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ABSTRACT
In evolutionary graph theory [1] biologists study the prob-
lem of determining the probability that a small number
of mutants overtake a population that is structured on a
weighted, possibly directed graph. Currently Monte Carlo
simulations are used for estimating such fixation probabil-
ities on directed graphs, since no good analytical methods
exist. In this paper, we introduce a novel deterministic al-
gorithm for computing fixation probabilities for strongly
connected directed, weighted evolutionary graphs under
the case of neutral drift, which we show to be a lower bound
for the case where the mutant is more fit than the rest of the
population (previously, this was only observed from simu-
lation). We also show that, in neutral drift, fixation prob-
ability is additive under the weighted, directed case. We
implement our algorithm and show experimentally that it
consistently outperforms Monte Carlo simulations by sev-
eral orders of magnitude, which can allow researchers to
study fixation probability on much larger graphs.

KEY WORDS
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1 Introduction

Evolutionary graph theory, introduced in [1] studies the
problem of a mutant overtaking a population whose under-
lying structure is represented as a directed, weighted graph.
This model has been applied to problems in evolutionary
biology [2], physics [3], and game theory [4]. Most work
with evolutionary graphs concerns computing the fixation
probability - the probability that a certain subset of mu-
tants overtakes the population. Although good analytical
approximations are available for the undirected case [5, 6],
these break down for directed, weighted graphs as shown in
[7], even in the case of neutral drift1. As a result, most work
dealing with evolutionary graphs rely on Monte Carlo sim-
ulations to approximate the fixation probability [8, 9, 10].
In this paper we develop a novel deterministic algorithm to
compute fixation probability in the case of neutral drift in

1Neutral drift is the case where mutants and residents have the same
fitness.

directed, weighted evolutionary graphs based on the con-
vergence of “vertex probabilities” to the fixation probabil-
ity as time approaches infinity. We then prove that the fixa-
tion probability computed in neutral drift is a lower bound
for the fixation probability when the mutant is more fit
than the resident, confirming the simulation observations
of [11]. We also show that fixation probability under neu-
tral drift is additive (even for weighted, directed graphs),
which extends the work of [6] which proved this for undi-
rected graphs. Further, we implemented our algorithm and
show that it outperforms Monte Carlo simulations by sev-
eral orders of magnitude. The paper is organized as fol-
lows. In Section 2 we review the original model of [1] and
introduce the idea of “vertex probabilities.” In Section 3
we show how vertex probabilities can be used to find the
fixation probability. This is followed by our experimental
evaluation in Section 4. Finally, related work is discussed
in Section 5.

2 Technical Preliminaries

The Moran Process [12] is a stochastic process used to
model evolution in a well-mixed population. All the in-
dividuals in the population are either mutants or residents.
The aim of such work was to determine if a set of mutants
cold take over a population of residents. In [1], evolution-
ary graph theory (EGT) is introduced, which generalizes
the model of the Moran Process by specifying relationships
between the N individuals of the population in the form of
a directed, weighted graph. We re-introduce their model
in this section. First, we define an evolutionary graph is
defined as follows.

Definition 1 (Evolutionary Graph (EG) [1]). Given natural
number N , set of individuals V = {v1, . . . , vi, . . . , vN}
and adjacency matrix W = [wij ] s.t. ∀i,

∑
j wij = 1

and wii = 0, the tuple 〈N,V,W 〉 is an evolutionary graph
(EG).

Intuitively, wij is the weight of the edge from vertex vi to
vj . In all literature on evolutionary graph theory known
to the authors, the evolutionary graph is assumed to be
strongly connected as defined below. We make the same
assumption.
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Figure 1: Example strongly connected, directed, and
weighted graph.

Definition 2 (Strongly Connected). An evolutionary graph
〈N,V,W 〉 is strongly connected if for all distinct vertices
vi, vj ∈ V , there is a directed path from vi to vj such that
for all edges in the path (va, vb), wab > 0.

As all individuals in the population are either mutants or
residents, we define a configuration of mutants and resi-
dents in the EG.

Definition 3 (Configuration). Given evolutionary graph
〈N,V,W 〉, a configuration C is a subset of V such that all
individuals in C are mutants and all individuals in V − C
are residents. The set 2V is the set of all configurations.

In [1], the authors specify a stochastic process known as
the Moran Process on Graphs which we define below.

Definition 4 (Graphical Moran Process (GMP) [1]). Given
evolutionary graph 〈N,V,W 〉 and real number r > 0
(known as the relative fitness), the Graphical Moran Pro-
cess (GMP) is specified as follows. For any configuration
C ⊆ V , some vertex vi ∈ V is selected for birth. If vi
is in C it is selected with a probability r

r·|C|+|V−C| and
1

r·|C|+|V−C| otherwise. Then vertex vj is selected with
probability wij for death and replaced by a clone of vi.
Hence, if vi is a mutant, the new configuration is C ∪ {vj}
and C − {vj} otherwise.

Note if r = 1, we say we are in the special case of neutral
drift. The following is an example of this process.

Example 1. Consider the evolutionary graph specified by
Figure 1, which is directed, weighted, and strongly con-
nected. Suppose vertex 1 in the graph is a mutant. Then,
one possible sequence that leads to fixation is shown in Fig-
ure 2 and has the probability of 2.93 · 10−5 under neutral
drift (r = 1). For instance, to transition from the config-
uration labeled A to the configuration labeled B (where
node 2 becomes a mutant as well) requires for node 1 to
be picked for birth (with a probability 0.25) and node 2
selected to die (which occurs with a probability of 0.5 by
the edge weight). Hence, the transition to configuratiaon
B from A is 0.125.

Based on the definition of GMP, we will use the notation
Pr(C(t)) to refer to the probability of being in configu-
ration C after t timesteps of the GMP. Perhaps the most
widely studied problem in evolutionary graph theory is to
determine the fixation probability. We define it formally
below.
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Figure 2: A sequence of mutant-resident configurations
leading to fixation that happens with a probability of 2.93 ·
10−5 under neutral drift. Mutant nodes are shaded. A is
the initial state and F is the final absorbing state.

Definition 5 (Fixation Probability). Given an evolution-
ary graph 〈N,V,W 〉, real number r > 0, and con-
figuration C ⊆ V the fixation probability, PC , is
limt→∞Pr(V (t)|C(0)).

Intuitively, this is the probability that an initial set C of
mutants takes over the entire population. Similarly, we
will use the term the extinction probability, PC , to be
limt→∞Pr(∅(t)|C(0)). If the graph if strongly connected,
we have the following well-known result.

Proposition 1. Given EG 〈N,V,W 〉, real number r > 0,
and configuration C ⊆ V , if the EG is strongly connected,
then under GMP we have PC + PC = 1

The above result essentially says that for a strongly con-
nected graph, a mutant either fixates or becomes extinct.
As [1] showed that an optimization problem related to com-
puting fixation probability is NP-hard, much of the work
on evolutionary graph theory relies on Monte Carlo simu-
lations to calculate PC . Algorithm 1 shows pseudo-code
to find the PC for the GMP using Monte Carlo simulations
for the case of neutral drift. The time complexity is simply
O(RTsim), where R is the number of simulation runs exe-
cuted (loop at line 2) and Tsim is the average time it takes
for the evolutionary process to reach mutant extinction or
fixation (the first nested loop at line 3).



Algorithm 1 - Monte Carlo Simulation to Compute Fixa-
tion Probabilities
Input: Evolutionary Graph 〈N,V,W 〉, configuration
C ⊆ V , and natural number R > 0.
Output: Estimate of fixation probability of mutant.

1: x ← 0 {x will count number of times the mutant fix-
ates}

2: for i = 0→ R do
3: Set current configuration C∗ = C
4: while While (C∗ 6= V ) or (C∗ = ∅) do
5: Select vertex vi ∈ V with probability 1/N
6: Select vertex vj ∈ V with probability wij

7: If vi ∈ C∗ set C∗ = C∗ ∪ {vj}. Otherwise set
C∗ = C∗ − {vj}

8: end while
9: If C∗ = V then x++

10: end for
11: return x/R {the estimated fixation probability}

Further, based on the commonly-accepted definition
of estimated standard error from statistics, we can obtain
the estimated standard error for the solution returned by
Algorithm 1.

Proposition 2. The estimated standard error of the solu-

tion, S returned by Algorithm 1 is
√

S(1−S)
R−1 .

This work uses the idea of a vertex probilities to cre-
ate an alternative to Algorithm 1. A vertex probability is
defined formally below.

Definition 6 (Vertex Probability). Given an evolutionary
graph, 〈N,V,W 〉 and time t ≥ 0, the vertex proba-
bility for vi ∈ V is written Pr(M(t)

i ) and defined as∑
C∈2V s.t. vi∈C

Pr(C(t)).

Hence, the vertex probability is the probability that a given
vertex at a certain time is a mutant. When we refer to the
set vertex probabilities of each element of V at some time
t, we shall use the term vertex probability vector. Viewing
the probability that a specific vertex is a mutant at a given
time has not, to our knowledge, been extensively studied
before with respect to evolutionary graph theory (or the
voter models in statistical physics). The key insight of this
paper is that studying these probabilities sheds new light
on the problem of calculating fixation probabilities. For
example, it is easy to show the following relationship.

Proposition 3. LetC be a subset of V and t be an arbitrary
time point. Iff for all vi ∈ C, Pr(M(t)

i ) = 1 and for all
vi /∈ C, Pr(M(t)

i ) = 0, then Pr(C(t)) = 1 and for all
C ′ ∈ 2V s.t. C ′ 6≡ C, Pr(C ′(t)) = 0.

Proof Sketch. Suppose, BWOC, there is some C ′ 6≡
C where Pr(C ′(t)) > 0. Clearly, there must exist some
element vi ∈ C that is not in C ′. By Definition 6, this
causes Pr(M(t)

i ) < 1, which is a contradiction. Going the

other direction, we need only to consider that Pr(C(t)) is
in the summand of each Pr(M(t)

i ) associated only with a
vi ∈ C. �

We will also use random variables S(t)
i to denote the

event that vertex vi was selected for reproduction and R(t)
ij

to denote the event of vi replacing vj . We will often use
conditional probabilities. For example, Pr(M(t)

i |C(0)) is
the probability that vi is a mutant given the initial set C
of mutants. Throughout this paper, unless noted other-
wise, all of our probabilities will be conditioned on C(0).
We will drop it for ease of notation with the understand-
ing that some set C of V were mutants at t = 0. Hence,
Pr(M(t)

i ) = Pr(M(t)
i |C(0)). It is easy to verify that PC > 0

iff ∀vi ∈ V , limt→∞Pr(M(t)
i ) > 0. Hence, in this pa-

per, we shall generally assume that limt→∞Pr(M(t)
i ) > 0

holds for all vertices vi and specifically state when it does
not. As an aside, for a given EG, this assumption can be
easily checked in in polynomial time. Simply ensure for
vj ∈ V − C that exists some vi ∈ C s.t. there is a directed
path from vi to vj .

3 Directly Calculating Fixation Probability

Now that we have introduced the model and the idea of
vertex probabilities we will show how to leverage this in-
formation in our algorithm to compute fixation probability.
First, we show that as time approaches infinity, the vertex
probabilities for all vertices converge to the fixation proba-
bility when the graph if strongly connected.

Theorem 1. If the graph is strongly connected, ∀i,
limt→∞ Pr(M(t)

i ) = PC .

Proof Sketch. As time approaches infinity, there are only
two possible configurations of mutants - sets ∅ and V corre-
sponding with extinction and fixation respectively. By Defi-
nition 6, as time approaches infinity, the probability of any
vertex being a mutant must be the equal to the fixation prob-
ability. Hence, the statement follows. �
Now let us consider how to calculate Pr(M(t)

i ) for some vi
and t. For t = 0, where we know that we are in the state
where only vertices in a given set are mutants, we need only
appeal to Proposition 3 - which tells us that we assign a
probability of 1 to all elements in that set and 0 otherwise.
For subsequent timesteps, we have developed Theorem 2
shown next.

Theorem 2. Pr(M(t)
i ) equals∑

(vj ,vi)∈E

(
wji · Pr(M(t−1)

j ) · Pr(S(t)
j |M

(t−1)
j )

−wji · Pr(M(t−1)
i ) · Pr(S(t)

j |M
(t−1)
i )

)
+ Pr(M(t−1)

i )

(S(t)
i is true iff vi is selected for reproduction at time t.)

Proof Sketch. Note we use the variable R(t)
ji is true iff

vj replaces vi at time t. First we show that Pr(M(t)
i ) =



Pr(M(t−1)
i ∧

∧
(vj ,vi)∈E ¬S(t)

j ) +
∑

(vj ,vi)∈E Pr(S(t)
j ∧ R(t)

ji ∧
M(t−1)

j ) +
∑

(vj ,vi)∈E Pr(S(t)
j ∧ ¬R(t)

ji ∧M(t−1)
i ) by the orig-

inal model. Then, by the definition of conditional proba-
bility, we get Pr(M(t−1)

i ∧
∧

(vj ,vi)∈E ¬S(t)
j ) = Pr(M(t−1)

i ) ·(
1−

∑
(vj ,vi)∈E Pr(S(t)

j |M
(t−1)
i )

)
. Then, by further manip-

ulating the probability axioms as well as Bayes Theorem,
we obtain Pr(S(t)

j ∧ R(t)
ji ∧ M(t−1)

j ) = wji · Pr(M(t−1)
j ) ·

Pr(S(t)
j |M

(t−1)
j ) as well as Pr(S(t)

j ∧ ¬R(t)
ji ∧ M(t−1)

i ) =

(1−wji) · Pr(M(t−1)
i ) · Pr(S(t)

j |M
(t−1)
i ). After showing all of

these items, we obtain the statement of the theorem through
algebraic manipulation. �
Although finding Pr(S(t)

i |M
(t−1)
j ) may be computationally

intractable in practice, the good news is that for neutral drift
(r = 1), these conditional probabilities are trivial - specif-
ically, we have Pr(S(t)

i ) = 1/N for all i and this is inde-
pendent of the current set of mutants or residents in the EG.
Hence, we can simplify Pr(M(t)

i ) as follows.

Corollary 1. Under r = 1, Pr(M(t)
i ) equals

1

N

∑
(vj ,vi)∈E

wji ·
(

Pr(M(t−1)
j )− Pr(M(t−1)

i )
)
+ Pr(M(t−1)

i )

Studying evolutionary graph theory under neutral drift was
a central theme in work such as [6, 7, 11] as it provides
an intuition on the effects of network topology on mutant
spread. We shall focus on neutral drift in this paper as well.
This special case also allows us to strengthen the state-
ment of Theorem 1 to a necessary and sufficient condition -
showing that when the probabilities of all nodes are equal,
then we can determine the fixation probability.

Theorem 3. When r = 1, if for some time t, ∀i, the value
Pr(M(t)

i ) is the same, then Pr(M(t)
i ) = PC .

Proof Sketch. Consider Pr(M(t)
i ) = Pr(M(t−1)

i ) +
1
N

∑
(vj ,vi)∈E wji · (Pr(M(t−1)

j ) − Pr(M(t−1)
i )) when for

t − 1, ∀i, j we have Pr(M(t−1)
j ) = Pr(M(t−1)

i ). Clearly,

in this case, the value for Pr(M(t)
i ) = Pr(M(t−1)

i ). As the
probabilities of all vertices was the same at t − 1, they re-
main so at t. Therefore, in this case, limt→∞ Pr(M(t)

i ) =

Pr(M(t)
i ). By Theorem 1, this equals PC . �

Therefore, under neutral drift, we can determine fixation
probability when the equation of Corollary 1 causes all
Pr(M(t)

i )’s to be equal. We can also use Corollary 1 to
find bounds on the fixation probability for some time t by
the following result.

Theorem 4. For any time t, under neutral drift (r = 1),
PC ∈ [mini Pr(M(t)

i ),maxi Pr(M(t)
i )].

Proof Sketch. For any time t, under neutral drift (r = 1),
PC ≤ maxi Pr(M(t)

i ).
We show that for each time step t, maxi Pr(M(t−1)

i ) ≥
maxi Pr(M(t)

i ). Hence, by showing that, for any time t′,
we have maxi Pr(M(t′)

i ) ≥ limt→∞maxi Pr(M(t)
i ) which

by allows us to apply Theorem 1 and obtain the statement
of this theorem. Let vi be the vertex that at time t be-
comes achieves the greatest increase in vertex probability.
At time t. The rest follows by Corollary 1, and the fact that
maxj Pr(M(t−1)

j ) ≥ Pr(M(t−1)
j ) Which gives us the upper

bound. The second part of the proof, which is used for the
lower bound, mirrors this part. �

Under neutral drift, we can show that fixation prob-
ability is additive for disjoint sets. A similar result was
proved for a special case (that is, undirected evolutionary
graphs) in [6]. However, our proof differs from theirs in
that we leverage Corollary 1.

Theorem 5. When r = 1 for disjoint sets C,D ⊆ V , PC+
PD = PC∪D.

Proof Sketch. Consider some time t and vertex vi. Clearly,
by Corollary 1, Pr(M(t)

i ) can be expressed as a linear com-
bination of the form

∑
vj∈V (Cj · Pr(M(0)

j )) where Cj is
a coefficient. We note that these coefficients are the same
regardless of the initial configuration of mutants that M(t)

i

is conditioned on. Hence, Pr(M(t)
i |C(0)) is this positive

function with Pr(M(0)
j ) = 1 if vj ∈ C and 0 other-

wise (see Proposition 3). Hence, for disjoint C,D, for
any vi ∈ V , we have Pr(M(t)

i |C(0)) + Pr(M(t)
i |D(0)) =

Pr(M(t)
i |(C ∪D)(0)). The statement follows. �
In [11], the author observes experimentally (through

simulation) that the fixation probability computed with
neutral drift appears to be a lower bound on the fixation
probability calculated with a mutant fitness r > 1. Here,
we prove this to be true mathematically.

Theorem 6. For a given set C, let P (1)(C) be the fixation
probability under neutral drift and P (r)(C) be the fixation
probability calculated using a mutant fitness r > 1. Then,
P (1)(C) ≤ P (r)(C).

Proof Sketch. After introducing some notation,2 we show
first, by the rules of dynamics, we show that if a some time
period t, the probability distribution over mutant configu-
rations is I, mutant fitness r, and the transition functions
used to reach the next time step are χ

(r)
+ , χ

(r)
− , and all

2Proof Setup. We define an interpretation, I : 2V → [0, 1] as
probability distribution over mutant configurations. Hence, for some I
we have

∑
C∈2V I(C) = 1. Next, we define a transition function that

maps configurations of mutants to probabilities, χ : 2V → [0, 1] where
for any C ∈ 2V ,

∑
C′∈2V χ(C,C′) = 1. We will use χ+ and χ−

to indicate if the transition is made with a mutant being selected for
birth (χ+) or resident (χ−). Hence, for some C ∈ V and v /∈ C,
χ−(C,C∪{v}) = 0 and χ+(C∪{v}, C) = 0. Hence, for allC ∈ 2V ,∑

C′∈2V (χ+(C,C′) + χ−(C,C′)) = 1. If the transition function is
based on birth-death and computed with some r > 1, then we will write
it as χ(r)

+ , χ
(r)
− respectively. If computed with r = 1, then we write

χ
(nd)
+ , χ

(nd)
− respectively. For some C ∈ 2C , let inc(C) be the set of

all elements D ∈ 2V s.t. |D| ≥ |C| and χ+(C,D) > 0. For some
C ∈ 2C , let dec(C) be the set of all elements D ∈ 2V s.t. |D| ≤ |C|
and χ−(C,D) > 0. Given set C ⊆ V , we will use P (r)

C to denote the
probability of fixation given initial set of mutants C where the value r is
used to calculate all transition probabilities.



Table 1: Example of Algorithm 2 for Example 2.

T 0 1 2 . . . 49 50

v1 1.0 0.775 0.629 . . . 0.1865 0.1864

v2 0.0 0.125 0.175 . . . 0.1859 0.1859

v3 0.0 0.000 0.006 . . . 0.1848 0.1849

v4 0.0 0.125 0.206 . . . 0.1870 0.1868

τ 0.5 0.388 0.311 . . . 0.0011 0.0009

subsequent transitions are computed using the same dy-
namics with neutral drift, then the fixation probability is:
P(I, r) =∑

C∈2V I(C) ·
(∑

D∈inc(C)(χ
(r)
+ (C,D) · P (1)

D )+∑
D∈dec(C)(χ

(r)
− (C,D) · P (1)

D ))
)

. Then, by algebraic manip-

ulation, we show that for some r ≤ r′, for all C,D ∈ 2V ,
we have χ

(r)
+ (C,D) ≤ χ

(r′)
+ (C,D) and χ

(r)
− (C,D) ≥

χ
(r′)
− (C,D). From Theorem 5, we know that given some
C ∈ 2V , for all pairs D,D′ where D ∈ inc(C) and
D′ ∈ dec(C), we have P (1)

D ≥ P
(1)
D′ . We then prove that

given interpretation I, for some r > 1, P(I, r) ≥ P(I, 0),
from which the theorem follows. �

3.1 The Algorithm

Now we have shown all the necessary properties of ver-
tex probabilities to create our algorithm. Algorithm 2
shows pseudo-code to compute the fixation probability us-
ing our method. As described above, our method has found
the exact fixation probability when all the probabilities in
Pr(M(t)) (represented in the pseudo-code as the vector p)
are equal. We use Theorem 4 to provide a convergence
criteria based on value ε, which we can prove to be the tol-
erance for the fixation probability. Next, we show the time
complexity and approximation guarantee of the algorithm,
which follows from the results of this section. We also pro-
vide an example of how it works in Example 2.

Proposition 4. • Where Tsol is the number of time steps
to convergence (based on ε) and K is the average
in-degree of the vertices in the evolutiuonary graph,
O(TsolNK) is the time complexity of Algorithm 2.

• Algorithm 2 returns the fixation probability PC within
±ε.

Example 2. Consider the scenario introduced in Exam-
ple 1. Suppose we decide to use Algorithm 2 to compute
the fixation probability with ε = 0.001. Table 1 shows the
vertex probability vector at each time step, along with the
value for τ from Algorithm 2. Hence, at 50 timesteps, the
algorithm returns a fixation probability of 0.186.

Algorithm 2 - Our Novel Solution Method to Compute
Fixation Probabilities
Input: Evolutionary Graph 〈N,V,W 〉, configuration
C ⊆ V , natural number R > 0, and real number ε ≥ 0.
Output: Estimate of fixation probability of mutant.

1: pi is the ith position in vector p corresponding with
vertex vi ∈ V .

2: Set pi = 1 if vi ∈ C and pi = 0 otherwise.
3: q← p {q will be p from the previous time step.}
4: τ ← 1
5: while τ > ε do
6: for vi ∈ V do
7: sum← 0
8: m← {vj ∈ V |wji > 0}
9: for vj ∈ m do

10: sum = sum+ wji · (qj − qi)
11: end for
12: pi ← qi + 1/N · sum
13: end for
14: q← p
15: τ ← (1/2) · (max p−min p)
16: end while
17: return (min p) + τ

In the above result, Since T depends on a desired tol-
erance, we cannot compare our algorithm’s performance to
monte-carlo simulation without the right termination con-
dition. Thus in our later experiments we first find fixation
probabilties using monte-calro simulation and then find the
number of timesteps T that it takes our solution method to
find a fixation probability within standard error of the sim-
ulation method.

It is easy to show that the expected number of mutants
as time approaches infinity is equal to PC ·N - as PC is the
probability of being in the state where all the vertices are
mutants and N is the population (as the only other possi-
ble state as time approaches infinity is extinction - which
has no mutants). For any time step t, the expected number
of mutants is

∑
vi∈V Pr(M(t)

i ) which follows directly from
Definition 6. Hence, returning the average vertex proba-
bility for a sufficiently large value of t may also provide a
good approximation. We also note, that as the vertex prob-
abilities converge, the standard deviation of the p vector in
Algorithm 2 could be a potentially faster convergence cri-
teria. Note that using standard deviation of p and returning
the average vertex probability would no longer provide us
of the guarantee in Proposition 4, however it may provide
good results in practice. The modifications to the algorithm
would be as follows: line 15 would be τ ← st.dev(p) and
line 17 would be return avg(p). We will refer to this as
Algorithm 2 with alternate convergence criteria or Algo-
rithm 2-ACC for short.
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Figure 3: Convergence of the minimum (MinP), maximum
(MaxP), and average (AvgP) of vertex probabilities towards
the final fixation probability as a function of our algorithm’s
iterations t for a graph of 100 nodes.

4 Experimental Evaluation

Our novel method for computing fixation probabilities on
strongly connected directed graphs allows us to compute
near-exact fixation probabilities within a desired tolerance.
The time complexity of our method is highly dependent
on how fast the vertex probabilities converge. In this sec-
tion we experimentally evaluate how the vertex probabil-
ities in our algorithms converge. We also provide results
from comparison experiments to support the claim that Al-
gorithm 2-ACC finds adequate fixation probabilities order
of magnitudes faster than Monte Carlo simulations (Algo-
rithm 1). All algorithms were implemented in Python and
run on a 2.33GHz Intel Xeon CPU.
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Figure 4: Standard deviation of vertex probabilities as a
function of our algorithm’s iterations for the same 100 node
graph of Figure 3.

4.1 Convergence of Vertex Probabilities

We ran our algorithms to compute fixation probabilities
on randomly weighted and strongly connected directed
graphs in order to experimentally evaluate the convergence
of the vertex probabilities. We generated the graphs to be
scale free using the standard preferential attachment growth

model [13] and randomly assigned an initial mutant node.
We replaced all edges in the graph given by the growth
model with two directed edges and then randomly assigned
weights to all the edges.

Figure 3 shows the convergence of the minimum,
maximum, and the average of vertex probabilities towards
the final fixation probability value for a small graph of 100
nodes. We can observe that the average converges to the fi-
nal value at a logarithmic rate and much faster than the min-
imum and maximum vertex probability values. This sug-
gests that while Algorithm 2-ACC does not give the same
theoretical guarantees as Algorithm 2, it is much preferable
for speed since the minimum and maximum vertex proba-
bilities take much longer to converge to the final solution
than the average. The fact that the average of the vertex
probabilities is much preferable as a fast estimation of fix-
ation probabilities is supported by the logarithmic decrease
of the standard deviation of vertex probabilities (see Fig-
ure 4). Convergences for other and larger graphs are not
shown here but are qualitatively similar to the relative con-
vergences shown in the provided graphs.

4.2 Speed Comparison to Monte Carlo Simulation

In order to compare our method’s speed compared to the
standard Monte Carlo simulation method, we must deter-
mine how many iterations our algorithm must be run to
find a fixation probability estimate comparable to that of
Algorithm 1. Thankfully, as we have seen, we can get a
standard error on the fixation probability returned by Al-
gorithm 1 as per Proposition 2. While we did not theoreti-
cally prove anything about how smoothly fixation probabil-
ities from our methods approach the final solution, the con-
vergences of the average and standard deviation as shown
above strongly suggest that estimates from our method ap-
proach the final solution quite gracefully. In fact, in the
following experiments once our method has arrived at a
fixation probability estimate within the standard error of
simulations, the estimate never again fell outside the win-
dow of standard error (although the estimate did not always
approach the final estimate monotonically). This is in stark
contrast to Monte Carlo simulations, from which estima-
tions can vary greatly before the method has completed
enough single runs to achieve a good probability estimate.

We generated a number of randomly weighted and
strongly connected directed graphs of various sizes on
which we compare our solution method to Monte Carlo ap-
proximation of fixation probabilities. The graphs were gen-
erated as in our convergence experiments. For each graph
of a different size, we generate a number of different ini-
tial mutant configurations. We found fixation probabilities
both using Monte Carlo estimation with 2000 simulation
runs and our direct solution method, terminating when we
have reached within the standard error of the Monte Carlo
estimation. Since the average vertex probability proved to
be such a good fast estimate of the true fixation probability,
we used Algorithm 2-ACC.



Table 2: Experiment Results. For each graph size, shows
average number of timesteps needed for each single simu-
lation in the Monte Carlo estimation to reach extinction or
fixation (Avg Tsim), and the average number of iterations
our solution algorithm must be run to get a fixation proba-
bility within the standard error of simulations ( AVG Tsol).

N Avg Tsim Tsol

100 19577.49 119.33
300 190425.88 584.38
500 857506.55 3240.2
700 946080.54 152.86
900 2216117.2 11052.83

Tables 2 and 3 show results from these experiments,
including the average measured values for Tsim (average
timesteps to extinction r fixation for simulations), Tsol (av-
erage timesteps for our solution method to get within stan-
dard error of Monte Carlo estimation), and actual seconds
taken for each method implemented. Figure 5 shows the
speedup our solution provides over Monte Carlo simula-
tion. Here speedup is defined as the ratio of the time it
takes for simulations to complete over the time it takes our
algorithm to find a fixation probability within the standard
deviation.
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Figure 5: Average speedup (on a log scale) for finding
fixation probabilities achieved by our algorithm vs Monte
Carlo simulation for graphs of different sizes.

We can observe from our experiments that comput-
ing fixation probabilities using Monte Carlo simulations
showed to be a very time-expensive process, highlighting
the need for faster solution methods as the one we have pre-
sented. Especially for larger graph sizes, the time complex-
ity of our solution to achieve similar results to Monte Carlo
simulation has shown to be orders of magnitude smaller
than the standard method.

Table 3: Experiment Results. For each graph size, shows
the average seconds taken for the Monte Carlo method
(Avg Secs Sim) and our solution method (Avg Secs Sol) to
get a fixation probability within the standard error of sim-
ulations. Also shows the average speedup our algorithm
provides.

N Avg Secs Sim Avg Secs Sol Avg Speedup
100 3876.69 1.12 3461.68
300 41325.49 14.60 2829.74
500 206088.44 174.29 1182.48
700 220996.6 8.18 27025.63
900 507439.37 790.69 1385347.44

5 Related Work

While most work dealing with evolutionary graphs rely on
Monte Carlo simulation, there are some good analytical ap-
proximations for the undirected cased based on the degree
of the vertices in question. In [5], the authors use the mean-
field approach to create these approximations for the undi-
rected case. In [6], the authors derive an exact analytical
result for the undirected case in neutral drift, which agrees
with the results of [5]. They also show that fixation prob-
ability is additive in that case (a result which we extend
in this paper using a different proof technique). However,
the results of [7] demonstrate that mean-field approxima-
tions break down in the case of weighted, directed graphs.
That work is followed by [11] which also studies weighted,
directed graphs, but does so by using Monte Carlo simula-
tion. In [8] the authors derive exact computation of fixation
probability through means of linear programming. How-
ever, that approach requires an exponential number of both
constraints and variables and is intractable. In [10], the au-
thors present a technique for speeding up Monte Carlo sim-
ulations by early termination. However, our algorithm dif-
fers in that it does not rely on simulation at all and provides
a deterministic result. Our method totally avoids simulation
and instead leverages properties of the model. Recently, in
[14], the authors study the related problem of determining
the probability of fixation given a single, randomly placed
mutant in the graph where the vertices are “islands” and
there are many individuals residing on each island in a well-
mixed population. They use quasi-fixed points of ODE’s to
obtain an approximation of the fixation probability and per-
formed experiments with a maximum of 5 islands (vertices)
containing 50 individuals each. It is unclear if their meth-
ods can be applied to the problem presented in this paper.
In [15, 16] the authors present a generalized frameworks for
social network diffusion. These works primarily focus on
diffusion models that are monotonic - where the number of
vertices with a certain property increases at each time step.
While [15] does show how to adjust their framework for
non-monotonic models, they only do so for a finite number
of time steps (fixation probability is in the limit of time).



6 Conclusion

In this paper, we presented a novel deterministic algo-
rithm for quickly computing fixation probability in di-
rected, weighted strongly connected evolutionary graphs
under neutral drift, which we prove to be a lower bound for
the case where a mutant is more fit than the rest of the pop-
ulation. In our experiments, we showed our approach to
outperform Monte Carlo simulations, which are currently
used in most evolutionary graph theory research, by sev-
eral orders of magnitude. We also show that under neutral
drift, fixation probability is additive - showing optimal sub-
structure in this case.

Our algorithm relied on the convergence of the “ver-
tex probabilities” - the probability of an individual being a
mutant at a certain time. As our experiments demonstrated
that this convergence generally occurs rapidly, it is a tempt-
ing conjecture that the time to convergence is polynomial
in the size of the graph. If this is the case, we suspect that
fitness-based selection of the reproducing individual in the
network may be a source of complexity in this problem. A
more complete complexity analysis of evolutionary graph
problems may still be in order.

An important limitation of our algorithm is that it is
limited to strongly connected graphs. However, we be-
lieve that our algorithm can be used in solutions to gen-
eral graphs by breaking the graph into its strongly con-
nected components and considering transition edges be-
tween these in the computation of the overall fixation prob-
abilities. Such an extension is an immediate goal for future
work.
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