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1 Introduction

1.1 Background

The U.S. Army is making remarkable strides in its system-
atic approach to delivering health care across a continuum 
of combat operations. According to current force health 
protection policy, the U.S. Army’s Health Service Support 
(HSS) system is designed to maintain a healthy force and 
to conserve the combat strength of deployed soldiers. 
Specifically, the HSS system remains particularly effective 
by providing prompt medical treatment to prepare patients 
for evacuation, employing standardized air and ground 
medical evacuation assets, providing a responsive field 
hospital for the wounded soldiers evacuated from the bat-
tlefield, and providing various other health and preventive 
medicine services. Furthermore, the HSS system incorpo-
rates the maximum use of emerging technology to improve 
battlefield survivability.1

According to the Operation Enduring Freedom (OEF) 
U.S. casualty status report as of May 4, 2009, there have 
been 452 killed-in-action (KIA) casualties and 2807 
wounded-in-action (WIA) casualties since the inception of 
the war in 2001.2 Therefore, although more soldiers survive 
compared to previous operations and wars, the U.S. Army 
can still greatly improve its systematic approach to treat and 
eva cuate casualties from combat zones. As a pillar of mili-
tary medical doctrine, air ambulance helicopters serve as the 
primary means for evacuating casualties during combat 
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because of the in-transit medical care provided to the sol-
dier. During military stability operations, however, the 
availability of these aeromedical evacuation (MEDEVAC) 
assets is likely to be fixed for a set duration. Nonetheless, 
optimizing the emplacement of these MEDEVAC assets at 
a set of medical treatment facility (MTF) evacuation sites 
can greatly increase casualty survivability, despite the con-
strained military resources. 

Since the beginning of OEF in Afghanistan, military 
commanders have faced a significant challenge integrating 
coalition medical assets into a fully-functional, intercon-
nected HSS system for the entire OEF theatre. In 2006, OEF 
battlefield responsibilities transitioned from a U.S. military 
command to a North Atlantic Treaty Organization (NATO) 
military command. As per this changeover of command, the 
Combined Security Transition Command – Afghanistan 
(CSTC-A) desired an integration of limited MEDEVAC 
assets from each contributing NATO country into a compre-
hensive MEDEVAC system. Moreover, CSTC-A faced an 
immense combinatorial problem given the number of poten-
tial MEDEVAC helicopter locations, the number of different 
aircraft models for employment and their associated con-
straints, the potential sites for casualty sustainment, and the 
number of supporting MTF evacuation site locations.

Therefore, the thorough investigation and development 
of improved analytical solutions concerning the optimiza-
tion of casualty coverage, air ambulance helicopter 
utilization, and vulnerability to enemy attack measures 
directly supports the military medical mission, especially 
because these assets are the most important mechanism for 
saving lives in combat. Despite the long-term and strategic 
nature of military stability operations, MEDEVAC assets 
can be tactically re-distributed across the possible MTF 
evacuation sites as increases in insurgent activity and other 
factors cause a greater number of casualties in the entire 
theatre of operations. Hence, this research and work is 
important as it provides a robust, multi-criteria modeling 
approach for optimizing MEDEVAC asset emplacement.

1.2 Problem Definition
CSTC-A and the Central Command (CENTCOM) requested 
an analytical methodology to tackle the following problem: 

Given a distribution of MEDEVAC missions, where do coali-
tion forces position several different model types of helicopters 
amongst various possible locations to minimize the time from 
injury occurrence to arrival at a MTF? Given that positioning, 
what percent of MEDEVAC missions can be supported in less 
than or equal to two hours from the time of soldier injury to 
arrival and patient drop-off at the closest MTF site?

1.2.1 Complexity This problem falls under the category 
of discrete facility location modeling, where demands arise 

on distinct nodes and the facilities are restricted to a finite 
set of candidate locations.3 Here, this problem is classified 
as a covering-based model, because there is a coverage 
time (two hours) within which casualties (at specific 
casualty-demand nodes) must be evacuated in order to be 
considered covered. Furthermore, Daskin3 suggests three 
prototypical problems under the class of covering models: 
the set covering model, the maximal covering model, and 
the p-center model. Although some instances of these
problems can be solved in polynomial time using mixed 
integer programming techniques where the linear pro-
gramming relaxation is an integer solution, each of these 
covering-based models is classified as non-deterministic 
polynomial-time hard (NP-hard). Therefore, the problem 
concerning the optimization of MEDEVAC asset emplace-
ment is also classified as NP-hard, as it falls under the class 
of discrete location coverage modeling.

1.2.2 Literature Review This problem and its variants 
were researched and tackled by Zeto et al.4 at the U.S. 
Army Center for Army Analysis (CAA) and Fulton et al.5 at 
the U.S. Army Center for Army Medical Department 
Strategic Studies (CASS). Zeto et al.4 employed a three-
phase methodology emulating work done by Alsalloum and 
Rand6 to tackle this problem concerning the optimal 
emplacement of scarce resources to maximize the expected 
coverage of a geographically variant demand function. The 
first phase consisted of a multivariate hierarchical cluster 
analysis of empirical data to determine the geographically 
variant demand, the second phase executed a Monte Carlo 
simulation for parameter and variable quantification, and 
the final phase formulated and solved the problem using a 
dual-criteria optimization model.4 In particular, Alsalloum 
and Rand6 extend the maximal covering location problem 
and suggest a goal-programming approach to solving the 
problem of identifying the optimal locations of a pre-spec-
ified number of emergency medical service stations. Their 
first objective sought to locate these stations such that the 
maximum expected demand is covered within a pre-speci-
fied target time. Unlike a typical set covering problem, 
however, Alsalloum and Rand6 re-defined coverage as the 
probability of covering a demand within the threshold time. 
In addition, their second objective was to ensure that any 
demand located within the target time could find at least 
one available ambulance. Therefore, Zeto et al.4 sought
to maximize theatre-wide coverage while balancing asset 
reliability.

Fulton et al.5 proposed a two-stage stochastic optimiza-
tion model for the relocation of deployable military 
hospitals, the reallocation of hospital beds and commensu-
rate staff, and the emplacement of tactical evacuation 
assets (medical evacuation helicopters and ground ambu-
lances) during steady-state military combat operations. 
He employed a two-phase methodology consisting of a 



Nathaniel D. Bastian 7

simulation and a mixed integer programming model. The 
simulation output the mobile hospital components and fea-
sible locations, the evacuation components and feasible 
locations, and the distribution of casualties around areas 
that were likely to experience significant combat. Fulton 
et al.5 generated various expected scenarios using a 34-2 
factorial design due to the uncertainty of future casualty 
locations, numbers, and patient severities. Therefore, the 
optimization phase minimized the sum of the penalty-
weighted time traveled over all scenarios from potential 
evacuation sites to the casualty locations onward to the 
mobile hospital sites, where the objective function was 
weighted by patient injury severity scores. The model 
solution output the number of air and ground ambulances 
and the hospital beds of each type required at each 
selected site.

Although the research and work conducted by Zeto et al.4 
and Fulton et al.5 suggested different solution techniques to 
tackle this problem and its variants, both methodologies had 
limitations and areas for further development. For example, 
Zeto et al.4 determined his geographically variant demand 
function solely using empirical data and did not consider the 
stochastic effects due to uncertainty. In addition, the goal 
program neither optimized over a set of probabilistic sce-
narios nor contained goal priority weights. Furthermore, 
Fulton et al.5 did not capture the effects due to competing 
objective functions that could better aid the decision maker. 
Neither of the analyses examined the vulnerability of enemy 
attack associated with air and/or ground movement in and 
out of the evacuation sites and mobile hospitals. Moreover, 
their analyses did not consider the three-dimensional dis-
tances and other effects on ground/air movement when 
calculating traveling times. Therefore, this work combines 
and extends the solution methodologies from Zeto et al.4 
and Fulton et al.5 in order to provide further analytical 
investigation of this problem. 

1.2.3. Motivation Firstly, we expand the goal program 
established by the CAA to account for MTF site vulnerabil-
ity associated with the amount of enemy activity per Afghan 
province where MEDEVAC operations are conducted to 
and from each MTF evacuation site, and we incorporate 
goal priority weights into the modeling objective. Secondly, 
we reformulate this multi-criteria optimization model to 
account for future uncertainty by optimizing over a set of 
expected scenarios based on specific Design of Experiments 
(DOE) factors, making the model robust and keen for both 
strategic and tactical MEDEVAC asset planning and deci-
sion making. Thirdly, we incorporate a stochastic modeling 
approach to capture the uncertainty involved with forecast-
ing future casualty demand locations and respective monthly 
casualty demand in order to better determine the optimal 
emplacement of MEDEVAC assets; we also modify the 
original data parameters to account for various stochastic 

factors. Fourthly, we expand the model by integrating a 
multi-use, decision-analysis tool with statistical analyses 
of the modeling results in order to assist the user in his or 
her decision-making process. A fifth area of motivation 
concerns developing a model with a high level of variety 
constraint aggregation, allowing computationally fast 
solutions – the modeling tractability goal is find an optimal 
solution within one minute – which is especially important 
when using the model as a decision-making instrument for 
tactical MEDEVAC asset planning. Lastly, we develop a 
three-dimensional shortest helicopter path algorithm to 
more accurately compute the probability of successfully 
evacuating patients from a casualty demand location to the 
closest MTF site within two hours. In order to determine the 
optimal flight route and respective helicopter flight time, 
this algorithm considers the effects of terrain obstacles, 
known enemy locations, air traffic control regulations, limi-
tations due to patients’ pulmonary conditions, helicopter 
performance at high altitudes, and the dependence of heli-
copter velocity on density altitude.

1.2.4 Purpose Therefore, this work describes a
robust, multi-criteria modeling approach for optimizing 
MEDEVAC asset emplacement using a scenario-based, 
stochastic optimization goal-programming model that 
U.S. Army medical planners can use as a strategic and 
tactical MEDEVAC asset-planning tool to help bolster 
and improve the current HSS system within Afghanistan 
to support OEF. Specifically, this model optimizes over a 
set of expected scenarios to determine the optimal emp-
lacement of MEDEVAC assets (including MEDEVAC 
helicopter sites and the type and quantity of aircraft at 
each site) in Afghanistan based on stochastically-deter-
mined casualty locations and three optimization goal 
criterion: maximize the aggregate expected casualty 
demand coverage, minimize MEDEVAC helicopter spare 
capacities, and minimize the value of the maximal MTF 
evacuation site total vulnerability to enemy attack.

1.3 Approach
The remainder of this work is organized as follows. Section 2 
explains the theoretical methods used, particularly the opti-
mization methodologies incorporated into the model, the 
mixed integer programming formulations, and our three-
dimensional shortest helicopter path algorithm. Section 3 
discusses our modeling experiment, specifically exp-
laining the Afghanistan MEDEVAC asset optimization 
context, model data parameter quantification and assump-
tions, model implementation and solutions, and the final 
results and sensitivity analyses that are useful for the 
decision maker. Concluding remarks, model limitations, 
and areas for further research are presented in Section 4. 
Acknowledgments are given after the reference section.
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2 Theoretical Me thods
2.1 Modeling Methodologies

The following modeling techniques are incorporated in this 
robust, multi-criteria modeling approach for optimizing 
MEDEVAC asset emplacement.

2.1.1 Goal Programming Goal programming is a tradi-
tional multi-criteria decision analysis technique that 
provides an analytical framework through which decision 
makers can systematically explore and examine different 
optimization problem alternatives. Moreover, the decision 
maker defines goals for the different optimization objec-
tives considered and evaluates the effects each of these 
criterion have on the overall optimal solution for the 
system.7 This methodology is particularly useful for strate-
gic planning when incorporated with goal priority weights 
determined by the decision maker. In the following solution 
methodology, our goal-programming model consists of 
three different criteria seeking to maximize the aggregate 
expected casualty demand coverage, while minimizing 
both MEDEVAC helicopter spare capacities and the maxi-
mal MTF evacuation site total vulnerability.

2.1.2 Scenario Planning Scenario planning methods 
take into account future uncertainty and randomness 
involved in strategic decision making. These scenarios are 
developed in an approach that focuses on underlying fac-
tors causing uncertainty within the system. Specifically, 
this approach aims to identify robust alternatives over the 
set of probabilistic scenarios.7 DOE is a mathematical
process used for identifying these different modeling 
alternatives, as it provides solution designers with a sys-
tematic method for modeling the interactive effects of 
various experimental design factors. Models designed 
using DOE are called 2f factorial designs, where f refers
to the number of factors considered in each scenario.8 In
the following solution methodology, a 23 design scenario 
approach is utilized to capture uncertainty for better deci-
sion making; the specific scenario DOE factors are 
discussed in Section 2.2.6. In addition, the model provides 
sufficient statistical analyses for each solution found across 
the given set of scenarios.

2.1.3 Stochastic Optimization Stochastic optimiza-
tion methods incorporate random elements into the model 
objective function, model constraints, and/or model data 
parameters, which serve a similar function to scenario 
planning in aiding decision makers when optimizing in the 
presence of uncertainty. Furthermore, stochastic pro-
gramming is frequently used to model probabilistic 
scenario-based problems.9 The following solution method-
ology describes a stochastic optimization goal program – 
where the casualty demand locations are stochastically 

determined and MEDEVAC helicopters are optimally 
emplaced at a subset of the feasible MTF evacuation sites 
based on these casualty demand sites – that optimizes the 
expected value of the objective function (i.e., minimizes 
over a set of probabilistic scenarios), and many of the 
model data parameters are quantified using stochastic cal-
culations rather than deterministic (see Section 3.2 for 
more details). 

2.2 Model Development
The following goal-programming model optimizes over a 
set of expected scenarios generated from different experi-
mental design factors, providing a robust, multi-criteria 
decision-analysis mechanism to tackle the Afghanistan 
MEDEVAC asset optimization problem. The following 
sets, data parameters and decisions variables are defined to 
formulate the model.

2.2.1 Sets
W =  e xperimental design scenarios for evaluation with 

index w  W.
I =  monthly casualty demand locations with index

i  I.
J =  fe asible MTF sites for helicopter emplacement with 

index j  J.
K = aircraft model types with index k  K. 
S =  numbe r of aircraft to be co-located at MTF evacua-

tion site j with index s  S.
G =  goa ls/criteria considered in the goal program with 

index g  G.
T =  numbe r of Monte Carlo simulation trials, not in the 

formulation, with index t T.

2.2.2 Data Parameters
aiw =  t he proportion of monthly demand originating 

at casualty site i such that the summation of aiw 
for all i equals 1 in each scenario w.

Pijkw =  the probability of successfully evacuating patients 
from casualty location i to MTF site j with air-
craft type k in scenario w within two hours, where 
MEDEVAC assets are co-located with and dis-
patched from the closest MTF evacuation site.

rjksw =  t he average maximum number of casualties that 
can be supported from MTF evacuation site j 
with s number of aircraft type k in scenario w.

λiw =  the  actual monthly casualty demand emanating 
from casualty location i in each scenario w.

ck =  the  number of aircraft of model type k avail-
able in the OEF theatre.

vjw =  the vulnerability associated with each MEDEVAC 
route in/out of each MTF site j in scenario w.

vcjw =  the  total vulnerability threshold level for each 
MTF evacuation site j in scenario w.
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occurw =  the  expected probability that scenario w occurs, 
in the objective function. 

prigw =  the  priority weight of goal g in scenario w, in 
the objective function.

2.2.3 D ecision Variables
Binary Variables

Yijk =  the  binary variable for MEDEVAC assets, equals 
1 if the evacuation from casualty location i with 
aircraft type k dispatched from MTF site j is equal 
to or greater than the pre-specified probability 
and j is the nearest emplaced MTF evacuation site 
that facilitates evacuation within two hours, or 0 
otherwise.

Xjks =  the  binary variable for positioning of aircraft, 
equals 1 if s number of aircraft type k are to be 
considered for positioning at MTF evacuation site 
j, or 0 otherwise. 

Positive Variables
dmiv1w =  unde rachievement deviation for Goal 1 in 

each scenario w.
dplus2jkw =  ove rachievement deviation for Goal 2 for 

each j, k, and w.
dplus3w =  overachievement deviation for Goal 3 in 

each scenario w.
V =  the  value of the maximal MTF evacuation 

site total vulnerability over all scenarios.

Q =  the  value of the maximum expected sum
of the weighted goal deviations over all 
scenarios.

2.2.4 Mixed Integer Programming Model Formulations
Model Formulation #1: The first model formulation con-
sists of a super goal program (with the three optimization 
goals) that optimizes over a set of expected scenarios. The 
objective function here in (1) seeks to minimize over the set 
of scenarios the expected sum of the weighted goal devia-
tions. Constraints (2), (4), and (7) refer to the objective 
functions of each of the three original optimization goals (see 
Section 2.2.5) with their respective under/over achievement 
deviations from their desired goal target values. Constraints 
(3) suggest that each casualty demand location can be cov-
ered by no more than one in-theatre MEDEVAC asset of a 
certain type k emplaced at a MTF evacuation site j. Constraints 
(5) mean that only s number of type k aircraft can be located 
at each MTF site, and constraints (6) dictate that the total 
number of helicopters of type k positioned cannot exceed the 
MTF’s in-theatre capacity. Furthermore, constraints (8) 
ensure that the total vulnerability of each MTF site j does not 
exceed its pre-decided enemy vulnerability threshold level, 
and constraints (9) define the value of maximal vulnerability 
V as greater than or equal to the total vulnerability of the 
MTF site with the highest total vulnerability over all scenar-
ios. Lastly, constraints (10) and (11) refer to the binary and 
positive decision variables, respectively.
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Model Formulation #2: The second model formulation also 
combines the three optimization goals into a super goal 
program, but with a different objective than the previous for-
mulation. The objective function in (12) seeks to minimize Q, 

where constraints (13) define the value of Q as greater than or 
equal to the maximum expected sum of the weighted goal 
deviations over all scenarios – a min–max objective function. 
All other constraints are equivalent to the previous.

  (12) 
 
 
 

Min Q

subject to Q ≥ occurw pri1wdmiv1w þ pri2w
X

j

X

k

dplus2jkw þ pri3wdplus3w

 !

8w  (13)

2.2.5 Multi-criteria Optimization Goals
Optimization Goal #1: The first goal seeks to maximize 
the aggregate expected casualty demands covered.

 
Max

X

i

X

j

X

k

aiPijkYijk

Optimization Goal #2: The second goal seeks to mini-
mize the spare capacities of MEDEVAC helicopters for 
each type k emplaced at each MTF site j, ensuring a 
sufficient level of pre-determined reliability that an 
aircraft will be available when casualties occur.
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Optimization Goal #3: The third goal seeks to minimize 
the value of the maximal MTF evacuation site total 
vulnerability to enemy attack.

Min V

V ≥
X

i

X

k

vjYijk 8 j

2.2.6 Modeling Scenarios This work uses the DOE 
mechanism for determining the optimization modeling 
scenarios. Specifically, the solution methodology has a 
23 design, which means three different design factors are 
explored to generate eight different modeling scenarios. 
These scenario design factors consist of the goal priority 
weights (pri1w, pri2w, and pri3w), the maximum Areas of 
Operation (AO) ‘hotbed’ casualty radius (magiw),  and the 
total vulnerability threshold level for each MTF evacuation 
site (vcjw). In addition, although not one of the specific 
design factors, each scenario has a respective expected 
probability of occurrence (occurw) set by the decision maker.

2.3 Three-dimensional Shortest Helo-path Algorithm  
The algorithm presented in this section computes a nearly 
optimal (i.e., almost fastest) helicopter flight route with 
respective flight time between an origin (e.g., MTF evacu-
ation site) and a destination (e.g., casualty demand location), 
which considers the effects of:

(1) terrain obstacles within the operating environment;
(2) known enemy hotspots;
(3) air traffic control regulations;
(4) limitations due to patients’ pulmonary conditions;
(5) helicopter performance at high altitudes; 
(6)  dependency of the helicopter velocity on density 

altitude.

2.3.1 Algorithm Conditions Before diving into the spe-
cifics of our algorithm, it is important to describe some of 
the conditions affecting a real-world, nearly optimal heli-
copter path during combat operations. Condition (1) is 
important when determining a helicopter flight route in the 
three-dimensional space where helicopters must fly over, 
around, or between terrain obstacles such as mountains, 
which is particularly important in an operating environment 
such as Afghanistan. Condition (2) is necessary so that heli-
copters avoid probable enemy attacks during the flight 
route, thereby safely transporting soldiers and evacuating 
those WIA casualties requiring medical assistance at the 
closest MTF site. Condition (3) is essential because there 
are some flight routes where helicopters are not allowed to 
fly, such as over field artillery and mortar units or other ‘No 
Fly’ zones. In addition, there are some flight routes that air 
traffic controllers’ deem un-flyable due to frequently poor 
weather in terms of visibility and cloud ceiling conditions. 
Condition (4) is vital such that WIA soldiers suffering from 
cardiac arrests or other pulmonary injuries cannot fly over 
10,000 feet, where patients do not receive oxygen supple-
ments at the higher altitudes. These first four conditions are 
utilized during the preprocessing phase of our algorithm to 
determine if the three-dimensional flight route is feasible, 
where the final two conditions greatly impact the actual 
helicopter flight time. 

Condition (5) suggests that the helicopter performance at 
high altitudes – assuming that the helicopter engine and all 
components are operating satisfactorily – is heavily influ-
enced by the density altitude, gross weight, and wind 
velocity during takeoff, hovering, and landing. Gross 
weight is the only factor that the pilot of the helicopter can 
control (i.e., changing fuel amounts, number of passen-
gers, or baggage loads). If a helicopter must fly over a 
mountain against the violent wind downdrafts (although 
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this creates an easy target for the enemy with a silhouette 
of the helicopter in the sky), it is advisable for a pilot to 
allow extra distance to safely clear the mountainous ter-
rain. In addition, there are distinct helicopter airspeed 
limitations such that as the altitude increases, the never-
exceed airspeed (Vne) for most helicopters decreases. For 
example, at sea level Vne is 86 miles per hour (MPH): at 
6000 feet and 2500 rotor blade rotations per minute (RPM), 
it is 65 MPH; and at 6000 feet and 2700–2900 RPM, it is 
78 MPH. Above 2000 feet, Vne decreases by 3 MPH per 
1000 feet, and above 6000 feet, Vne decreases 5 MPH per 
1000 feet. Therefore, as the density altitude, gross weight, 
and/or wind velocity increases, the helicopter performance 
diminishes.10 

Lastly, condition (6) is also important for the actual 
flight time calculation where helicopter velocity depends 
on density altitude. In particular, as the density altitude 
increases during flight, then the greater the velocity decre-
ment (i.e., decrease in the rate of climb) for any helicopter. 
The four factors affecting density altitude within the oper-
ating environment include the elevation, atmospheric 
pressure, temperature, and moisture content of the air. As 
elevation increases, the atmospheric pressure decreases, 
the air becomes less dense, which increases the density 
altitude. A specific chart is used to determine density alti-
tude based on the temperature and the pressure altitude, 
where the pressure altitude is read directly from the altim-
eter in the cockpit when adjusted to a certain atmospheric 
pressure (such as 29.92 inches of mercury). Great changes 
in temperature cause major changes in air density, even 
when elevation and pressure remain constant. Therefore, 
as temperature increases, the air becomes less dense and 
the density altitude increases. Although this density alti-
tude chart does not consider the moisture content of the air, 
increases in air moisture lead to less dense air and, thus, a 
greater density altitude, when temperature and pressure are 
constant. Moreover, as the temperature increases, the air 
can hold a greater amount of moisture. Therefore, the 

actual density altitude could be much higher then what is 
computed by the chart if the air contains high moisture 
content. After computing the density altitude for the tem-
perature and pressure altitude conditions using the density 
altitude chart, pilots use another chart in the flight manual 
to compute the helicopter rate of climb and best rate of 
climb speed. This velocity decrement as density altitude 
increases is essential for calculating the helicopter flight 
time in our algorithm.10

2.3.2 Algorithm Description

We use an approximate dynamic programming algorithm to 
solve the three-dimensional fastest helicopter-path prob-
lem. Here, ‘approximate’ regards the fact that the originally 
continuous problem is discretized. Due to this discretiza-
tion, the algorithm does not return an optimal solution to 
the continuous problem, but a solution of the flight time at 
most α times the continuous optimum. The discretization is 
made in a straightforward way: instead of the continuous 
operating scene in three-dimensional space, we only con-
sider integer points in some parallelepiped that approximates 
the operating scene. More specifically, if the operating 
scene is defined in R3

+ with 0 x  X, 0 y  Y, 0 z  Z, 
we take into consideration only the integer points 
in this parallelepiped S = Z3

+ 
⋂

 {(x,y,z) R3
+): 0 x  X,

0 y  Y, 0 z  Z}. Further, we assume that the helicopter 
flies only piece-wise linearly from point to point in S. 
Deviation from the optimal continuous curve defines the 
multiplicative error of the discrete solution. On the other 
hand, any continuous partially differentiable curve in three-
dimensional space can be approximated by a piece-wise 
linear curve with arbitrary precision. Therefore, making the 
discretization scale dense enough, we can achieve ε�
for any given ε > 0.

Given two points p = (x, y, z) S and p  = (x , y , z ) S, 
the helicopter flight time between p and p  is defined as 
follows:
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where d(p,p') is the Euclidean distance (nautical miles) 
between p and p', vo is the flight speed of the helicopter
at sea level (nautical MPH), and c is the helicopter speed 
decrement of the density altitude (where the necessary den-
sity altitude conversions are made depending on elevation, 
atmospheric pressure, and temperature factors).

In the preprocessing phase of the algorithm, for any two 
points p and p' from S, we compute f (p,p') using Equation 
(14). Moreover, for any two points p and p' we test whether 
the straight-line flight route from p to p' satisfies conditions 

(1) through (4). If the feasibility conditions are not satis-
fied, we re-define f (p,p') = + ∞. For completeness, we 
define f(p,p') = 0 for any p S. Now, quadruple (S,  F,  s,  d), 
where F = {f (p,p'): p,p' S}, s, d S specifies the input of 
the discrete fastest helicopter-path problem. Here, vertex s 
denotes the origin and vertex d denotes the destination of 
the helicopter flight route. Let K be a clique on the vertex 
set S. Let the length (p,p') E(K) be determined by f(p,p'). 
Therefore, it is obvious that the straightforward Dijkstra’s 
dynamic programming algorithm for the shortest sd-path in 
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K solves the discrete fastest helicopter-path problem. Refer 
to Dijkstra11 for the pseudo-code.

3 Experiment
3.1 Problem Context
The following real-world experiment uses our proposed 
solution methodology to tackle the combinatorial problem 
defined by CSTC-A and CENTCOM in 2006, which spe-
cifically concerns optimizing the U.S. Army’s MEDEVAC 
system in Afghanistan.

3.1.1 Afghanistan MEDEVAC System Optimization  
Military commanders have faced significant obstacles since 
the inception of OEF to holistically integrate MEDEVAC 
assets within Afghanistan to provide a fully-functional HSS 
system that ensures WIA soldiers are efficiently air evacu-
ated to receive effective medical care at field-sited MTF 
sites. Figure 1 depicts Afghanistan with its respective prov-
inces and the five International Security Assistance Force 
(ISAF) operating regions in which both U.S. and NATO 
combat forces conduct operations. 

3.1.2 Medical Treatment Facility Evacuation Sites In 
order to improve patient survivability in-theatre, combat 
soldiers who are WIA must be efficiently evacuated by 
either air or ground medical evacuation assets where highly 
trained medics provide in-route medical care before arrival 
at the closest MTF. Here, the model provides a strategic and 
tactical solution for the optimal emplacement of MEDEVAC 
assets at MTF evacuation sites, where all MTFs serve 
as feasible MEDEVAC helicopter positioning sites. In 
Figure 2, 21 MTF sites serve as feasible MEDEVAC heli-
copter emplacement locations; with the assumption that 
MEDEVAC assets are co-located at the MTF sites (i.e., 
MEDEVAC helicopters evacuate WIA casualties to and 
from the same closest MTF evacuation location). Moreover, 
these MTF evacuation sites are restricted to pre-determined 
locations in the OEF theatre due to sustainability require-
ments such as logistics, maintenance, and security. These 
feasible MTF evacuation sites are plotted by red crosses on 
a 540 × 864 nautical-mile grid coordinate system to account 
for MEDEVAC flight times where helicopter velocities are 
calculated in knots (nautical MPH). Although these 21 
MTF sites are pre-assigned due to sustainment capabilities, 

Figure 1. ISAF operating regions and Afghan provinces
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some of them are more susceptible to uncertain enemy 
insurgent attack than others. Therefore, the model captures 
the additional importance of optimizing MTF site total 
vulnerability, ensuring that each evacuation site does not 
exceed the pre-determined total vulnerability threshold 
level assigned by the decision maker. In addition, the quan-
tity of each MEDEVAC helicopter type in-theatre is fixed 
due to the long-term nature of steady-state combat opera-
tions. Despite this, the decision maker can utilize this model 
tactically to re-distribute and re-emplace the MEDEVAC 
assets available on a monthly basis among the feasible 
MTF evacuation sites to continually optimize the 
MEDEVAC system based on the three goal program opti-
mization criteria. 

3.1.3 U.S. Army Areas of Operation Hotbeds Based 
upon the ISAF regions from Figure 1, the U.S. Army had 
main operating units in both RC-East and RC-South zones. 
In particular, the U.S. Army 3rd Brigade 1st Infantry Division 
and 4th Brigade 101st Airborne Division were situated in 

RC-East – the Afghan provinces of Nangarhar and Khost, 
respectively – and the U.S. Army Company D 1st/4th 
Regiment was located in RC-South – the Afghan province 
of Zabul.12 Moreover, U.S. President Barack Obama 
announced that new U.S. Army Brigade Combat Teams 
(BCTs) would deploy to Afghanistan in support of OEF. 
Due to the influx of insurgent and Taliban activity in the 
southern part of Afghanistan bordering Pakistan, we assume 
in this experiment that the newly deployed BCTs were posi-
tioned in the Afghan provinces of Farah (RC-West) and 
Kandahar (RC-South). Figure 3 illustrates the five loca-
tions of these US Army operating units, which will serve as 
AO ‘hotbeds’. These AO locations are also plotted on the 
540 × 864 nautical-mile coordinate system, giving the fol-
lowing grid points ({108, 189}, {378, 162}, {270, 162}, 
{567, 324}, {540, 243}). The AO hotbed locations are used 
later in the experiment to stochastically generate casualty 
demand sites i and the actual monthly casualty demand 
(λiw) within the Afghanistan theatre (see Section 3.2.1). 
Although the war in Afghanistan is a very fluid situation 

Figure 2. Feasible Medical Treatment Facility evacuation sites in  Afghanistan
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with great potential for increased forces, our experiment 
only analyzes the situation as it was in 2006.

3.2 Data Parameter Quantification
Inherent in the stochastic optimization goal-programming 
model is the necessity to quantify the geographically vari-
ant casualty demand and respective demand locations 
in Afghanistan, the probability of successfully evacuating 
WIA casualties within two hours from each demand loca-
tion, the maximum supportable MEDEVAC demand from 
helicopters emplaced at MTF evacuation sites, and the vul-
nerability level of each MTF evacuation site within the 
different Afghan provinces associated with MEDEVAC 
routes in and out of each MTF.

3.2.1 Casualty Generation Due to uncertainty involved 
with Taliban and insurgent activity within Afghanistan, future 
casualty demand numbers and locations must not be deter-
mined from purely historical casualty patterns. Instead, U.S. 
Army medical planners must combine both empirical and 

stochastic data to best forecast future geographically variant 
casualty demand. According to OEF casualty statistics posted 
by the U.S. Department of Defense (DoD), there have been 
2806 WIA soldiers as of May 4, 2009, since the inception of 
OEF on October 7, 2001, which averages roughly 30 WIA 
casualties per month.2 For experimental purposes, we assume 
that all WIA casualties were air evacuated to a mobile hos-
pital, where roughly one patient was air evacuated per injury 
location. Therefore, the model stochastically forecasts 
monthly geographically variant casualty demand with 30 dif-
ferent casualty demand locations, which proves useful for 
tactical MEDEVAC asset planning each month during steady-
state combat operations. Moreover, this experiment assumes 
that U.S. Army medical planners have selected the five U.S. 
Army AO hotbeds as prime locations or ‘casualty centers’ for 
likely enemy attacks due to the ongoing combat operations 
and, therefore, casualty demand can be estimated near the 
Afghan provinces of Nangarhar, Khost, Zabul, Farah, and 
Kandahar. Furthermore, a frequency distribution then assigns 
the percentage of casualties occurring within each pre-
determined AO hotbed location, which is depicted in Table 1.

Figure 3. U.S. Army operating units in Afghanistan
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Table 1. Pre-determined locations of casualty centers

Locations of casualty centers 

Grid Casualties (%)

{108, 189} 0.073 CDF
{378, 162} 0.180 0.252
{270, 162} 0.180 0.432
{567, 324} 0.284 0.716
{540, 243} 0.284 1.000

In Table 1, each AO hotbed grid coordinate is located in 
one of the Afghan operating regions classified by the ISAF. 
In fact, two of the AOs are co-located in RC-South and 
another two AOs are co-located in RC-East. Moreover, this 
casualty frequency distribution using data from Campbell 
and Shapiro12 was determined by dividing the number of 
Taliban incidents in the AO hotbed region by the total 
number of Taliban incidents that occurred in RC-East, 
RC-West, and RC-South. For the two sets of four AOs 
co-located in the same regions, each casualty center was 
assigned half of the overall percentage of casualties within 
its respective region. The distribution in Table 1 provided 
the baseline for this experiment, even though an actual 
casualty frequency distribution would be determined more 
precisely by U.S. Army medical planners. Due to the nature 
of the ongoing U.S. Army combat operations in the OEF 
theatre, however, the actual empirical distributions are 
inaccessible for security purposes. 

Despite this, a stochastic mechanism exists for determin-
ing casualty demand sites based on these AO hotbed 
locations and applying uniform randomness to the identified 
casualty centers. The first step is to assign a random casualty 
radius around each AO hotbed location. From the 2008 OEF 
MEDEVAC After Action Review (AAR), the coverage 
radius for each MEDEVAC aircraft was set at 74 nautical 
miles for planning purposes.13 Therefore, this experiment 
assumes a random uniform casualty generation radius 
around each AO hotbed location, where magiw = uniform(–d, 
+d) and d is one of the DOE scenario factors set at values of 
50 or 100 nautical miles. The second step is to generate 
random uniform angles [ang = uniform(0, 2π)] from the AO 
hotbed location in the direction in which these casualties are 
generated. Based on a uniform random number (0, 1) and the 
casualty cumulative distribution value for the AO casualty 
center from Table 1, the 30 casualty demand locations are 
stochastically determined: i (xcoord) = AO site (xcoord) + magiw 
× cos(ang) and i (ycoord) = AO site (ycoord) + magiw × sin(ang).5

Based on this stochastic method for casualty location 
generation, Figure 4 illustrates the total number of casual-
ties generated over all eight modeling scenarios, which 
contains a total of 240 casualty demand locations (repre-
sented by triangles that clearly surround the five AO hotbed 
locations and are denser in the RC-East region).

In addition to stochastic generation of the casualty demand 
locations, another stochastic element engenders the actual 
monthly casualty demand originating at each of these loca-
tions. We model uncertainty regarding enemy capability in 
the AO hotbed area by applying a lethality factor to the 
number of casualties generated at each location. Based on 
2008 data from Campbell and Shapiro12 for Taliban incidents, 
the maximum and minimum lethality factors were determined 
by the following equation: 1+ (number of Taliban incidents in 
the Afghan province divided by the total number of Taliban 
incidents in all Afghan provinces), giving a minimum value 
of 1.00 and a maximum value of 1.154. This lethality factor is 
applied as a uniform random distribution from the minimum 
to the maximum value [lethiw = uniform(1.0, 1.154)]. The 
application of this lethality factor serves to evaluate the lethal 
sensitivity of the casualty location and the uncertain enemy 
capabilities. Based on Operation Iraqi Freedom MEDEVAC 
flight logs from the Army Medical Evacuation Proponency 
Directorate and then adjusted to the OEF casualty situation 
with 30 WIA soldiers per month, Table 2 provides an approxi-
mate probability mass function for determining the number of 
casualties at a given casualty demand location.13

Table 2. Number of casualties evacuated at the same casualty 
demand location

Casualties at same location

# Patients P(X = x) CDF

1 0.874
2 0.086 0.96
3 0.03 0.99
4 0.01 1

Note: Based on 30 WIA/month

To assign distributions for actual monthly demand at 
each casualty location (λiw), we use a uniform random 
number (0, 1) and the probability mass function from 
Table 2 for casualties at the same location and apply a 
lethality factor to the casualties generated at each location. 
For instance, for every casualty location i and scenario w, 
λiw = round(# Patients Evacuated at Same Location × lethiw) 
and cas_dw = sum over all λiw for each scenario w. In addi-
tion, to assign the proportion of monthly demand originating 
at each casualty demand location such that the summation 
of aiw for all i equals 1 for each scenario w, we assign aiw = 
λiw /cas_dw. For further information regarding stochastic 
casualty generation, please refer to Fulton et al.5 

3.2.2 MEDEVAC Time Monte Carlo Simulation  
Another essential aspect of this experiment involves quan-
tification of the probability (Pijkw) of successfully evacuating 
casualties from each of the 30 stochastically-determined 
casualty demand locations within two hours: this is calcu-
lated for each scenario. Moreover, MEDEVAC helicopters 
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are dispatched from the closest MTF evacuation site where 
aircraft are positioned and are available to retrieve the WIA 
soldiers and transport them to the closest MTF. In general 
terms, this data parameter measures the probability of 
success for each Yijk ‘arcbird’ (where the total number of 
arcbirds represent the product of the 30 casualty demand 
locations, the 21 potential MTF evacuation sites, and the 
three aircraft models for emplacement). In order to quantify 
this data parameter for the goal program, the model con-
ducts a Monte Carlo simulation for a set number of trials 
per arcbird (the fewer the number of trials the faster the 
computational running time), where each trial sampling 
calculates the total MEDEVAC time per trial and scenario 
(trialijkwt). This data parameter equals the sum of six differ-
ent MEDEVAC times.

1. The time in each trial from injury at the casualty 
demand location to notification of a supporting 
MEDEVAC helicopter in each scenario (time_
injijkwt). Based on the CAA’s analysts who que-

ried in-theatre MEDEVAC pilots, this variable is 
stochastically calculated using their subject matter 
expertise via a triangular distribution in the simula-
tion with a minimum of five minutes, a maximum 
of 15 minutes, and a most likely value of 10 minutes 
(the model computes in hours rather than minutes).

2. The time in each trial from notification to MEDEVAC 
helicopter wheels up in each scenario (time_wupijkwt). 
Based on the 2008 MEDEVAC AAR, in-theatre 
subject-matter experts estimated a mean time of 20 
minutes.13 From personal MEDEVAC experience, a 
standard deviation of five minutes is deemed appro-
priate. Therefore, this variable is computed using a 
normal distribution using the estimated mean and 
estimated standard deviation (the model computes 
in hours rather than minutes).

3. The flight time in each trial to pickup casualties
with a helicopter dispatched from the closest MTF 
evacuation site in each scenario (time_pupijkwt ). 
This variable was stochastically calculated from 

Figure 4. Stochastically generated casualty demand locations
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dividing the Euclidean distance between the casualty 
demand location and the closest MTF evacuation 
sites (dist_puijkw) by a random uniform distribution 
of MEDEVAC helicopter speeds from 120 to 193 
nautical MPH (velijkwt). Note that this range of heli-
copter speeds was based on the assumption that air-
craft type K1 is a HH60 Pavehawk, aircraft type K2 
is a UH60A-L Blackhawk, and aircraft type K3 is a 
UH60Q MEDEVAC with normal operating speeds 
between 120 and 193 knots.14 In addition, this 
MEDEVAC time can be replaced by the value com-
puted from our three-dimensional shortest helicop-
ter path algorithm (Section 2.3). 

4. The patient load time in each trial at the casualty 
pickup location in each scenario (time_ldijkwt). 
Similar to the time in each trial from injury to noti-
fication of the supporting MEDEVAC helicopter 
in each scenario, in-theatre MEDEVAC pilots pro-
vided stochastic data to model this variable in the 
simulation using a triangular distribution with a 
minimum of five minutes, a maximum of 15 min-
utes, and a most likely value of 10 minutes (the 
model computes in hours rather than minutes).13

5. The flight time in each trial from the casualty loca-
tion to drop-off patients at the closest MTF evacu-
ation site in each scenario (time_dropijkwt). Similar 
to the flight time in each trial to pickup casual-
ties with a helicopter dispatched from the closest 
MTF evacuation site in each scenario, this variable 
was stochastically calculated by the same means; 
divide the Euclidean distance between the casualty 
demand location and the closest MTF evacuation 
site (dist_puijkw) by a random uniform distribution 
of MEDEVAC helicopter speeds (velijkwt). Note that 
in this experiment MEDEVAC helicopters only 
conduct evacuation missions to and from the same 
MTF evacuation site, which permits use of the same 
previously determined distance calculation. Again, 
this MEDEVAC time can be replaced by the value 
computed from our three-dimensional shortest heli-
copter path algorithm (Section 2.3).

6. The patient off-load time at the MTF evacuation 
site in each trial and each scenario (time_offldijkwt). 
Based on the 2008 MEDEVAC AAR, in-theatre 
subject-matter experts assumed a mean off-load 
time of five minutes.13 From personal MEDEVAC 
experience, a standard deviation of two minutes 
is deemed appropriate. Therefore, this variable is 
computed using a normal distribution using the esti-
mated mean and estimated standard deviation (the 
model computes in hours rather than minutes).

Again, each trial of the Monte Carlo simulation sums 
these six essential MEDEVAC times and keeps a count 
of the number per Yijk arcbird that meets the two-hour

time threshold. From this, the probability of successfully 
evacuating patients within two hours for all i, j, and k com-
binations (Pijkw) is calculated by taking the number of trials 
meeting the threshold divided by the total number of simu-
lation trials; this is executed for each scenario.

3.2.3 Average Maximum Supportable MEDEVAC 
Demand The stochastic optimization goal-programming 
model requires the actual quantity of each helicopter model 
available in-theatre for emplacement at MTF evacuation 
sites (ck). In this experiment we assume that two K1s, three 
K2s, and twelve K3s are available to support OEF 
MEDEVAC operations. Furthermore, another important 
data parameter is the average maximum supportable 
MEDEVAC demand from each type and quantity of 
MEDEVAC helicopters emplaced at the potential MTF 
evacuation sites (rjksw). Before diving into the calculation of 
this variable, the experiment makes a few assumptions 
about the number of litters available in each aircraft type 
(litk), the probability that at least one aircraft is available at 
the closest MTF evacuation site (p_comp), the operational 
fleet readiness of each aircraft type (ok), and the actual 
number of each aircraft type that the model decides to 
emplace at the MTF evacuation sites(s). Therefore, aircraft 
K1 and K2 both have four litters where K3 has six litters. In 
addition, this experiment assumes the probability that at 
least one available aircraft equals a pre-determined proba-
bility of 95%, which we later examine in a sensitivity 
analysis, and the operational fleet readiness for all aircraft 
types equals 67.7%. From these data parameter values, the 
model computes the average maximum number of casual-
ties per month that can be supported via MEDEVAC assets 
by taking the product of the number of patient litters avail-
able depending on aircraft type, the probability that at least 
one aircraft is available at the MTF evacuation site, the 
operational fleet readiness level, and the actual number of 
aircraft models positioned {2, 3, or 4}, for every combina-
tion of MTF evacuation sites, helicopter types, number of 
aircraft emplaced, and model scenarios.

3.2.4 MTF Site Vulnerability As previously mentioned, 
the third criterion of the multi-criteria stochastic optimiza-
tion model presented here is to minimize the value of the 
maximal MTF evacuation site total vulnerability. As a 
proxy, we assume in this model that the greater the total 
number of MEDEVAC helicopter dispatches from each 
MTF evacuation site, then the greater is its respective total 
vulnerability to enemy attack. Therefore, vulnerability cal-
culations are subject to the amount of enemy activity (i.e., 
Taliban incidents) within each Afghan province affecting 
the MEDEVAC route in and out of each MTF evacuation 
site. Therefore, the first step was to develop an enemy capa-
bility lethality factor for each potential MTF evacuation 
site (en_attackj), which is based on the 2008 data for the 
Taliban and other enemy incidents.12 From this data, we 
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determined an enemy capability lethality factor for each 
Afghan province by using the following equation: 1+ 
(number of Taliban incidents in the Afghan province 
divided by the total number of Taliban incidents in 
Afghanistan). Each MTF evacuation site is located in an 
Afghan province (where some share the same province) 
where MEDEVAC assets are dispatched from the MTF 
evacuation site to conduct missions. The lethality factor 
assigned to each MTF evacuation site is equivalent to the 
enemy capability lethality factor for the respective Afghan 
province in which it is located and where its operations are 
conducted. The second step involved the computation of 
the actual vulnerability value associated with each 
MEDEVAC route in and out of each MTF evacuation site 
(vjw). This data was stochastically determined for each 
potential MTF helicopter emplacement site from the prod-
uct of the enemy capability lethality factor per MTF 
evacuation site and a random uniform probability (0, 1) 
accounting for the uncertainty of enemy attack within that 
Afghan province; this was repeated for all modeling sce-
narios. In addition, U.S. Army medical planners must 
determine their desired total vulnerability threshold level 
for each potential MTF helicopter emplacement site (vcjw), 
which is used for optimization purposes required in the 
model. Our solution methodology utilizes this total vulner-
ability threshold level as one of the scenario DOE factors, 
which is subject to the desired input of the decision maker. 

3.3 Model Implementation and Solutions
Now that the theoretical methods have been established and 
the data parameters are quantified, our robust, scenario-
based, stochastic optimization goal-programming model is 
ready for implementation. 

3.3.1 Model Implementation Framework The 
General Algebraic Modeling System (GAMS), Microsoft 
Excel©, and Microsoft Visual Basic© platforms provided 
the model implementation framework for our robust, multi-
criteria decision analysis methodology, particularly for the 
stochastic casualty generation, Monte Carlo simulation, 
optimization model solver, statistics generation and reports, 
and multi-use decision analysis tool. The GAMS is an 
appropriate framework to use when solving problems with 
multi-dimensional variables, constraints, and data parame-
ters. In addition, the various stochastic calculations utilized 
the built-in GAMS seed assignment and random number 
generator, probability functions, and other programming 
controls necessary for our solution methodology. Lastly, 
the GAMS leveraged the CPLEX mixed integer program-
ming solver to provide the model solutions with a given set 
of DOE scenarios.

3.3.2 Scenario Simulation Execution Based on the 
given set of DOE scenarios, our stochastic optimization 

goal-programming model emplaces the minimum number 
of helicopters at each MTF evacuation site necessary to 
maximize the aggregate coverage of the theatre-wide 
MEDEVAC casualty demand and the probability of meet-
ing that casualty demand, while minimizing the value of the 
maximal MTF evacuation site total vulnerability to enemy 
attack. Our solution methodology uses a 23 factor design 
for the generation of eight different scenarios to better 
equip U.S. Army medical planners with a decision analysis 
tool useful for future strategic and tactical MEDEVAC 
asset planning. Moreover, the decision maker has full 
access to adjust each of these scenario DOE factors, as dis-
cussed in Section 2.2.6, to best use the model as an 
instrument for decision analysis. Also, each design scenario 
has a respective probability of occurrence assigned by the 
decision maker, which is part of the optimization model 
objective function. In this simulation experiment, we set 
arbitrary goal priority weights (P1, P2, and P3), casualty 
radii (casrad), total vulnerability threshold levels (vuln), 
and probabilities of occurrence (occur) for each scenario. 
Also, after running the model consecutively we noticed that 
the value of the goal priority weights clearly had a large 
influence on the resulting optimal solution. Therefore, we 
expanded the model to generate the pre-decided number of 
solutions (10 in our experimental study) necessary to con-
duct a sensitivity analysis on the goal priority weights, as 
well as the helicopter reliability percentage (see Section 
3.4.3). Table 3 summarizes each of the design scenarios 
executed in this experiment.

Table 3. Scenario design factors for simulation

DOE scenario factors 

 occur P1 P2 P3 casrad vuln

1 0.125 500 0.2 0.5  50.0 1.010
2 0.125 500 0.2 0.5  50.0 1.005
3 0.150 500 0.2 0.5 100.0 1.010
4 0.100 500 0.2 0.5 100.0 1.005
5 0.125 600 0.6 0.3  50.0 1.010
6 0.125 600 0.6 0.3  50.0 1.005
7 0.100 600 0.6 0.3 100.0 1.010
8 0.150 600 0.6 0.3 100.0 1.005

3.3.3 Model Formulation Solutions For the following 
solutions representing the two different model formula-
tions, the simulation and optimization was solved on a Dell 
Precision M60 laptop with a Pentium M 1.7 GHZ processor 
and 2 GB of random-access memory (RAM). Both model 
formulation solutions below were found using the CPLEX 
MIP solver embedded within the GAMS platform. The first 
model solution contained nine blocks of equations, seven 
blocks of variables, 39,919 non-zero elements, 806 single 
equations, and 2601 single variables. The second model 
solution contained 10 blocks of equations, eight blocks of 
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variables, 39,928 non-zero elements, 814 single equations, 
and 2602 single variables. In both model formulations, 
there were a total of 2079 binary variables representing the 
1890 Yijk arcbirds and the 189 Xjks MEDEVAC helicopter 
emplacement location options (the 21 potential MEDEVAC 
emplacement sites times three aircraft model types times 
{2, 3, 4} helicopters positioned at each MTF evacuation 
site). The CPLEX MIP solver found an optimal solution for 
both model formulations in less than one minute each, 
which proves useful for tactical MEDEVAC asset planning. 
The solution for the second model formulation required 
nearly 10 times the number of iterations (10,355) and nearly 
1000 times the number of branch-and-bound nodes. Both 
solutions, however, required a similar number of Gomory, 
clique, cover, and other valid inequalities. 

3.4 Results and Analysis
This section presents the results and analysis of our 
robust, multi-criteria modeling approach for optimizing 

MEDEVAC asset emplacement. Specifically, this weighted 
goal- programming model optimizes over a given set of 
expected DOE scenarios to first stochastically generate the 
future casualty demand locations and actual monthly 
demand and then identify the optimal subset of MTF evac-
uation sites for the supporting MEDEVAC helicopters, and 
the type and number of aircraft to emplace at each MTF 
site. Although we calculated numerous descriptive statis-
tics and performed sensitivity analyses for both model 
formulation solutions, this paper only displays the overall 
graphical results and the descriptive statistics/analyses of 
the first model formulation solution.

3.4.1 Graphical Results
The graphical results of both optimization model formula-
tions have nearly equal solutions for the stochastic 
generation of casualty demand, and which type and where 
to optimally emplace MEDEVAC helicopters at a subset of 
the MTF evacuation sites. Figure 5 shows that both model 
formulations have identical results, except for the fact that 

Figure 5. Model solution with helicopter emplacements
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the emplacement of aircraft types K1 and K3 are swapped 
at MTF sites E10 and E16 (depicted by circles).

3.4.2 Descriptive Statistics
Descriptive statistics for the modeling scenarios (see 
Table 4) are generated within our model implementation 
framework to capture the casualty generation, helicopter 
positioning, distance/speed/time, and scenario sampling 
statistics.

The total number of casualties generated was equivalent 
for both model formulation solutions with an average of 36 
casualties generated per month, which is based on the 

probability mass function for the number of casualties 
evacuated from the same location used in our experiment. 
This amount slightly exceeds the historical, deterministic 
data of 30 WIA soldiers per month. From the descriptive 
statistics displayed in Table 4, it is interesting to note the 
actual number and percentage of casualties evacuated, 
where only an average of 30% of total casualties were evac-
uated each month. The reason for these low amounts and 
percentages of evacuated WIA soldiers directly correlates 
to the Pijkw values, the probability of successfully evacuat-
ing patients from each of the casualty demand locations 
within two hours. Although most of the casualty locations 

Table 4.  Descriptive statistics for model formulation #1 solution

Descriptive Statistics Formulation #1 Design of Experiment Factor Scenarios Average

 1 2 3 4 5 6 7 8

Total number of casualities generated  35  32  35  38  38  36  37  33  36

Total number of casualities evacuated 
from casuaity sites to_from MEDEVAC  
Helicopters empiaced at a MTF

E3   2   1   1   2   2   3   1   1   1
E4   1   1   1   1   2   1   3   1   1
El0   1   1   1   1   1   1   3   1   1
El1   1   1   3   1   1   1   1   1   2
E12   1   1   1   2   2   1   1   1   1
E14   1   1   1   1   2   1   1   1   1
El5   1   2   4   1   1   1   1   1   2
E16   1   2   1   1   1   1   1   2   1

Number of  WIA evacuated   9  10  13  10  12  10  12   9  11
percent of  total casualities evacuated  26% 31% 37% 26% 32% 28%  32%  27%  30%

Total distance traveied per month (NM)  
to_from MEDEVAC helicopters  
Empiaced at a MTF to evacuate WIAs

E3 441.0 720.2 200.1 411.5 418.4 59.8 1001.1 148.7 425.1
E4 702.7 121.9 649.8 766.7 42.6 327.3 50.9 66.0 341.0
El0 589.5 598.4 143.1 36.7 685.4 201.2 37.4 210.0 312.7
El1 164.7 565.1 119.1 157.9 152.1 171.1 174.3 85.9 198.8
E12 149.8 302.4 704.6 54.9 137.4 352.8 126.8 420.4 281.1
E14 446.2 294.9 135.1 91.4 70.4 126.4 162.0 255.7 197.8
El5 456.7 39.1 29.8 44.3 140.4 576.9 111.2 36.7 179.4
E16 231.0 58.8 362.0 332.8 308.5 126.4 437.0 85.4 242.7

Mean MEDEVAC distance for all WIAs 452.8 349.8 333.9 295.3 328.0 257.7 284.7 174.3 309.6
Mean MEDEVAC velocity for all WIAs 157.3 157.3 155.9 155.5 156.3 156.7 156.3 156.7 156.5
Mean MEDEVAC time for all WIAs 2.88 2.22 2.14 1.90 2.10 1.64 1.82 1.11 2.0
E(X 2) for simulation average total  16.2 11.3 10.6 11.0 11.0 6.8 10.3 4.1
MEDEVAC time
(E(X)) 2 for mean MEDEVAC  time  8.3 4.9 4.6 3.6 4.4 2.7 3.3 1.2
for al l WIAs
Standard deviation of MEDEVAC time 1.00 0.89 0.87 0.96 0.91 0.71 0.94 0.60
Final standard error 8.7%
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have a maximum probability of successful casualty evacu-
ation of 100% for each of the scenarios, the overall average 
probability of successfully evacuating casualties within 
two hours from all casualty demand locations over all sce-
narios equals 63%. These averages, however, do not 
account for the combinations of i, j, and k with success rates 
of 0% (if this were the case, then the average percentages 
would be much lower at around 10–20%). In fact, most of 
the combinations of i, j, and k have success probabilities of 
0% because of the location we set for each AO hotbed, their 
distance away from the pre-determined feasible MTF evac-
uation sites, and our stochastic method for generating 
casualties up to 100 nautical miles away from an AO hotbed 
location. Regardless of these casualty statistics, nearly all 
of the WIA soldiers will be evacuated from the casualty 
demand locations in an actual combat environment despite 
the two-hour MEDEVAC time threshold. Also, Table 4 dis-
plays the mean MEDEVAC distance, velocity and time 
statistics, as well as the sampling statistics for each model-
ing scenario. These statistics consider all MEDEVAC times 
to evacuate casualties and not simply times under the two-
hour threshold. Therefore, it is interesting to note that the 
average over all scenarios of mean MEDEVAC times was 
roughly two hours for the first (and second) model formula-
tion solution. In addition, the final standard error between 
the Monte Carlo simulation average MEDEVAC time and 
the mean MEDEVAC time over all scenarios is less than 
12% in both model formulation solutions (note: Euclidean 
distance is used for these time calculations). 

3.4.3 Sensitivity Analyses
Our decision analysis methodology executes a preset 
number of times to better aid the decision maker with a 
range of solutions, as well as performing sensitivity analy-
ses on two different model data parameters. In particular, 
we analyzed solution sensitivity for both model formula-
tions by measuring the impact on the number of casualties 
evacuated per month when changing the probability that at 
least one helicopter is available to conduct an MEDEVAC 
mission, as well as each goal priority weight. Firstly, we 
tested the sensitivity of the helicopter availability reliability 
from 90% to 100% probability that at least one helicopter is 
available at a MTF evacuation site, but found no significant 
relationship. Next, we compared the average priority goal 
weight with the average number of casualties evacuated 
over 10 runs. We discovered that the priority weight of 
Goal #1 has the greatest impact on the optimal solution 
when compared to the other two goal priority weights. We 
conducted identical sensitivity analyses for the second 
model formulation solution, but we found no interesting 
difference. Nonetheless, Figure 6 illustrates the increasing 
linear relationship between the average priority weight for 
the first goal weight and the average number of casualties 
evacuated over the scenario set. 

The results and analysis presented here clearly highlight 
the functionality of our scenario-based, stochastic opti-
mization goal-programming model for determining the 
optimal emplacement (with respect to aircraft type and 
quantity) of MEDEVAC helicopters at a subset of feasible 
MTF evacuation sites, such that the aggregate expected cas-
ualty demand coverage is maximized while the MEDEVAC 
helicopter spare capacities and maximal MTF site total vul-
nerability are minimized. Furthermore, the solutions to our 
experiment concerning the Afghanistan MEDEVAC asset 
optimization problem are based on notional input data for 
U.S. Army security purposes, as well as numerous assump-
tions made for quantification of the model data parameters. 
Lastly, it is evident from the descriptive statistics and sensi-
tivity analyses that our optimal solutions obtained from 
both model formulations are influenced by numerous fac-
tors as previously discussed.

4 Conclusions and Recommendations

4.1 Conclusions

Although more casualties survive compared to any other 
war due to the current HSS system, the U.S. Army can still 
greatly improve its systematic approach to treat and air 
evacuate casualties from combat zones in order to maintain 
a healthy force and to conserve the combat strength of 
deployed soldiers. In particular, military commanders have 
faced a significant combinatorial challenge since the begin-
ning of OEF, integrating limited air evacuation assets into 
a comprehensive system for the entire combat theatre. 
Therefore, thorough modeling and analysis is crucial for 
military medical planners seeking the optimal emplacement 
of these MEDEVAC assets, which serve as the primary 
means for saving lives during steady-state combat opera-
tions. In addition, further investigation and development of 
improved analytical solutions concerning the optimization 
of casualty coverage, air ambulance helicopter utilization, 
and vulnerability to enemy attack measures directly sup-
ports the military medical mission. 

This work described our robust, multi-criteria modeling 
approach for optimizing MEDEVAC asset emplacement, 
which U.S. Army medical planners can use as a strategic 
and tactical MEDEVAC asset-planning tool to help sustain 
and improve the MEDEVAC system in Afghanistan. 
Specifically, this model first generated casualty demand 
locations and then optimized over a set of expected sce-
narios based on these stochastically determined casualty 
locations in order to emplace the minimum number of heli-
copters at each MTF necessary to maximize the coverage 
of the theatre-wide casualty demand and the probability of 
meeting that demand, while minimizing the maximal MTF 
evacuation site total vulnerability to enemy attack.
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Although our solution methodology used in the experi-
ment focused on optimizing the U.S. Army’s MEDEVAC 
system in Afghanistan, the results clearly demonstrate that 
our modeling approach can be employed as a useful ana-
lytical tool for decision makers seeking to optimize the 
emplacement of limited resources based on the probability 
of covering geographically variant demand requirements. 
Our decision analysis methodology utilizes multi-criteria, 
scenario planning, and stochastic optimization methods to 
help support tactical MEDEVAC asset planning for steady-
state military operations. Endless opportunities exist to 
utilize our solution methodology within (and outside) the 
military medical community.

4.2 Limitations and Future Work
The results of our experiment are limited to the assumptions 
made and the data used during model development. 
Therefore, our experiment would improve with updated 
MEDEVAC data from in-theatre subject matter experts, par-
ticularly to fine tune the quantification of numerous model 
data parameters and the various probability distributions. 

As seen from our results and analyses, optimal model 
solutions are heavily dependent on the DOE scenarios 
input by the decision maker, where the priority weight of 
the first optimization goal has the greatest sensitivity. In 
addition, our modeling approach is limited by the proba-
bility of successfully evacuating patients from each of the 
casualty demand locations within two hours. This data 
parameter greatly affects the number and percentage of 
actual monthly WIA casualty evacuations. Future work is 
needed to further develop and implement our three-
dimensional shortest helicopter path algorithm to compute 
this essential model data parameter. Our algorithm imple-
mentation remains a work-in-progress due to the comp lexity 
associated with data collection for the feasibility conditions 

(as the real data is classified) and the algorithm inputs, 
yet proves useful as a future modeling add-in for more 
accurate three-dimensional helicopter flight times during 
combat operations.

Moreover, this experiment utilizes only a small sample 
of air ambulance and MTF attributes. The addition of attri-
butes, however, increases problem complexity and slows 
the model computation time, which is a significant limita-
tion for tactical MEDEVAC asset optimization. Also, our 
methodology only considers a monthly planning time hori-
zon as opposed to multi-period analysis, because 
multi-period analysis is not particularly useful for geo-
graphically variant resource emplacement in military 
stability operations. Nonetheless, a multi-period extension 
to the model would be useful for strategic medical model-
ing in non-stability combat operations where the operation 
tempo varies over time and sufficient planning over multi-
ple time periods is necessary.

Further expansion of the model is needed to account for 
ground casualty evacuation assets and not only MEDEVAC 
helicopter emplacement. This methodology can also be 
extended to account for MTF patient capacities, as well as 
inserting parameters that model the future capabilities of 
evacuation and hospital assets. The model, however, can be 
easily re-formulated to account for these changes, as well 
as different objective functions and constraints. Future 
areas of research concern dynamic approaches and tech-
niques for military medical modeling to assist U.S. Army 
medical planners in both ground and air evacuation asset 
scheduling and routing decisions. 

Acknowledgments
This work could not have been done without the thankless pro-
fessional support and development from Dr. Alexander Grigoriev 
at Maastricht University, Mr. Jack Zeto, LTC Wade Yamada and 
Ms. Gale Collins at the CAA, COL Larry Fulton at the Center 

Figure 6. Model #1 sensitivity of average priority weight for Goal #1



Nathaniel D. Bastian 23

Author Biography

Nathaniel D. Bastian is a commissioned officer in the U.S. 
Army, where he serves as an Aeromedical Evacuation Officer 
in the Medical Service Corps branch. He earned his Bachelor 
of Science degree in Engineering Management with Honors 
from the U.S. Military Academy at West Point, and he earned 
his Master of Science degree in Econometrics and Operations 
Research from Maastricht University School of Business and 
Economics in The Netherlands. His work and research, which 
was conducted as a Fulbright U.S. Students Program Fellow 
through the Netherland–America Foundation, has application 
to medical evacuation and ambulatory asset optimization for 

systematic decision making. He is a certified engineer-in-
training and engineering manager from the National Council 
of Examiners for Engineering and Surveying (NCEES) and 
Engineering Management Certification International (EMCI), 
respectively, and he serves as a co-editor for The Internet 
Journal for Aeromedical Transportation. In addition, he is a 
member of the American Society for Engineering Management 
(ASEM), the Military Operations Research Society (MORS), 
the Institute for Operations Research and Management 
Science (INFORMS), Phi Kappa Phi, and the Epsilon Mu Eta 
Engineering Management Honor Society.

for Army Medical Department (AMEDD) Strategic Studies, the 
Medical Evacuation Proponency Directorate, and the Depart-
ment of Systems Engineering at the U.S. Military Academy at 
West Point.

References
 1. Army Field Manual 4-02. Force Health Protection in a 

Global Environment. 2003.
 2. Operation Enduring Freedom (OEF) U.S. Casualty Status 

Fatalities. http://www.defenselink.mil/news/casualty.pdf 
(accessed May 4, 2009).

 3. Daskin M. What you should know about location modeling. 
Naval Research Logistics 2008; 55: 283–294.

 4. Zeto J, Yamada W, and Collins G. Optimizing the emplace-
ment of scarce resources to maximize the expected coverage 
of a geographically variant demand function. Study devel-
oped at the Center for Army Analysis (CAA), 2006.

 5. Fulton L, Lasdon L, McDaniel R, and Wojcik B. Two-stage 
stochastic optimization for the allocation of medical assets 
in steady state combat operations. Study developed at the 
Center for AMEDD Strategic Studies (CASS), 2009.

 6. Alsalloum O, Rand G. Extensions to emergency vehicle 
location models. Computers & Operations Research 2006; 
33: 2725–2743.

 7. Durbach I, Stewart T. Integrating scenario planning and goal 
programming. Journal of Multi-Criteria Decision Analysis 
2003; 12: 261–271.

 8. West P. Solution design. In Parnell G, Driscoll P, and 
Henderson D (eds) Decision making in systems engineering 
and management. 2008, pp.317–355.

 9. Kleywegt A, Shapiro A. Chapter 101: stochastic optimi-
zation. Work done at the School of Industrial and Systems 
Engineering at Georgia Institute of Technology, 2000.

10. Basic Helicopter Handbook. http://www.geocities.com/fly-
ingmouse1 (accessed June 26, 2009).

11. Dijkstra E. A note on two problems in connection with 
graphs. Numerische Mathematik 1959; 1: 269–271.

12. Campbell J, Shapiro J. Afghanistan index: tracking variables 
of reconstruction and security in post-9/11Afghanistan. http://
www.brookings.edu/ afghanistanindex (2008, accessed May 
9, 2009).

13. Operation Enduring Freedom aviation operations. Combat 
aviation brigade in Afghanistan initial impressions report, 
2008.

14. Federal of American Scientists. UH-60 Black Hawk, UH-60L 
Black Hawk, UH-60Q MEDEVAC, MH-60. http://www.fas.
org/programs/ssp/man/uswpns/air/rotary/sh60.html (accessed 
May 5, 2009). 


