note that in this example we shall use
pi and inci numbering based on Example 2.1 rather than what the algorithm uses).
Hence, inc40 = 0.208 and cur val = 0.708. As the elements are sorted, the next
point to be considered in the loop at line 4 is p40 which has an incremental increase
of 0, so it is not picked. It then proceeds to point p41, which gives an incremental
increase of 0.084 and is added to B so cur val = 0.792. Point p45 is considered next,
which gives an incremental increase of 0.208 and is picked, so now cur val = 1.0.
The algorithm then considers point p46, which does not afford any incremental in-
crease. After considering points p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56, and
finding they all give a negative incremental increase (and thus, are not picked), the
algorithm finds that the old incremental increase of the next element, p1, would
cause the “if” statement at line 4c to be true, thus proceeding to the inner loop in-
side that “if” statement (line 4(c)iiA). This loop considers if the removal of any of
the picked elements p48, p41, p45 causes the expected agent benefit to increase. How-
ever, in this example, if any of the elements are removed, the expected agent benefit
decreases. Hence, the boolean flag1 is set to false and the algorithm exits the outer
loop. The algorithm then returns the set B ≡ {p48, p41, p45} which is optimal.
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Algorithm 3 (MCA-GREEDY-MONO)

INPUT: Monotonic reward function rf , set O of observations, real number B > 0,
explanation function distribution efd, possible partner set L, real number ε > 0
OUTPUT: Set B ⊂ S
(1) Initialize B = ∅ and B∗ = L

(2) For each pi ∈ B∗, set inci = 0

(3) Set last val = EXBrf (B, efd)
(4) While |B| ≤ B

(a) pbest = null, cur inc = 0
(b) For each pi ∈ B∗, do the following

i. If inci < cur inc, break loop and goto line 4c.
ii. Let inci = EXBrf (B ∪ {p}, efd)− last val
iii. If inci ≥ cur inc then cur inc = inci and pbest = p

(c) B = B ∪ {pbest}, B∗ = B∗ − {pbest}
(d) Sort B∗ in descending order by inci.
(e) Set last val = EXBrf (B, efd)

(5) Return B

5.3 Finding a Maximal Counter-Adversary Strategy, the Monotonic Case

In the previous section we showed a 1
3 approximate solution to MCA can be found

in polynomial time even without any monotonicity restriction. In this section, we
show that under the additional assumptions of monotonicity of reward functions,
we can obtain a better 63% approximation ratio with a faster algorithm. Here, we
also have the additional cardinality requirement of B for the set B (as described
in Section 5). We first show that expected agent benefit is monotonic when the
reward function is.

Corollary 5.1. For a fixed O, k, efd, if the reward function is monotonic, then
the expected agent benefit, EXBrf (B, efd) is also monotonic.

Thus, when we have a monotonic reward function, the MCA problem reduces
to the maximization of a monotonic, normalized5 submodular function w.r.t. a
uniform matroid6—this is a direct consequence of Theorem 5.4 and Corollary 5.1.
Therefore, we can leverage the result of [Nemhauser et al. 1978], to develop the
MCA-GREEDY-MONO algorithm below. We improve performance by including
“lazy evaluation” using the intuition that the incremental increase caused by some
point p at iteration i of the algorithm is greater than or equal to the increase caused
by that point at a later iteration. As with MCA-LS, we also sort elements by the
incremental increase, which may allow the algorithm to exit the inner-loop earlier.
In most non-trivial instances of MCA, this additional sorting operation will not
affect the complexity of the algorithm (i.e., under the assumption that the time to
compute EXBrf is greater than lg(|L|), we make this same assumption in MCA-LS
as well).

5As we include zero-starting in our definition of monotonic.
6In our case, the uniform matroid consists of all subsets of L of size B or less.
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Proposition 5.3. The complexity of MCA-GREEDY-MONO is O(B ·|L|·F (efd))
where F (efd) is the time complexity to compute EXBrf (B, efd) for some set B ⊆ L
of size B. In the first iteration of the algorithm,

Corollary 5.2. MCA-GREEDY-MONO is an ( e
e−1 )-approximation algorithm

for MCA (when the reward function is monotonic).

In addition to the fact that MCA-GREEDY-MONO is an ( e
e−1 )-approximation

algorithm for MCA, it also provides the best possible approximation ratio unless
P = NP . This is done by a reduction of MAX-K-COVER [Feige 1998].

Theorem 5.5. MCA-GREEDY-MONO provides the best approximation ratio for
MCA (when the reward function is monotonic) unless P = NP .

The following example illustrates how MCA-GREEDY-MONO works.

Example 5.3. Consider the situation from Example 5.2, where the drug-enforcement
agents are attempting to locate illegal drug labs. Suppose they want to locate the
labs, but use the crf reward function, which is monotonic and zero-starting. They
use the cardinality requirement B = 3 in MCA-GREEDY-MONO. After the first iter-
ation of the loop at line 4, the algorithm selects point p48 as it affords an incremental
increase of 0.417. On the second iteration, it selects point p46, as it also affords
an incremental increase of 0.417, so last val = 0.834. Once p46 is considered, the
next point considered is p33, which had a previous incremental increase (calculated
in the first iteration) of 0.25, so the algorithm can correctly exit the loop to select
the final element. On the last iteration of the outer loop, the algorithm selects point
p35, which gives an incremental increase of 0.166. Now the algorithm has a set of
cardinality 3, so it exits the outer loop and returns the set B = {p48, p46, p35}, which
provides an expected agent benefit of 1, which is optimal. Note that this would not
be an optimal solution for the scenario in Example 5.2 which uses prf as p35 would
incur a penalty (which it does not when using crf as in this example).

6. IMPLEMENTATION AND EXPERIMENTS

In this section, we describe prototype implementations and experiments for solving
the OAS and MCA problems. For OAS, we create a MILP for the crf case and
reduce the number of variables with the techniques we presented in Section 4. For
MCA, we implement both the MCA-LS and MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600 processor
running at 2.4GHz with 8GB of memory available, using code written in Java
1.6; all runs were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM,
and made use of a single core. We also used functionality from the previously-
implemented SCARE software [Shakarian et al. 2009] to calculate, for example, the
set of all possible partners L and to perform pre-processing (see the discussion in
Section 4.2, page 12).

Our experiments are based on 21 months of real-world Improvised Explosive
Device (IED) attacks in Baghdad7 [Shakarian et al. 2009]. The IED attacks in this
25 × 27 km region constitute our observations. The data also includes locations

7Attack and cache location data provided by the Institute for the Study of War.
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of caches associated with those attacks discovered by US forces. These constitute
partner locations. We used data from the International Medical Corps to define
feasibility predicates based on ethnic makeup, location of US bases, and geographic
features. We overlaid a grid of 100m × 100m cells—about the size of a standard US
city block. We split the data into two parts; the first 7 months of data were used as
a “training” set to learn the [α, β] parameters and the next 14 months of data were
used for the observations. We created an explanation function distribution based
on multiple runs of GREEDY-KSEP-OPT2 algorithm described in [Shakarian et al.
2010].

6.1 OAS Implementation

We now present experimental results for the version of OAS, with the crf reward
function, based on the constraints in Definition 4.3 and variable-reduction tech-
niques of Section 4.4. First, we discuss promising real-world results for the calcula-
tion of the reduced partner set L∗, described in Definition 4.5. Then, we show that
an optimal adversarial strategy can be computed quite tractably using the methods
discussed in Section 4.4. Finally, we compare our results to a set of real-world data,
showing a significant decrease in the adversary’s expected detriment across various
parameter settings. Our implementation was written on top of the QSopt8 MILP
solver and used 900 lines of Java code.
Reduced Partner Set. As discussed in Section 4.2, producing an optimal ad-
versarial strategy for any reward function relies heavily on efficiently solving a
(provably worst-case intractable) integer linear program. The number of integer
variables in these programs is based solely on the size of the partner set L; as such,
the ability to experimentally solve OAS relies heavily on the size of this set.

Our real-world data created a partner set L with cardinality 22,692. We then
applied the method from Definition 4.5 to reduce this original set L to a smaller
subset of possible partners L∗, while retaining the optimality of the final solution.
This simple procedure, while dependent on the explanation function distribution
efd as well as the cutoff distance for crf , always returned a reduced partner set L∗

with cardinality between 64 and 81. This represents around a 99.6% decrease in
the number of variables required in the subsequent integer linear programs!

Figure 4 provides more detailed accuracy and timing results for this reduction.
Most importantly, regardless of parameters chosen, our real-world data is reduced
by orders of magnitude across the board. Of note, we see a slight increase in the
size of the reduced set L∗ as the size of the explanation function distribution efd
increases. This can be traced back to the strict inequality in Definition 4.7. As
we increase the number of nontrivial explanation functions in efd, the number of
nonzero constants consti increases. This results in a higher number of candidates
for the intermediary set L∗∗. We see a similar result as we increase the penalizing
cutoff distance. Again, this is a factor of the strict inequality in Definition 4.7 in
conjunction with a higher fraction of nonzero consti constants.

Interestingly, Figure 4 shows a slight decrease in the runtime of the reduction
as we increase the penalizing cutoff distance. Initially, this seems counterintuitive;
with more nontrivial constants consti , the construction of the intermediary set L∗∗

8http://www2.isye.gatech.edu/˜wcook/qsopt/index.html
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Fig. 4. The size of the reduced partner set L∗ (left) and the time required to compute this reduction

(right). Regardless of parameters chosen, we see a 99.6% decrease in possible partners—as well

as integer variables in our linear program—in under 3 minutes.

requires more work. However, this extra work pays off during the computation of
the final reduced set L∗. In our experiments, the reduction from L to L∗∗ took
less time than the final reduction from L∗∗ to L∗. This is due to frequent short
circuiting in the computation of the right-hand side of the conjunction during L∗∗

creation. As we increase the penalizing cutoff distance, the size of L∗∗ actually
decreases, resulted in a decrease in the longer computation of L∗. As seen above,
this decrease in L∗∗ did not correspond to a decrease in the size of L∗.

Optimal Adversarial Strategy. Using the set L∗, we now present results to find
an optimal adversarial strategy using δ-core optimal explanations. This is done
by minimizing the MILP of Section 4.4, then feeding this solution into BUILD-
STRAT. Since we do not know the value of δ in advance, we must perform this
combined operation multiple times, choosing the best—lowest expected detriment—
adversarial strategy as optimal.

A note on the lower bound for δ: as shown by [Shakarian et al. 2009], finding a
minimum-cardinality explanation is NP-hard. Because of this, it is computationally
difficult to find a tight lower bound for δ. However, this lower bound can be
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estimated empirically. For instance, for our set of real-world data from Baghdad,
an explanation of cardinality below 14 has never been returned—even across tens
of thousands of runs of GREEDY-KSEP-OPT2. Building on this strong empirical
evidence, the minimum δ used in our experiments is 14.
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runtime of the integer linear program required to produce this strategy in milliseconds (right).

Note the smooth decrease toward zero detriment as k increases, corresponding with a near-linear
increase in total runtime.

Figure 5 shows both timing and expected detriment results as the size of the
explanation function |efd| and maximum strategy cardinality k are varied. Note that
a lower expected detriment is better for the adversary, with zero representing no
probability of partner discovery by the reasoning agent. As the adversary is allowed
larger and larger strategies, its expected detriment smoothly decreases toward zero.
Intuitively, as the number of nontrivially-weighted explanation functions in efd
increases, the expected detriment increases as well. This is a side effect of a larger
|efd| allowing the reasoning agent to cover a larger swath of partner locations.

Recall that, as the maximum k increases, we must solve linear programs for each
δ ∈ {klow , k}. This is mirrored in the timing results in Figure 5, which assumes
klow = 14. As k increases, we see a near linear increase in the total runtime of the

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.



Adversarial Geospatial Abduction Problems · 29

set of integer programs. Due to the reduced set L∗, we are able to solve dozens
of integer programs in less than 800ms; were we to use the unreduced partner
set L, this would be intractable. Note that the runtime graph includes that of
BUILD-STRAT which always ran in under sixteen milliseconds.
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current state of the art (left, lower is better). Relative improvement of the OAS strategy versus

the current state of the art (right, higher is better). We assume the reasoning agent is using the
Spatial Cultural Abductive Reasoning Engine (SCARE) to provide information on cache locations.

OAS Performance w.r.t. Real-World Adversarial Strategy. Figure 6 com-
pares the expected number of caches found under the current state of the art—IED
cache locations based on 21 months of real-world data from Baghdad, Iraq—against
the OAS strategy proposed in this paper. We hold the cardinality of the adversary’s
solution (i.e., the number of possible caches) to 14 to match the real-world data.
We assume the reasoning agent uses the Spatial Cultural Abductive Reasoning En-
gine (SCARE) introduced in [Shakarian et al. 2009] to provide partner locations to
these attacks. SCARE is the state of the art method for finding IED caches.

When tested against real-world adversaries based on real-world Baghdad data,
OAS significantly outperforms what adversaries have done so far in the real-world
(fortunately this is balanced by later experiment results showing that MCA-LS and
MCA-GREEDY-MONO significantly outperform SCARE). The expected number of
caches found by SCARE against an opponent using OAS is significantly lower than
against present day insurgents in Iraq. For instance, while SCARE (using a cutoff
distance of 100 meters) detects 1.6 of the 14 possible caches against a real-world
adversary, it is expected to detect only 0.11 of the caches against an adversary using
OAS. This roughly order of magnitude improvement is seen across all five cutoff
distances, from a minimum of approximately 7x at a cutoff distance of 200m to a
maximum of over 31x at a distance of 500m. Thus, OAS significantly improves the
adversary’s performance.

6.2 MCA Implementation

First, we briefly discuss an implementation of the naive MCA algorithm discussed
in section 5.2. Next, we provide promising results for the MCA-LS algorithm using
the prf reward function. Finally, we give results for the MCA-GREEDY-MONO
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using the monotonic crf reward function, and qualitatively compare and contrast
the results from both algorithms.

MCA-Naive. The naive, exact solution to MCA—considering all subsets of L
with cardinality kB or more and picking the one which maximizes the expected
agent benefit—is inherently intractable. This approach has a complexity O(

(|L|
kB

)
),

and is made worse by the large magnitude of the set L. In our experimental setup,
we typically saw |L| > 20, 000; as such, for even the trivially small kB = 3, we
must enumerate and rank over a trillion subsets. For any realistic value of kB, this
approach is simply unusable. Luckily, we will see that both MCA-LS and MCA-
GREEDY-MONO provide highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described above, the MCA-LS
algorithm provides (lower-)bounded approximate results in a tractable manner. In-
terestingly, even though MCA-LS is an approximation algorithm, in our experiments
on real-world data from Baghdad using the prf reward function, the algorithm re-
turned strategies with an expected benefit of 1.0 on every run. Put simply, on
our practical test data, MCA-LS always completely maximized the expected ben-
efit. This significantly outperforms the lower-bound approximation ratio of 1/3.
We would also like to point out that this is the first implementation (to the best
of our knowledge) of the non-monotonic submodular maximization approximation
algorithm of [Feige et al. 2007].

Since the expected benefit was maximal for every strategy B returned, we move to
analyzing the particular structure of these strategies. Figure 7 shows a relationship
between the size |B|, the cutoff distance dist, and the cardinality of the expectation
function distribution |efd|. Recall that prf penalizes any strategy that does not
completely cover its input set of observations; as such, intuitively, we see that
MCA-LS returns larger strategies as the penalizing cutoff distance decreases. If
the algorithm can cover all possible partners across all expectation functions, it
will not receive any penalty. Still, even when dist is 100m, the algorithm returns
B only roughly twice the size as minimum-sized explanation found by GREEDY-
KSEP-OPT2 (which, based on the analysis of [Shakarian et al. 2010], is very close
to the minimum possible explanation). As the cutoff dist increases, the algorithm
returns strategies with sizes converging, generally, to a baseline—the smallest-sized
explanation found by the algorithm of [Shakarian et al. 2010], |E|. This is an
intuitive soft lower bound; given enough leeway from a large distance dist, a single
point will cover all expected partners. This is not a strict lower bound in that, given
two extremely close observations with similar expected partners, a single point may
sufficiently cover both.

In Figure 8, we see results comparing overall computation time to both the dis-
tance dist and the cardinality of efd. For more strict (i.e., smaller) values of dist,
the algorithm—which, under prf , is penalized for all uncovered observations across
efd—must spend more time forming a strategy B that minimizes penalization. Sim-
ilarly, as the distance constraint is loosened, the algorithm completes more quickly.
Finally, an increase in |efd| results in higher computational cost; as explained in
Proposition 5.1, this is due to an increase in F (efd), the time complexity of com-
puting EXBrf (B, efd). Comparing these results to Figure 7, we see that the runtime
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Fig. 7. The average size of the strategy recommended by MCA-LS decreases as the distance cutoff

increases. For these experiments, the minimum cardinality for a given explanation E considered

is efd was 14, which gives us a natural lower bound on the expected size of a strategy. Note the
convergence to this bound at cutoff distances at and above 300 meters.

of MCA-LS is correlated to the size of the returned strategy B.

MCA-GREEDY-MONO. As discussed in Section 5.3, MCA-GREEDY-MONO
provides tighter approximation bounds than MCA-LS at the cost of a more restric-
tive (monotonic) reward function. For these experiments, we used the monotonic
rf = crf . Recall that a trivial solution to MCA given a monotonic reward function
is B = L; as such, MCA-GREEDY-MONO uses a budget B to limit the maximum
size |B| � |L|. We varied this parameter B ∈ {1, . . . , 28}.

Figure 9 shows the expected benefit EXBrf (B, efd) increase as the maximum
allowed |B| increases. In general, the expected benefit of B increases as the distance
constraint dist is relaxed. However, note the points with B ∈ {3, . . . , 9}; we see
that dist ≤ 100 performs better than dist > 100. We believe this is an artifact of
our real-world data. Finally, as |efd| increases, the expected benefit of B converges
more slowly to 1.0. This is intuitive, as a wider spread of possible partner positions
will, in general, require a larger |B| to provide coverage.

Figure 10 shows that the runtime of MCA-GREEDY-MONO increases as predicted
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Fig. 8. The runtime of MCA-LS decreases as the penalizing cutoff distance is relaxed. Note the

relation to Figure 7; intuitively, larger recommended strategies tend to take longer to compute.

by Proposition 5.1. In detail, as we linearly increase budget B, we also linearly
increase the runtime of our F (efd) = EXBrf (B, efd). In turn, the overall runtime
O(B · |L| · F (efd)) increases quadratically in B, for our specific reward function.
Finally, note the increase in runtime as we increase |efd| = 10 to |efd| = 100.
Theoretically, this increases F (efd) linearly; in fact, we see almost exactly a ten-
fold increase in runtime given a ten-fold increase in |efd|.
MCA Algorithms and SCARE. We now compare the efficacy of the two MCA
algorithms proposed in this paper to SCARE [Shakarian et al. 2009] which rep-
resents the current state of the art as far as IED cache detection is concerned.
Again, our experiments are based on real-world data from Baghdad, Iraq. For
these experiments, we average results across 100 runs of SCARE; as such, we hold
|efd| = 100 static for the MCA-based algorithms. Figure 11 plots the average num-
ber of predicted points within 500 meters of an actual cache for both MCA-LS and
MCA-GREEDY-MONO. SCARE, plotted as a horizontal line, predicts an average of
7.87 points within 500 meters of caches. MCA-LS finds over twice as many points
at a low penalizing cutoff distances, and steadily converges to SCARE’s baseline
as the penalizing distance increases (as expected). As shown earlier in Figure 7,
MCA-LS tends to find larger strategies given a smaller penalizing cutoff distance;
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increase in |efd|. Similarly, note the increase in expected benefit given a larger cutoff distance.

in turn, these larger strategies yield more close points to actual caches. MCA-
GREEDY-MONO shows similar behavior; as we increase the allowable budget (i.e.,
maximum strategy size), more points are within 500 meters of a real-world cache
location. Thus, MCA-LS and MCA-GREEDY-MONO both outperform SCARE, en-
abling more caches to be discovered.

We note that while the number of points in the strategy close to a real-world
cache location is higher in the MCA-based algorithms than SCARE, the fraction
of close points stays consistently close. SCARE returns a solution of size 14, with
approximately half (7.87/14 ≈ 56%) of these points within 500 meters of cache.
Compare this to, for instance, MCA-LS with a penalizing cutoff distance of 300
meters; for these settings, the algorithm returns an average strategy size of 18, with
11 points (approximately 60%) within 500 meters of a cache location. This behavior
is a product of the strategy size flexibility built into the MCA-based algorithms,
and is beneficial to the reasoning agent. For example, assume the minimal solution
to a problem is of size 2 and the reasoning agent has a budget of size 4. Now assume
SCARE finds 1/2 = 50% of the points near caches, while MCA-GREEDY-MONO
finds 2/4 = 50% of its points near caches. Both algorithms returned the same
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fraction of points near caches; however, the reasoning agent will spend its budget
of 4 resources more effectively under MCA-GREEDY-MONO, instead of wasting 2
of its resources under the strategy provided by SCARE.

7. RELATED WORK

Geospatial abduction was introduced in [Shakarian et al. 2010] and used to infer a
set of partner locations from a set of observations, given a feasibility predicate and
an interval [α, β] ⊆ [0, 1]. The authors developed exact and approximate algorithms
for GAPs. In particular, no adversary was assumed to exist there. In this paper, we
study the case of geospatial abduction where there is an explicit adversary who is
interested in ensuring that the agent does not detect the partner locations. This is
the case with real world serial killers and insurgents who launch IED attacks. In this
paper, we develop a game-theoretic framework for reasoning about the best strategy
that an adversary might adopt (based on minimizing the adversary’s detriment) and
the best strategy that the agent could adopt to counter the adversary’s strategy.
All this is uncharted territory and represents a novel contribution of this paper. In
fact, everything from Section 3 onwards in this paper is new.

Although abduction [Peirce 1955] has been studied in a variety of different
contexts—medicine [Peng and Reggia 1990; Y. Peng 1986], fault diagnosis [Console
et al. 1991], belief revision [Pagnucco 1996], database updates [Kakas and Man-
carella 1990; Console et al. 1995] and AI planning [do Lago Pereira and de Barros
2004]—we are not aware of any work in abduction where an adversary selects a
ground-truth explanation with respect to a probability distribution over explana-
tion functions that an agent would consider. Additionally, we are not aware of any
related work dealing with the problem of an agent finding elements of an adversar-
ially selected explanation (with respect to a probability distribution). However, we
do believe that many of the techniques introduced here for adversarial geospatial
abduction may be generalized to other forms of abduction as well.

In the field of operations research, the facility location problem [Stollsteimer 1963]
is a well-studied problem dealing with optimal placement of facilities in a plane,
network, or multidimensional space. The facilities must be positioned to optimize
some sort of distance to the “demand points”—most likely resembling consumers
of the items being produced at the facility. In [Shakarian et al. 2010], the authors
outline numerous differences between facility location and geospatial abduction
(difference in optimality criteria, use of feasibility predicate, non-convexitivity of
covers, etc.), even when no adversaries are present. However, facility location with
adversaries has not really been studied—and that is the focus of this paper.

Similar motivation exists in the field of (multi-)agent security, where the central
idea is to protect a set of targets from adversaries. These games are typically
modeled on top of graphs, with agents and adversaries competing to protect or
penetrate a set of targets. [Paruchuri et al. 2006] represents the adversary’s behavior
through a probability distribution over states, indicating the probability of that
state being targeted; no real graph structure is considered, much less a geospatial
model. [Agmon et al. 2008] and [Agmon et al. 2009] consider an environment with
more hidden information, and attempt to detect adversarial penetrations across
the routes (represented as paths on a graph) of patrolling agents. [Pita et al.
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2009] solves Stackelberg (leader-follower) games under the assumption of bounded
reasoning rationality, again on a graph network. [Dickerson et al. 2010] explores
protecting dynamic targets from rational adversaries on real-world road networks.

8. CONCLUSION

Geospatial abduction was introduced in [Shakarian et al. 2010] and used to infer a set
of partner locations from a set of observations, given a feasibility predicate and reals
α ≥ 0, β > 0. [Shakarian et al. 2010] developed exact and approximate algorithms
for GAPs. In particular, no adversary was assumed to exist there. In this paper,
we study the case of geospatial abduction where there is an explicit adversary who
is interested in ensuring that the agent does not detect the partner locations. This
is the case with real world serial killers and insurgents who launch IED attacks.
We develop a game-theoretic framework for reasoning about the best strategy that
an adversary might adopt (based on minimizing the adversary’s detriment) and the
best strategy that the agent could adopt to counter the adversary’s strategy.

We consider the adversarial geospatial abduction problem to be a two player
game—an agent (“good” guy) and an adversary (“bad” guy). The adversary is at-
tempting to cause certain observable events to occur (e.g., murders or IED attacks)
but make it hard to detect the associated set of partner locations (e.g., location
of the serial killers home/office, or the locations of weapons caches supporting the
IED attacks). We use an axiomatically-defined “reward function” to determine how
similar two explanations are to each other. We study the problems of finding the
best response for an agent and adversary to a mixed strategy (based on a probabil-
ity distribution over explanations) of the opponent. We formalize these problems as
the “optimal adversarial strategy” (OAS) and “maximal counter-adversary strat-
egy” (MCA) problem. We show both OAS and MCA to be NP-hard and provide
exact and approximate methods for solving them. When reasoning about the best
possible strategy for the adversary, we present a mixed integer programming based
algorithm and show that the MILP in question can be greatly reduced through
the elimination of many variables using the concept of a δ-core explanation. Our
experiments are carried out on real-world data about IED attacks over a period of
21 months in Baghdad.

When reasoning about the best possible strategy for the adversary, we present
two algorithms. The MCA-LS algorithm is very general and leverages submodular-
ity of reward functions. The MCA-GREEDY-MONO algorithm assumes the reward
function is monotonic. Both MCA-LS and MCA-GREEDY-MONO are highly ac-
curate and have very reasonable time frames. Though MCA-GREEDY-MONO is
slightly faster than MCA-LS, we found that on every single run, MCA-LS found the
exact optimal benefit even though its theoretical lower bound approximation ratio
is only 1/3—a truly remarkable performance. As MCA-LS does not require any
additional assumptions and as its running time is only slightly slower than that of
MCA-GREEDY-MONO, we believe this algorithms has a slight advantage.
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Console, L., Sapino, M. L., and Dupré, D. T. 1995. The Role of Abduction in Database View

Updating. Journal of Intelligent Information Systems 4, 3, 261–280.

Dickerson, J., Simari, G., Subrahmanian, V., and Kraus, S. 2010. A Graph-Theoretic Ap-

proach to Protect Static and Moving Targets from Adversaries. In Proc. 9th Int. Conf. on

Autonomous Agents and Multiagent Systems (AAMAS-2010). 299–306.

do Lago Pereira, S. and de Barros, L. N. 2004. Planning with abduction: A logical framework
to explore extensions to classical planning. In Adv. in Artificial Intelligence (SBIA). 106–118.

Dyer, M., Goldberg, L. A., Greenhill, C., and Jerrum, M. 2000. On the relative complexity

of approximate counting problems. Tech. rep., Coventry, UK, UK.

Feige, U. 1998. A threshold of ln n for approximating set cover. J. ACM 45, 4, 634–652.

Feige, U., Mirrokni, V. S., and Vondrak, J. 2007. Maximizing non-monotone submodular

functions. In FOCS ’07: Proceedings of the 48th Annual IEEE Symposium on Foundations of

Computer Science. IEEE Computer Society, Washington, DC, USA, 461–471.

Hunt, III, H. B., Marathe, M. V., Radhakrishnan, V., and Stearns, R. E. 1998. The
complexity of planar counting problems. SIAM J. Comput. 27, 4, 1142–1167.

Johnson, D. 1982. The NP-Completeness Column: An Ongoing Guide. Journal of Algo-

rithms 3, 2, 182–195.

Kakas, A. C. and Mancarella, P. 1990. Database updates through abduction. In VLDB90.

Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinator-
ica 4, 4, 373–395.

Leyton-Brown, K. and Shoham, Y. 2008. Essentials of Game Theory: A Concise, Multidisci-

plinary Introduction. Morgan and Claypool Publishers.

Nemhauser, G., Wolsey, L., and Fisher, M. 1978. An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming 14, 265–294.

Pagnucco, M. 1996. The role of abductive reasoning within the process of belief revision. Ph.D.

thesis, Basser Department of Computer Science, University of Sydney, Australia.
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A. MCA WHERE THE SOLUTION IS AN EXPLANATION

In Section 5 we study the MCA problem, but do not require the solution to be an
explanation. In fact, it may often not be an explanation. Consider the following
example.

Example A.1. Suppose that the drug-enforcement agents from Example 5.1 con-
sider the set B ≡ {p45, p48, p50}. Note that p45 can be partnered with observations
o1, o2, p48 can be partnered with observations o3, o5 and p50 can be partnered with
observation o5. Hence, there is no element in B that can be partnered with o4—
which means it is not an explanation. However, let us compute the expected agent
benefit. Computing the reward (w.r.t. crf) for each explanation function from
Example 3.3, we get the following:

crfdist(ef1(O, 3), {p45, p48, p50}) = 1

crfdist(ef2(O, 3), {p45, p48, p50}) = 1

Hence, the expected agent benefit in this case must be 1—which is optimal (expected
agent benefit must be in the range [0, 1]). Therefore, we have shown that we can
have an optimal solution to MCA that is not an explanation in our example.

We can also construct an instance of the MCA problem where there is no optimal
solution that is also explaining. Stepping away from our running example for a
moment consider the following case of a geospatial abduction problem. Consider
observations o1, o2. Let p1, p2, p3, p4, p5, p6 be the only feasible points, the first two
being only partnered with o1 and the rest being only partnered with o2. Consider an
adversary who will pick one of the following explanations as a strategy with uniform
probability:

—{p1, p3}
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—{p1, p4}
—{p2, p5}
—{p2, p6}
Let us consider the reward function crf with dist = 0 and B = 2. Therefore, the
maximal counter-adversary strategy would be the set {p1, p2}—this would give an
expected agent benefit of 0.5. However, this set is not an explanation—observations
o2 is not covered. If we require the counter-adversary strategy to be an explanation,
the set {p1, p3} would be optimal. However, the expected agent benefit would only
be 0.375 in this case.

Hence, we shall also consider a the special case of a maximal counter-adversary
strategy that is also an explanation.

Definition A.1 Maximal Explaining Counter-Adversary Strategy. Given
a set of observations, O, reward function rf and explanation function distribution
efd (of explanation for O), a maximal explaining counter-adversary strategy,
B, an explanation for O such that EXBrf (B, efd) is maximized.

Again, for the case in which the reward function is monotonic, we shall include
an cardinality requirement B for the set B.

We formalize the optimization problem associated with finding a maximal ex-
plaining counter-adversary strategy.

MCA-Exp
INPUT: Space S, feasibility predicate feas, real numbers α, β, set of observations
O, natural numbers k,B, reward function rf , and explanation function distribution
efd.
OUTPUT: Maximal explaining counter-adversary strategy B.

The below corollary shows us that MCA-Exp is NP-hard.

Corollary A.1. MCA-Exp is NP-hard.

We note that the proof of the above corollary follows directly from the result of
Theorem 5.1. The associated problem is in the complexity class NP—this follows
trivially from the membership results for the problem of finding an explanation and
the MCA problem.
An Exact Algorithm For MCA-Exp. A naive, exact, and straightforward
approach to the MCA-Exp problem would simply consider all subsets of L of car-
dinality ≤ kB and pick the one which maximizes the expected agent benefit and is
an explanation. This is the same as the naive approach we presented for MCA.
Obviously, this approach has a complexity O(

(|L|
kB

)
) and is not practical. This is

unsurprising as we showed this to be an NP-complete problem.

The following theorem shows that this problem reduces to the maximization
of a submodular function over a uniform matroid—which can imply a practical
algorithm to address this problem.

Theorem A.1. MCA-Exp reduces in polynomial time to the maximization of
a submodular function w.r.t. a uniform matroid.
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Proof Sketch. Given an instance of MCA-Exp as follows:
Space S, feasibility predicate, feas, real numbers α, β, set of observations, O, natural
numbers k, kB, reward function rf , and explanation function distribution efd, we
construct an instance of the maximization of a submodular function as follows (L
is the set of all possible partners).

(1 ) Let M be a uniform matroid consisting of all subsets of L of cardinality ≤ kB
(2 ) Let function fsubmod : 2L → < be defined as follows:

fsubmod(B) = EXBrf (B, efd)+2·|{o ∈ O|∃p ∈ B s.t. (d(o, p) ∈ [α, β])∧(feas(p))}|

In the remainder of the proof proceeds as follows. First, we show that fsubmod(B)
is submodular. Then, we prove that if there is a solution to MCA-Exp then the
submodular maximization problem returns a value greater than or equal to 2 · |O|.
Then we show that if the submodular maximization problem returns a value greater
than or equal to 2 · |O| then there is a solution to MCA-Exp. Finally, we complete
the proof by showing that if MCA-Exp returns a value b, then the submodular
maximization problem returns a value b + 2 · |O| and that if the maximization of
fsubmod returns value b, then MCA-Exp returns a value b− 2 · |O|. �

Although, due to the construction of Theorem A.1 an 1
α approximation of fsubmod

does not necessarily yield an 1
α approximation of MCA-Exp, we still can apply

the local search or greedy algorithms as a heuristic by simply replacing calls to the
function EXBrf with calls to fsubmod.

B. PROOFS

B.1 Proof of Lemma 2.1

#GCD is #P-complete and there is no FPRAS for #GCD unless NP = RP.

Proof. CLAIM 1: #GCD is in #P.
Clearly, as the total number of “yes” answers is bounded by 2K , this problem is in
the complexity class #P.
CLAIM 2: #GCD is #P-hard.
We have to show a parsimonious or weakly parsimonious reduction from a known
#P -complete problem. In [Hunt et al. 1998], the authors show that the count-
ing version of the dominating set problem (#DOMSET) is #P-complete based on
a weakly parsimonious reduction from the counting version of vertex cover. It is
important to note that the construction used in this proof uses a graph with a
maximum degree of three. This shows that the counting version of the dominat-
ing set problem on a graph with a maximum degree of three is also #P-hard as
well. In [S. Masuyama 1981], the authors show a parsimonious reduction from the
dominating set problem (with maximum degree of three) to GCD. Hence, as the
reduction is parsimonious, and the associated counting problem is #P -hard, then
the statement of the claim follows.
CLAIM 3: There is no FPRAS for #GCD unless NP = RP.
By Lemma 2.1 and [Hunt et al. 1998], consider the following chain of polynomial-
time parsimonious or weakly parsimonious reductions:

#SAT → #3CNFSAT → #Pl3CNFSAT
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#Pl3CNFSAT → #Pl1Ex3SAT → #Pl1Ex3MonoSAT

#Pl1Ex3MonoSAT → #PlV C → #Pl3DS → #GCD

Hence, as all of the reductions are PTIME, parsimonious or weakly parsimonious,
and planarity preserving (for planar problems), by the results of [Dyer et al. 2000],
the statement follows.

B.2 Proof of Theorem 2.2

The counting version of k-SEP is #P-Complete and has no FPRAS unless NP=RP.

Proof. Follows directly from the fact that the number of solutions is bounded
by 2k (membership) and hardness follows directly from the parsimonious reduction
shown in [Shakarian et al. 2010] and Lemma 2.1.

B.3 Proof of Proposition 3.1

If a reward function meets axioms 1 and 2, then then the incremental increase
obtained by adding a new element decreases on a superset. Formally:
If B ⊆ B′, and point p ∈ S s.t. p /∈ B and p /∈ B′, then rf(A,B ∪ {p})− rf(A,B) ≥
rf(A,B′ ∪ {p})− rf(A,B′).

Proof. Suppose, BWOC, for B ⊆ B′, and point p ∈ S s.t. p /∈ B and p /∈ B′,
then

rf(A,B ∪ {p})− rf(A,B) < rf(A,B′ ∪ {p})− rf(A,B′)

We know that B′ ∪ {p} ≡ B′ ∪ (B ∪ {p}). Hence:

rf(A,B ∪ {p})− rf(A,B) < rf(A,B′ ∪ (B ∪ {p}))− rf(A,B′)

Also, we know that B ≡ (B ∪ {p}) ∩ B′, so we get:

rf(A,B ∪ {p})− rf(A, (B ∪ {p}) ∩ B′) < rf(A,B′ ∪ (B ∪ {p}))− rf(A,B′)

Which leads to:

rf(A,B′) + rf(A,B ∪ {p})− rf(A, (B ∪ {p}) ∩ B′) < rf(A,B′ ∪ (B ∪ {p}))

Which is a clear violation of Axiom 2, hence we have a contradiction.

B.4 Proof of Proposition 3.2

prf is a valid reward function.

Proof. In this proof, we define pt1(A,B), pt2(A,B) as follows:

pt1(A,B) =
|{p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ dist}|

2 · |A|

pt2(A,B) =
|{p ∈ B| 6 ∃p′ ∈ A s.t. d(p, p′) ≤ dist}|

2 · |S|

Hence, prfdist(A,B) = 0.5+pt1(A,B)−pt2(A,B). As we know the maximum value
of both pt1(A,B), pt2(A,B) is 0.5, we know that prf is in [0, 1]. As pt1(A,A) = 0.5
and pt2(A,A) = 0, then Axiom 1 is also satisfied. Consider crf (Definition 3.4).
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Later, in Proposition 3.3, we show that this function is submodular, meeting Ax-
iom 2. By Definitions 3.4, we can easily show that pt1(A,B) = 0.5 · crfdist(A,B).
As pt1(A,B) is a positive linear combination of submodular functions, it is also sub-
modular. Now consider pt2(A,B). Any element added to any set B has the same
effect—it either lowers the value by 1

2·|S| or does not affect it—hence it is trivially

submodular. Therefore, it follows that prf is submodular as it is a positive-linear
combination of submodular functions.

B.5 Proof of Proposition 3.3

crf is a valid, monotonic reward function.

Proof. CLAIM 1: crf satisfies reward Axiom 1.
Clearly, if B ≡ A, then the numerator is |A|, which equals the denominator.

CLAIM 2: crf satisfies reward function Axiom 2.
Suppose, BWOC, there exists explanations B,B′ s.t. B ∪ B′ is an explanation
and crfdist(A,B ∪ B′) > crfdist(A,B) + rf(A,B′) − rf(A,B ∩ B′). Therefore,
card({p ∈ A|∃p′ ∈ B ∪ B′ s.t. d(p, p′) ≤ dist}) is greater than card({p ∈ A|∃p′ ∈
B s.t. d(p, p′) ≤ dist}) + card({p ∈ A|∃p′ ∈ B′ s.t. d(p, p′) ≤ dist}) − card({p ∈
A|∃p′ ∈ B ∩ B′ s.t. d(p, p′) ≤ dist}). We have a contradiction; indeed, by basic set
theory we see that both sides of this strict inequality are actually equal.

CLAIM 3: crf is zero-starting.
Clearly, if B ≡ ∅, the numerator must be 0, the statement follows.

CLAIM 4: crf is monotonic.
Suppose, BWOC, there exists B ⊆ B′ s.t. rf(A,B) > rf(A,B′). Then card({p ∈
A|∃p′ ∈ B s.t. d(p, p′) ≤ dist}) > card({p ∈ A|∃p′ ∈ B′ s.t. d(p, p′) ≤ dist}).
Clearly, this is not possible as B ⊆ B′ and we have a contradiction.

B.6 Proof of Proposition 3.4

frf is a valid, monotonic reward function.

Proof. CLAIM 1: frf satisfies all reward function axioms (i.e., is valid).

Bounds. We must show rf(A,B) ∈ [0, 1]. For each point p ∈ A, let lBp =

minp′∈B d(p, p′)2. By the definition of the distance function d, we know 0 ≤ lBp <∞.

Now let function f(lBp ) = 1
|A|+minp′∈B d(p,p

′)2 = 1
|A|+lBp

. Since 0 ≤ lBp < ∞, we see

0 < f(lBp ) ≤ 1
|A| . Clearly, the summation over |A| points p ∈ A yields an answer in(

0, |A| · 1
|A|

]
= (0, 1] ⊂ [0, 1].

Axiom 1. If B ≡ A, for each p ∈ A, there exists p′ ∈ B s.t. d(p, p′) = 0. Hence,
by the definition of frf , frf(A,B) = 1 in this case.

Axiom 2. We must show that our version of the triangle inequality holds, that is
rf(A,B ∪ B′) ≤ rf(A,B) + rf(A,B′)− rf(A,B ∩ B′). From above, rf(A,B ∪ B′) =∑
p∈A f(lB∪B

′

p ). For each point p ∈ A, let p∗ = argminp′∈B∪B′d(p, p′)2. Without

loss of generality, assume p∗ ∈ B, then lBp = lB∪B
′

p thus f(lBp ) = f(lB∪B
′

p ). Since

p∗ ∈ B, we have p∗ ∈ B ∩ B′ or p∗ ∈ B ∩ B̄′.
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If p∗ ∈ B ∩ B′:. Then f(lB∩B
′

p ) = f(lBp ). However, since p∗ ∈ B′ we have, as

above, f(lB
′

p ) = f(lBp ) = f(lB∪B
′

p ). Thus∑
p∈A

[
f(lBp ) + f(lB

′

p )− f(lB∩B
′

p )
]

=
∑
p∈A

[
f(lB∪B

′

p ) + f(lB∪B
′

p )− f(lB∪B
′

p )
]

=
∑
p∈A

f(lB∪B
′

p )

So rf(A,B ∪ B′) = rf(A,B) + rf(A,B′)− rf(A,B ∩ B′) for this case.
If p∗ ∈ B ∩ B̄′:. Then, from above, we are still guaranteed that f(lBp ) = f(lB∪B

′

p ),
thus rf(A,B ∪ B′) = rf(A,B). This reduces our problem to showing rf(A,B′) −
rf(A,B∩B′) ≥ 0. However, rf is monotonic (shown below); since B∩B′ ⊆ B′, then
rf(A,B ∩ B′) ≤ rf(A,B′) and our claim holds.
A similar proof holds for the case p∗ ∈ B′.

CLAIM 2: frf is monotonic and zero-starting. The property of zero-starting follows
directly from the definition of frf .

By way of contradiction, assume there is some B ⊂ B′ s.t. rf(A,B) > rf(A,B′).
Then, as above,

∑
p∈A f(lBp ) >

∑
p∈A f(lB

′

p ). However, since B ⊂ B′, we have lBp ≥
lB
′

p for each p ∈ A. Similarly, f(lBp ) ≤ f(lB
′

p ) and thus
∑
p∈A f(lBp ) ≤

∑
p∈A f(lB

′

p ),
which is our contradiction.

B.7 Proof of Proposition 3.5

wrf is a valid, monotonic reward function.

Proof. CLAIM 1: wrf satisfies all reward function axioms (i.e., is valid).

Domain. We must show wrf (W,dist)(A,B) ∈ [0, 1]. As (B ∩ A) ⊆ A and W only
returns positive values, this function can only return values in [0, 1].

Axiom 1. If B ≡ A, then for each p ∈ A, there exists p′ ∈ B s.t. d(p, p′) = 0.
This causes the numerator to equal

∑
p∈BW (p). As B ≡ A, the is equivalent to

the denominator, so wrf(A,B) = 1 in this case.

Axiom 2. We must show the inequality wrf (W,dist)(A,B∪B′) ≤ wrf (W,dist)(A,B)+
wrf (W,dist)(A,B′)−wrf (W,dist)(A,B∩B′). This proof is similar to the proof of Ax-
iom 2 in Proposition 3.3.

CLAIM 2: wrf is monotonic and zero-starting.
The property of zero-starting if shown by when B ≡ ∅, the numerator must be 0,
hence, wrf(A, ∅) = 0. By way of contradiction, assume there is some B ⊂ B′ s.t.
wrf (W,dist)(A,B) > wrf (W,dist)(A,B′). Then∑

{p∈A|∃p′∈B s.t. d(p,p′)≤dist}W (p)∑
p′∈AW (p′)

>

∑
{p∈A|∃p′∈B′ s.t. d(p,p′)≤dist}W (p)∑

p′∈AW (p′)

Since B ⊂ B′, we have ∑
{p∈A|∃p′∈B s.t. d(p,p′)≤dist}W (p)∑

p′∈AW (p′)
>

∑
{p∈A|∃p′∈B s.t. d(p,p′)≤dist}W (p)∑

p′∈AW (p′)
+

∑
{p∈A′|∃p′∈(B′∩B) s.t. d(p,p′)≤dist}W (p)∑

p′∈AW (p′)
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Where A′ ≡ {p ∈ A| 6 ∃p′ ∈ B s.t. d(p, p′) ≤ dist}. Hence,

0 > wrf (W,dist)(A′,B′ ∩ B)

Which violates the first axiom, which was shown to apply to wrf (W,dist) by Claim
1—a contradiction.

B.8 Proof of Theorem 4.1

OAS is NP-hard.

Proof. CONSTRUCTION: Given an input 〈P, b,K〉 of GCD, we create an in-
stance of OAS in PTIME as follows:

—Set S to be a grid large enough that all points in P are also points in S.

—feas(p) = TRUE iff p ∈ P
—α = 0, β = b, O ≡ P , k = |P |
—Let rf(E1, E2) = 1 if E1 ⊆ E2, and |E1||S| otherwise.

This satisfies reward axiom 1 as E1 ⊆ S, axiom 2 by definition, and the satisfac-
tion of axiom 3, along with monotonicity (w.r.t. the second argument) can easily
be shown by the fact that explanations that are not supersets of E1 (let us call
them E2, E3) that rf(E1, E2) = rf(E1, E3).

—Let ef(O,num) that returns set O when num = |O| and is otherwise undefined.
Let efd(ef) = 1 and 0 otherwise.

CLAIM 1: If A as returned by OAS has a cardinality of ≤ K, then the answer to
GCD is “yes”.
Suppose, BWOC, that card(A) ≤ K and GCD answers “no.” This is an obvious
contradiction as A is a subset of P (by how feasibility was defined) where all ele-
ments of P are within a radius of b and A also meets the cardinality requirement
of GCD.

CLAIM 2: If the answer to GCD is “yes” then A as returned by OAS has a
cardinality of less than or equal to K.
Suppose, BWOC, GCD returns “yes” but A returned by OAS has a cardinality
greater than K. By the result of GCD, there exists a set P ′ of cardinality K s.t.
each point in P (hence O) is of a distance ≤ β from a point in P ′. This, along with
the definition of feasibility, make P ′ a valid K-explanation for O. We note that
ef(P, |P |) = P and that efd assigns this reward function a probability of one. Hence,
the expected adversarial detriment for any explanation A′ is rf(A′, P ). As P ′ is an
explanation of cardinality less than A, it follows that rf(P ′, P ) < rf(A, P )—which
is a contradiction.

B.9 Proof of Theorem 4.2

If the reward function is computable in PTIME, then OAS-DEC is NP-complete.

Proof. NP-hardness follows from Theorem 4.1. To show NP-completeness, a
witness simply consists of A. We note that, as the reward function is computable
in PTIME, finding the expected adversarial detriment for A and comparing it to
R can also be accomplished in PTIME.
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B.10 Proof of Theorem 4.3

Finding the set of all adversarial optimal strategies that provide a “yes” answer to
OAS-DEC is #P-hard.

Proof. Let us assume that we know one optimal adversarial strategy and can
compute the expected adversarial detriment from such a set—let us call this value
D. Given an instance of GCD, we can create an instance of OAS-DEC as in
Theorem 4.1, where we set R = D. Suppose we have an algorithm that produces
all adversarial strategies. If we iterate through all strategies in this set, and count
all strategies with a cardinality ≤ K (the K from the instance of GCD), we have
counted all solutions to GCD—thereby solving the counting version of GCD, a #P-
hard problem that is difficult to approximate by Lemma 2.1.

B.11 Proof of Proposition 4.2

Setting up the wrf/frf Constraints can be accomplished in O(|EF| ·k · |O| ·∆) time
(provided the weight function W can be computed in constant time).

Proof. First, we must run POSS-PART, which requires O(|O| ·∆) operations.
This results in a list of size O(|O| · ∆). For each explanation function, ef, we
must compare every element in L with each element of ef(O), which would require
O(k·|O|·∆) time. As there are |EF| explanation functions, the statement follows.

B.12 Proof of Proposition 4.3

The wrf , frf Constraints have O(|O| ·∆) variables and 1 + |O| constraints.

Proof. As list L is of size O(|O| ·∆), and there is one variable for every element
of L, there are O(|O| ·∆) variables. As there is a constraint for each observation,
plus a constraint to ensure the cardinality requirement (k) is met, there are 1 + |O|
constraints.

B.13 Proof of Proposition 4.1

Given wrf or frf Constraints:

(1) Given set A ≡ {p1, . . . , pn} as a solution to OAS with wrf(frf), if variables
X1, . . . , Xn—corresponding with elements in A are set to 1—and the rest of
the variables are set to 0, the objective function of the constraints will be
minimized.

(2) Given the solution to the constraints, if for every Xi = 1, we add point pi to
set A, then A is a solution to OAS with wrf(frf).

Proof. PART 1: Suppose BWOC, that there is a set of variables X ′1, . . . , X
′
m

that is a solution to the constraints s.t. the value of the objective function is less
than if variables X1, . . . , Xn were used. Then, there are points p′1, . . . , p

′
m in set L

that correspond with the Xi’s s.t. they cover all observations and that the expected
adversarial detriment is minimized. Clearly, this is a contradiction.
PART 2: Suppose BWOC, that there is a set of points A′ s.t. the expected adver-
sarial detriment is less than A. Clearly, A is a valid explanation that minimizes
the expected adversarial detriment by the definition of the constraints—hence a
contradiction.
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B.14 Proof of Proposition 4.4

The wrf/frf constraints can be transformed into a purely linear-integer form in
O(|O|2 ·∆) time.

Proof. Obviously, in both sets of constraints, the denominator of the objective
function is strictly positive and non-zero. Hence, we can directly apply the Charnes-
Cooper transformation [Charnes and Cooper 1962] to obtain a purely integer-linear
form. This transformation requires O(number of variables×number of constraints).
Hence, the O(|O|2 ·∆) time complexity of the operation follows immediately from
Proposition 4.3.

B.15 Proof of Proposition 4.5

Given the constraints of Definition 4.3 or Definition 4.4, if we consider the linear
program formed by setting all Xi variables to be in [0, 1], then the value returned by
the objective function will be a lower bound on the value returned by the objective
function for the mixed integer-linear constraints, and this value can be obtained in
O(|O|3.5 ·∆3.5) time.

Proof. CLAIM 1: The linear relaxation of Definition 4.3 or Definition 4.4 pro-
vides a lower bound on the objective function value for the full integer-linear con-
straints.
As an optimal value returned by the integer-linear constraints would also be a so-
lution, optimal w.r.t. minimality, for the linear relaxation, the statement follows.
CLAIM 2: The lower bound can be obtained in O(|L|3.5) time.
As there is a variable for each element of L, the size of L is O(|O| · ∆), and the
claim follows immediately from the result of [Karmarkar 1984].

B.16 Proof of Porposition 4.6

Solving Definition 4.3 or Definition 4.4, where for some subset L′ ⊂ L, every variable
Xi associated with some pi ∈ L′ is set to 0, the resulting solution will be an upper
bound on the objective function for the constraints solved on the full set of variables.

Proof. Suppose, BWOC, that the solution for the objective function on the
reduced MILP would be less than the actual MILP. Let X1, . . . , Xn be the variables
set to 1 for the reduced MILP in this scenario. We note, that setting the same
variables to the full MILP would also be a solution, and could not possibly be less
than a minimal solution—hence a contradiction.

B.17 Proof of Theorem 4.4

If A is an optimal adversarial strategy, there exists a core explanation Ecore ⊆ A.

Proof. CLAIM 1: For any explanation E , there is an explanation E ′ ⊆ E s.t.
there are no two elements p, p′ ∈ E ′ such that ∀o ∈ O s.t. o, p are partners, then
o, p′ are also partners.
Consider E . If it does not already have the quality of claim 1, then by a simple
induction, we can remove elements until the resulting set does.
CLAIM 2: If A is an optimal adversarial strategy, there is a no pj ∈ L − A s.t.
there exists pi ∈ A where constj < consti and ∀o ∈ O s.t. o, pi are partners, then
o, pj are also partners.
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Suppose, BWOC, there is a pj ∈ L−A s.t. there exists pi ∈ A where constj < consti
and ∀o ∈ O s.t. o, pi are partners, then o, pj are also partners.. Consider the

set (A − {pi} ∪ pj . This set is still an explanation and EXDrf (efd, (A − {pi} ∪
pj) < EXDrf (efd,A)—which would be a contradiction as A is an optimal adversarial
strategy.
CLAIM 3: There is an explanation E ⊆ A s.t. condition 1 of Definition 4.5 holds.
Consider the set E ≡ {pi ∈ A| 6 ∃pj ∈ A s.t. (constj < consti) ∧
(∀o ∈ O s.t. o, pi are partners, then o, pj are also partners)}. By claim 1, this set
is contained in an OAS. Note that any observation covered by a point in A− E is
covered by a point in E , so E is an explanation. Further, by the definition of E and
claim 2, this set meets condition 1 of Definition 4.5.
CLAIM 4: Set E from claim 3 is a core explanation.
By claim 3, E is a valid explanation and meets condition 1 of Definition 4.5.

B.18 Proof of Theorem 4.5

If an oracle that for a given k, O, and efd returns a core explanation Ecore that
is guaranteed to be a subset of the optimal adversarial strategy associated with k,
O, and efd, then we can find an optimal adversarial strategy in O(∆ · |O| · log(∆ ·
|O|) + (k − |Ecore|)2) time.

Proof. CLAIM 1: For explanation E and point pi ∈ L − E , EXDrf (efd, E) >
EXDrf (efd, E ∪ {pi}) iff consti < EXDrf (efd, E).
If: Suppose consti < EXDrf (efd, E). Let EXDrf (efd, E) = a

b . Hence, EXDrf (efd, E ∪
{pi}) = a+consti

b+1 . Suppose, BWOC, EXDrf (efd, E) ≤ EXDrf (efd, E ∪ {pi}). Then,
a
b ≤

a+consti
b+1 . This give us a · b+a ≤ a · b+ consti · b, which give us EXDrf (efd, E) ≤

consti—a contradiction.
Only-if: Suppose EXDrf (efd, E) > EXDrf (efd, E ∪ {pi}). Let EXDrf (efd, E) = a

b .
Hence, a

b >
a+consti
b+1 , which proves the claim.

CLAIM 2: For explanation E and points pi, pj ∈ L − E if consti < constj , then

EXDrf (efd, E ∪ {pi}) > EXDrf (efd, E ∪ {pj}).
Straightforward algebra similar to claim 1.
CLAIM 3: Algorithm BUILD-STRAT returns an optimal adversarial strategy.
We know that Ecore must be in the optimal adversarial strategy. Hence, we suppose
BWOC that for the remaining elements there is a better set of elements—cardinality
between 0 and k−|Ecore| s.t. the expected adversarial detriment is lower. However,
this contradicts claims 1-2.
CLAIM 4: Algorithm BUILD-STRAT runs in time O(∆ · |O| · log(∆ · |O|) + (k −
|Ecore|)2).
Sorting the set L−Ecore can be accomplished in O(∆ · |O| · log(∆ · |O|)) time. The
remainder can be accomplished in O((k − |Ecore|)2) time.

B.19 Proof of Lemma 4.6

(1) If explanation E is a core explanation, then E ⊆ L∗∗.
(2) If explanation E is δ-core optimal, then E ⊆ L∗∗.
(3) If for some natural number δ, there exists an explanation of size δ, then there

exists a δ-core optimal explanation E s.t. E ⊆ L∗.
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Proof. Proof of Part 1:
Suppose, BWOC, E is a core explanation and E 6⊆ L∗∗. Then, there is some element
pi ∈ E ∩ (L − L∗∗). Moreover, by the definition of a core explanation, there does
not exist pj ∈ L such that ∀o ∈ O s.t. o, pi are partners, then o, pj are also partners
and constj < consti. This would also put the element in L∗∗ by the definition of
that set—which is a contradiction.

Proof of Part 2:
Suppose, BWOC, there exists explanation E s.t. for some δ, E is δ-core optimal
and E 6⊆ L∗∗. Then, there exists some pi ∈ E ∩ (L−L∗∗). By the definition of L∗∗,
there exists a pj ∈ L∗∗ s.t. constj < consti and ∀o ∈ O s.t. o, pi are partners, then
o, pj are also partners. Hence, the set (E − {pi}) ∪ {pj} is also an explanation of
size δ and has a lower expected detriment. From the definition of δ-core optimal,
this is a contradiction.

Proof of Part 3:
Suppose, BWOC, for some δ s.t. there is an explanation of this size, there does not
exist a δ-core optimal explanation E s.t. E ⊆ L∗. By the proof of Part 2, we know
that a δ-core optimal explanation must be within L∗∗. Further, by the definition
of L∗, for any point pi ∈ L∗∗ − L∗, there exists point pj ∈ L∗ s.t. constj = consti
and ∀o ∈ O s.t. o, pi are partners, o, pj are also partners. Hence, for some δ-core
explanation that is not a subset of L∗, any pi ∈ E ∩ (L∗∗ − L∗) can be replaced
by some pj ∈ L∗, and the resulting set is still an explanation, optimal, and of
cardinality δ—a contradiction.

B.20 Proof of Lemma 4.7

Given an optimal adversarial strategy, A, there exists some δ ≤ |A| s.t. there is a
δ-core optimal explanation that is a subset of A (using the crf reward function).

Proof. By Theorem 4.4, A must contain a core explanation and by Lemma 4.6,
any core explanation must be a subset of L∗∗. Therefore, A ∩ L∗∗ is a core ex-
planation. Let B = A − (A ∩ L∗∗) and δ = |A ∩ L∗∗|. Suppose A ∩ L∗∗ is not
δ-core optimal. Then there is some set Q that is a subset of L∗∗, is disjoint from
A∩L∗∗, and is δ-core optimal. Note that Q∩B = ∅ as Q must be a subset of L∗∗

and B is not. Hence, since it has a lower expected detriment than A ∩ L∗∗ and
|Q ∪B| = |A|, the set Q ∪B will have a lower expected detriment than A—which
is clearly a contradiction as A is an OAS.

B.21 Proof of Proposition 4.7

Given set L, set L∗ and L∗∗ can be found in O(|L|2 · |O|2) time.

Proof. Given sets L,O, set L∗∗ can be found with the following steps.

(1) For each pi ∈ L, let Oi be the subset of O that can be partnered with pi

(2) For each pi ∈ L, let elimi be a boolean variable set to FALSE

(3) For each pi ∈ L∗∗, do the following

(a) If not elimi
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i. For each pj ∈ L∗∗ − {pj}, if Oj ⊆ Oi and consti < constj then set
elimj = TRUE

(4) Return the set {pi ∈ L|elimi = FALSE}.

Clearly, the correctness of the above procedure follows directly from the definition
of set L∗∗. Further, the complexity of the operation is O(|L|2 · |O|2), as we have
two nested loops, each iterating at most |L| times and a comparison where for some
pi, pj , we examine the elements of Oi,Oj . To determine the set L∗, we can simply
adjust line 3(a)i of the above procedure and change the < to a ≤. The correctness
again follows from the definition and the time complexity remains the same.

B.22 Proof of Proposition 4.8

The δ-core constraints require O(∆ · |O|) variables and 1 + |O| constraints.

Proof. Mirrors proposition 4.1.

B.23 Proof of Proposition 4.9

Given δ-core constraints:

(1) Given set δ-core optimal explanation Ecore ≡ {p1, . . . , pn}, if variablesX1, . . . , Xn—
corresponding with elements in A are set to 1—and the rest of the variables
are set to 0, the objective function of the constraints will be minimized.

(2) Given the solution to the constraints, if for every Xi = 1, we add point pi to
set Ecore, then Ecore is a δ-core optimal solution.

Proof. From Lemma 4.6, we know that for any δ s.t. there exists and explana-
tion of that size, there is a δ-core explanation E that is a subset of L∗. Hence, the
rest of the proof mirrors the proof of Proposition 4.1

B.24 Proof of Theorem 5.1

MCA is NP-hard.

Proof. Consider an instance of GCD consisting of set of points P , integer b,
and integer K. We construct an instance of MCA as follows:
CONSTRUCTION:

—Set S to be a grid large enough that all points in P are also points in S. We will
use M,N to denote the length and width of S.

—feas(p) = TRUE iff p ∈ P
—α = 0, and β =

√
M2 +N2, O ≡ P , k = K, and B = K

—Let rf(E1, E2) be crf where dist = b.

—Let functions ef1, . . . , ef|P | be explanation functions, with each efi corresponding
to a unique pi ∈ P . Let efi(O, num) = {pi} for all num > 0. Note that each
pi is an explanation for the set P as it is of cardinality ≤ k, is feasible, and is
guaranteed to be with [α, β] from all other points in P as [α, β] = [0,

√
M2 +N2]

—Let efd(efi) = 1
|P | for all i.

CLAIM 1: crfdist({pi},B) = 1 iff there exists p′ ∈ B s.t. a disc of radius b (note
b = dist) centered on p′ covers pi. crfdist({pi},B) = 0 iff there does not exist p′ ∈ B
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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s.t. a disc of radius b centered on p′ covers pi.
Follows directly from the definition of crf .

CLAIM 2: If the expected agent benefit is 1, then for all i, crfdist({pi},B) = 1.
Suppose, BWOC, that the expected agent benefit is 1 and there exists some pi s.t.
crfdist({pi},B) 6= 1. Then, for a singleton set, crfdist({pi},B) = 0. Hence, for the
efi associated with pi, crf

dist(efi(O),B) = 0. So, by the definition of expected agent
benefit, it is not possible for the expected agent benefit to be 1—a contradiction.

CLAIM 3: If MCA returns an optimal counter-adversary strategy with an expected
expected agent benefit of 1, then GCD must also return “yes.”
Suppose, BWOC, MCA returns a strategy with an expected agent benefit of 1 and
the corresponding of GCD returns “no.” Then there does not exist a K-sized cover
for the points in P . However, the set B is of cardinality K and by claims 1-2 covers
all points in P . Hence, a contradiction.

CLAIM 4: If GCD return ”yes” then MCA must return an optima counter-adversary
strategy with an expected agent benefit of 1.
Suppose, BWOC GCD returns “yes” and MCA returns a an optimal strategy with
an expected agent benefit < 1. However, by the answer to GCD, there must exist
P ′ ⊆ P of cardinality k that is within distance b of all points in P . Hence, for all
i, crfdist({pi},B) = 1 (as b = dist). So, the expected agent benefit must also be 1.
Hence, a contradiction.

Proof of theorem: Follows directly from claims 3-4.

B.25 Alternate Proof of Theorem 5.1

MCA is NP-hard (shown in the case where the reward function is not monotonic
and the agent has no budget).

Proof. Consider an instance of GCD consisting of set of points P , integer b,
and integer K. We construct an instance of MCA as follows:
CONSTRUCTION: The construction is the same for the first proof of Theorem 5.1

in Section B.24 (the encoding of GCD) except the reward function is krfdist
k (A,B)

defined as follows
1

2
+
|{p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ b}|

2 · |A| if |B| ≤ k

1

2
+
|{p ∈ A|∃p′ ∈ B s.t. d(p, p′) ≤ b}|

2 · |A| − |B| − k

2 · |S| otherwise

CLAIM 1: Given some k ≥ |A|, the function krf is a valid reward function.

Clearly, krfbk(A,A) = 1. To show submodularity (the second axiom), we must show
the following for B ⊆ B′ and p /∈ B′:

krfbk(A,B ∪ {p})− krfbk(A,B) ≥ krfbk(A,B′ ∪ {p})− krfbk(A,B′) (1)

There are six possible cases:
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(1) |B′ ∪ {p}| ≤ k: submodularity follows from the submodularity of crf

(2) |B′∪{p}| > k, |B′| ≤ k, |B∪{p}| ≤ k: in this case, the left-hand side of inequal-
ity 1 is positive and the right-hand side is negative, submodularity immediately
follows

(3) |B′∪{p}| > k, |B′| > k, |B∪{p}| ≤ k: in this case, the left-hand side of inequal-
ity 1 is positive and the right-hand side is negative, submodularity immediately
follows

(4) |B′ ∪ {p}| > k, |B′| ≤ k, |B ∪ {p}| > k, |B| ≤ k: this is the case where B ≡ B′,
both sides of inequality 1 are equal

(5) |B′∪{p}| > k, |B′| > k, |B∪{p}| > k, |B| ≤ k: the right-hand side of inequality 1
either increases or decreases by, at most, the amount the left side decreases by
- the left hand side always decreases

(6) |B′∪{p}| > k, |B′| ≤ k, |B∪{p}| > k, |B| > k: the right-hand side of inequality 1
either increases or decreases by, at most, the amount the left side decreases by
- the left hand side always decreases

PROOF OF THEOREM: Mirrors the proof in Section B.24, as this reward func-
tion is maximized (returns a value of 1) for the mixed adversarial strategy in the
construction iff each point is within distance b of some point in the agent’s strat-
egy, and the agents strategy is of cardinality ≤ k (anything of a greater cardinality
would give a reward less than 1). Therefore, we can follow the remainder of that
proof and obtain the same result.

B.26 Proof of Theorem 5.2

MCA-DEC is NP-complete, provided the reward function can be evaluated in
PTIME.

Proof. CLAIM 1: Membership in NP.
Given an explanation, B, we can evaluate it reward and if it is an explanation in
PTIME.

CLAIM 2: MCA-DEC is NP-hard.
Follows directly from Theorem 5.1

B.27 Proof of Theorem 5.3

Counting the number of strategies that provide a “yes” answer to MCA-DEC is
#P-complete and has no FPRAS unless NP=RP.

Proof. Theorem 5.1 shows a parsimonious reduction from GCD to MCA. Hence,
we can simply apply Lemma 2.1 and the statement follows.

B.28 Proof of Theorem 5.4

For a fixed O, k, efd, the expected agent benefit, EXBrf (B, efd) has the following
properties:

(1) EXBrf (B, efd) ∈ [0, 1]

(2) For B ⊆ B′ and some point p ∈ S where p /∈ B ∪ B′, the following is true:

EXBrf (B ∪ {p}, efd)− EXBrf (B, efd) ≥ EXBrf (B′ ∪ {p}, efd)− EXBrf (B′, efd)
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(i.e., expected agent benefit is sub-modular for MCA)

Proof. Part 1 follow directly from the definition of a reward function and ex-
pected agent benefit.

For part 2, for some set B and fixed efd, we have:

EXBrf (B, efd) =
∑

ef∈EF

rf(B, ef(O, k)) · efd(ef)

Which is a positive, linear combination of submodular functions; hence EXBrf must
also be submodular.

B.29 Proof of Proposition 5.1

MCA-LS has time complexity of O( 1
ε · |L|

3 ·F (efd) · lg(|L|) where F (efd) is the time

complexity to compute EXBrf (B, efd) for some set B ⊆ L.

Proof. We note that one iteration of the algorithm requires O(|L| · F (efd) +
|L| · lg(|L|)) time. We shall assume that O(|L| · F (efd) dominates O(|L| · lg(|L|)).
By Theorem 3.4 of [Feige et al. 2007], the number of iterations of the algorithm is
bounded by O( 1

ε · |L|
2 · lg(|L|) where F (efd), hence the statement follows.

B.30 Proof of Proposition 5.2

MCA-LS is an ( 1
3 −

ε
|L| )-approximation algorithm for MCA.

Proof. By Theorem 5.4, we can be assured that when the “if” statement at
line 4c is TRUE, then there are no further elements in B∗ that will afford an
incremental increase of > (1 + ε

|L|2 ) · EXBrf (B, efd), even if the last element is

not yet reached. Hence, we can apply Theorem 3.4 of [Feige et al. 2007] and the
statement follows.

B.31 Proof of Corollary 5.1

For a fixed O, kefd, if the reward function is monotonic, then the expected agent
benefit, EXBrf (B, efd) is also monotonic and zero-starting.

Proof. The zero-starting aspect of expected agent benefit follows directly from
the definitions of zero-starting and expected agent benefit.

Consider the definition of EXBrf :

EXBrf (B ∪ {p}, efd)− EXBrf (B, efd) ≥ EXBrf (B′ ∪ {p}, efd)− EXBrf (B′, efd)

As rf is monotonic by the statement, and efd is fixed, EXBrf is a positive linear
combination of monotonic functions, so the statement follows.

B.32 Proof of Proposition 5.3

The complexity of MCA-GREEDY-MONO is O(B · |L| · F (efd)) where F (efd) is the
time complexity to compute EXBrf (B, efd) for some set B ⊆ L of size B.

Proof. The outer loop at line 4 iteratesB times, the inner loop at line 4b iterates
O(|L|) times, and at each inner loop, at line 4(b)ii, the function EXBrf (B, efd) is
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computed with costs F (efd). There is an additional O(|L|·lg(|L|)) sorting operation
after the inner loop which, under most non-trivial cases, is dominated by the O(|L| ·
F (efd)) cost of the loop. The statement follows.

B.33 Proof of Corollary 5.2

MCA-GREEDY-MONO is an ( e
e−1 )-approximation algorithm for MCA (when the

reward function is monotonic).
First, we define incremental increase:

Definition B.1. For a given pi ∈ L at some iteration j of the outer loop of

GREEDY-MONO (the loop starting at line 4), the incremental increase, inc
(j)
i , is

defined as follows:

inc
(j)
i = EXBrf (B(j−1) ∪ {pi},A)− EXBrf (B(j−1),A)

Where B(j−1) is the set of points in L selected by the algorithm after iteration j−1.

Proof. CLAIM 1: For any given iteration j of GREEDY-MONO and any pi ∈ L,

inc
(j)
i ≥ inc

(j+1)
i

By Definition B.1, the statement of the proposition is equivalent to the following:

EXBrf (B(j−1)∪{pi},A)−EXBrf (B(j−1),A) ≥ EXBrf (B(j)∪{pi},A)−EXBrf (B(j),A)

Obviously, as B(j−1) ⊆ B(j), this has to be true by the submodularity of EXBrf , as
proved in Theorem 5.4.

(Proof of Proposition): By claim 1, we can be assured that any point not considered
by the inner loop will not have a greater incremental increase than some point
already considered in that loop. Hence, our algorithm provides the same result
as the greedy algorithm of [Nemhauser et al. 1978]. We know that the results
of [Nemhauser et al. 1978] state that a greedy algorithm for a non-decreasing,
submodularity function F s.t. F (∅) = 0 is a e

e−1 approximation algorithm for
the associated maximization problem. Theorem 5.4 and Corollary 5.1 show that
these properties hold for finding a maximal counter-adversary strategy when the
reward function is monotonic. Hence, by [Nemhauser et al. 1978], the statement
follows.

B.34 Proof of Theoerem 5.5

MCA-GREEDY-MONO provides the best approximation ratio for MCA (when the
reward function is monotonic) unless P = NP .

Proof. The MAX-K-COVER [Feige 1998] is defined as follows.
INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . ,Hmax}, and
positive integer K.
OUTPUT: ≤ K subsets from H s.t. the union of the subsets covers a maximal
number of elements in S.
In [Feige 1998], the author proves that for any α < e

e−1 , there is no α-approximation
algorithm for MAX-K-COVER unless P = NP . We show that an instance of MAX-
K-COVER can be embedded into an instance of MCA where the reward function
is monotonic and zero-starting in PTIME. By showing this, we can leverage the
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result of [Feige 1998] and Corollary 5.2 to prove the statement. We shall define
the reward function srf(A,B) = 1 iff |A ∩ B| ≥ 1 and srf(A,B) = 0 otherwise.
Clearly, this reward function meets all the axioms, is zero-starting, and monotonic.
We create a space S s.t. the number of points in S is greater than or equal to |H|.
For each subset in H, we create an observation at some point in the space. We
shall call this set OH and say that oH is the element of OH that corresponds with
set H ∈ H. We set feas(p) = true iff p ∈ OH. We set α = 0, β to be equal to
the diagonal of the space, and k = |OH|. Hence, any non-empty subset of OH is
a valid explanation for O. For each x ∈ S, we define explanation function efx s.t.
efx(OH, k) = {oH ∈ OH|x ∈ H}. We define the explanation function distribution
efd to be a uniform distribution over all efx explanation functions. We set the bud-
get B = K. Clearly, this construction can be accomplished in PTIME. We note
that any solution to this instance of MCA must be subset of OH, for if it is not, we
can get rid of the extra elements and have no change to the expected agent benefit.
Hence, each p ∈ B will correspond to an element of H, so we shall use the notation
pH to denote a point in the solution that corresponds with some H ∈ H (as each
o ∈ OH corresponds with some H ∈ H).

CLAIM 1: Given a solution B to MCA, the set {H ∈ H|pH ∈ B} is a solution to
MAX-K-COVER.
Clearly, this solution meets the cardinality constraint, as there is exactly one ele-
ment in OH for each element of H and B is a subset of OH. Suppose, BWOC, there
is some other subset of H that covers more elements in S. Let H′ be this solution
to MAX-K-COVER and B′ be the subset of OH that corresponds with it. We note
that for some x ∈ S in B′, srf(efx(OH, k),B′) = 1 iff there is some H ∈ H′ s.t.
x ∈ H and srf(efx(OH, k),B′) = 0 otherwise. Hence, the expected agent benefit
is the fraction of elements in S covered by H′. If H′ is the optimal solution to
MAX-K-COVER, then B′ must provide a greater expected agent benefit than B,
which is clearly a contradiction.

CLAIM 2: Given a solution H′ to MAX-K-COVER, the set {oH ∈ OH|H ∈ H′} is
a solution to MCA.
Again, that the solution meets the cardinality requirement is trivial (mirrors that
part of claim 1). Suppose, BWOC, there is some set B that provides a greater
maximum benefit than {oH ∈ OH|H ∈ H′}. Let H′′ ≡ {H ∈ H|pH ∈ B}. As with
claim 1, the expected agent benefit for B is equal to the fraction of elements in S
covered by H′′, which is a contradiction as H′ is an optimal solution to MAX-K-
COVER.

B.35 Proof of Corollary A.1

MCA-Exp is NP-hard.

Proof. Consider the construction in Theorem 5.1. As any non-empty subset of
P—which are all the feasible points in the space—is an explanation, then a solution
to MCA is also a solution to MCA-Exp.
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B.36 Proof of Theorem A.1

MCA-Exp reduces in polynomial time to the maximization of a submodular func-
tion w.r.t. a uniform matroid.

Proof. Given an instance of MCA-Exp as follows:
Space S, feasibility predicate, feas, real numbers α, β, set of observations, O, natural
numbers k,B, reward function rf , and explanation function distribution efd.

Let L be the set of all possible partners. Consider the following construction.

(1) Let M be a uniform matroid consisting of all subsets of L of cardinality ≤ B
(2) Let function fsubmod : 2L → < be defined as follows:

fsubmod(B) = EXBrf (B, efd)+2·|{o ∈ O|∃p ∈ B s.t. (d(o, p) ∈ [α, β])∧(feas(p))}|

CLAIM 1: fsubmod(B) is submodular.
As EXBrf (B, efd), all we will show that 2 · |{o ∈ O|∃p ∈ B s.t. (d(o, p) ∈ [α, β]) ∧
(feas(p))}| is submodular, as a positive linear combination of submodular functions
is also submodular. Suppose, BWOC that it is not submodular, hence, for some
B ⊂ B′ and p′′ /∈ B′, we have the following:

2 · |{o ∈ O|∃p ∈ B ∪ {p′′} s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| −
2 · |{o ∈ O|∃p ∈ B s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| <

2 · |{o ∈ O|∃p ∈ B′ ∪ {p′} s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| −
2 · |{o ∈ O|∃p ∈ B′ s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}|

We can re-write this as follows:

2 · |{o ∈ O|o and p′′ are partners and 6 ∃p′′′ ∈ B that can also be a partner for o}| <
2 · |{o ∈ O|o and p′′ are partners and 6 ∃p′′′ ∈ B′ that can also be a partner for o}|

Clearly, as B ⊆ B′, this cannot hold—hence we have a contradiction.
CLAIM 2: If there is a solution to MCA-Exp then the submodular maximization
problem returns a value greater than or equal to 2 · |O|.

Suppose, BWOC, there is a solution to MCA-Exp, and the submodular maxi-
mization problem returns a value less than 2 · |O|. However, any solution to B to
MCA-Exp, we know the following:

2 · |{o ∈ O|∃p ∈ B s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| = 2 · |O|

hence, a contradiction.
CLAIM 3: If the submodular maximization problem returns a value greater than
or equal to 2 · |O| then there is a solution to MCA-Exp.
Suppose, BWOC, claim 3 is false. However, we know that

EXBrf (B, efd) ≤ 1

Hence, the only way for the submodular maximization problem returns a value
greater than or equal to 2 · |O| is if the vertices chosen to produce such a value is
an explanation—hence a contradiction.
CLAIM 4: If MCA-Exp returns a value b, then the submodular maximization
problem returns a value b+ 2 · |O|.
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By claim 2, we know for solution B to MCA-Exp, for some B′ set of elements that
maximizes fsubmod that:

2 · |{o ∈ O|∃p ∈ B′ s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| = 2 · |O|

Hence, any set that maximizes fsubmod is an explanation that maximizes the quan-
tity EXBrf (B, efd)—which, by definition, is also a set that can be a solution to
MCA-Exp.
CLAIM 5: If the maximization of fsubmod returns value b, then MCA-Exp returns
a value b− 2 · |O|.
Consider set B′ that maximizes fsubmod. By claim 3, this is an explanation that
maximizes EXBrf (B, efd). Hence, by the definition of MCA-Exp, it will also give
a solution to MCA-Exp and by the definition of fsubmod, returns a value b−2 · |O|.

Proof of theorem: follows directly from claims 2-5.
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