
A Review of Evolutionary Graph Theory

With Applications to Game Theory

Paulo Shakarian

Network Science Center and Dept. of Electrical Engineering and Computer Science,

United States Military Academy, West Point, NY 10996

Patrick Roos

Dept. of Computer Science, University of Maryland, College Park, MD 20740

Anthony Johnson

Network Science Center and Dept. of Mathematical Sciences, United States Military
Academy, West Point, NY 10996

Abstract

Evolutionary graph theory (EGT), studies the ability of a mutant gene to
overtake a finite structured population. In this review, we describe the origi-
nal framework for EGT and the major work that has followed it. This review
looks at the calculation of the “fixation probability” - the probability of a
mutant taking over a population and focuses on game-theoretic applications.
We look at varying topics such as alternate evolutionary dynamics, time to
fixation, special topological cases, and game theoretic results. Throughout
the review, we examine several interesting open problems that warrant fur-
ther research.

Keywords: evolutionary dynamics; structured population; game theory;
fixation probability; time to fixation

1. Introduction

Evolutionary graph theory (EGT), introduced by [23], studies the ability
of a mutant gene to overtake a finite structured population. The repro-
duction of the individuals in the population is modeled as a stochastic pro-
cess. The structure of the population is represented as a directed, weighted
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graph called an evolutionary graph (EG). Since its introduction, numerous
results on EGT, both analytical and experimental, have been produced. Ad-
ditionally, several extensions to the model have been proposed, including
game-theoretic ones. The application of EGT to game theory has provided
researchers new insight about the evolution of cooperation and other game-
theoretic concepts in structured populations. In this review, we present the
original model of [23] and various extensions. We also summarize major re-
sults in EGT (both analytical and experimental), including those relating
to game theory. Throughout this review, we pose several open questions in
EGT that would be relevant for future research.

This review is organized as follows. In Section 2, we introduce the original
model, discuss computation of fixation probability, and describe the standard
game theoretic extensions. This is followed by a presentation of results con-
cerning the computation of the fixation probability in Section 3 for graphs
of certain topologies - including the large class of undirected EG’s. We then
turn to the related problem of mean time to fixation in Section 4. Then
we describe how some of the results relating to fixation probability change
under alternative model dynamics in Section 5. We then survey more ad-
vanced game theoretic extensions in Section 6. Finally, in Section 7, we
present other major extensions to EGT including the study of bi-level EG’s
and EG’s whose topology change over time.

2. The Model

Consider a population of N individuals where there is no specified graph-
structure relating them to each other (this is known as a well-mixed pop-
ulation). The Moran Process of [29] is a stochastic process used to model
evolution in such a population. It is defined as follows. At each time-step
a randomly selected individual is chosen to reproduce. Then, a second in-
dividual is chosen at random to die – replaced by a duplicate of the first
individual. If all of the members of the population are identical (termed
residents with fitness 1), and a mutant is introduced at random in the pop-
ulation (with fitness r, where r = 1 is the special case of neutral drift), the
probability that the mutant will eventually overtake the population is known
as the fixation probability (the opposite event - that all mutants die out - is
called extinction and a population with a lower fixation probability is deemed
more evolutionarily stable as it is resistant to invasion by a mutant). This
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probability, ρ1, arising from this N original Moran Process, is often termed
the Moran probability and can be solved for exactly (see equation 1).

ρ1 =
1− 1/r

1− 1/rN
(1)

In the original work that introduced EGT [23], Lieberman et al. generalize
the model of the Moran Process by specifying relationships between the N
individuals of the population in the form of a directed, weighted graph. We
shall use the symbol V to denote the set of individuals. We can think of
these individuals as vertices in a graph. The edges of the graph are specified
by the adjacency matrix W = [wij], where for vertices vi, vj, the quantity
wij specifies the weight of the directed edge from vi to vj. As this is an
evolutionary graph (EG), wij corresponds to the probability that, if vi is
selected to reproduce then it replaces vj (note that for all vi, wii = 0). Hence,
for any given vi,

∑
j wij = 1. The earlier work of [46] proves that, in such a

structure if ∀vi, vj ∈ V we have wij = wji, then the fixation probability for
a randomly placed mutant is ρ1. A similar result was proved in [24]. In [23],
this result is extended for a wider variety of EG’s where ∀vi,

∑
j wij =

∑
j wji.

This type of EG is known as isothermal. Consider the following theorem.

Theorem 1 (Isothermal Theorem [23]). An EG is isothermal iff the fix-
ation probability of a randomly placed mutant is ρ1.

Hence, for EG’s that are not isothermal, the fixation probability of the evo-
lutionary process is not only dependent on the fitness of the mutant (as in
the Moran Process), but also on the structure of the graph.

2.1. Properties of Fixation Probability

Many researchers (such as [9] and [26]) have studied the problem of com-
puting the probability of fixation given that a certain subset of vertices are
mutants. If the mutants inhabit set C ⊆ V , then this probability is written
PC . As the calculation of the fixation probability (ρ) for an EG is deter-
mined based on a uniformly picked vertex, we have the following relationship
between ρ and P :

N · ρ =
∑
i

P{vi} (2)

Note that although these two problems are closely related, they have rather
different intuitions. The fixation probability ρ provides insight into a graph
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of a certain topology. For example, researchers often refer to graphs with a
low value for ρ as being “evolutionary stable” as the toplogy of the graph
seems to be resistant to a mutant invasion. The fixation probability PC on
the other hand tells us something about a set of vertices C. For example,
identifying a certain subset C of a graph that has a higher fixation probability
may cause a user to take a certain action regarding those vertices (dependent
on the domain).

If the graph is not isothermal, but if we are under neutral drift, fixation
probability PC is additive. This was proven for the special case of undirected
graphs in [8] and proved for general, weighted, directed graphs by the authors
of this review in [45].

Theorem 2 (Additive Under Neutral Drift [45]). When r = 1 for dis-
joint sets C,D ⊆ V , PC + PD = PC∪D.

This additive result says that, under neutral drift, determining a subset
of indivdiuals in the population that maximize fixation probability is not
(polynomially) harder than determining the fixation probability. Further,
when we fix the topology of the graph, we find that for some subset of
vertices C, that the fixation probability under neutral drift is a lower bound
for the fixation probability when r > 1.

Theorem 3 (Neutral Drift as a Lower Bound [45]). For a given set C,

let P
(1)
C be the fixation probability under neutral drift and P

(r)
C be the fixation

probability calculated using a mutant fitness r > 1. Then, P
(1)
C ≤ P

(r)
C .

By Theorem 2 and Equation 2, we observe that under neutral drift ρ =
1/N regardless of the topology of the graph - even with directed and weighted
edges. Hence, Theorem 3 tells us that for r > 1 we have ρ ≥ 1/N . This
particular observation is independently noted in [20]. In [25] the authors
observe in their experiments that fixation probability monotonically increases
with r. Based on these observations and Theorem 3, we have the following
conjecture.

Conjecture 2.1. Fixation probability is montonic in r.

This conjecture seems natural and is supported by experimental results.
However, a formal proof is currently lacking.
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2.2. The Complexity of Computing Fixation Probability

As we can appeal to the Moran probability only in the case of an isother-
mal graph, we must resort to other calculations to determine ρ or P . Using
the following set of constraints, we can solve directly for any PC (hence, ρ as
well by Equation 2).

PC =

∑
vi∈C

∑
vj /∈C(r · wij · PC∪{vj} + wji · PC−{vi})∑
vi∈C

∑
vj /∈C(r · wij + wji)

. (3)

These constraints originally appeared in [43] for the case of an undirected
EG, but applies to the general case as it follows directly from the rules of
dynamics. However, the number of constraints and variables is equal to the
number of mutant-resident formations in the graphs, which is intractable for
large N . In fact, [23] presents a decision problem related to computing the
fixation probability that is claimed to be as hard as any problem in the com-
plexity class NP (the class of nondeterministic polynomial time computable
problems). In [9, 8] the authors attempt to reduce the number of constraints
by finding automorphisms in the graph. Based on automorphism, the authors
are able to calculate the exact number of possible mutant-resident formations
(MRF’s). Since this number gives the size of the system of linear equations
for the fixation probability and in general increases with the difficulty of solv-
ing this system, the measure may be a useful indicator in deciding whether
to undertake an analytical approach to solving for the fixation probability on
a given graph. The authors then show that even in the special case of undi-
rected EG’s, if the graph contains a vertex of degree of at least 3, that there
is a non-zero probability that the dynamics will evolve to any of the MRF’s
(except in the trivial cases where C = V or C = ∅).1 We note that for the
general case, this still leads to an intractable number of constraints. Further,
finding graph automorphisms is also a non-trivial problem in the general case
(see [50] for the latest complexity results on graph automorphism).

We note that the problem proven to be NP-hard by [23] is actually more
general than a standard computation or ρ using their model. As for an
upper bound on complexity, Equation 3 only tells us that this problem can

1There is the exception of an alternating state where every edge connects a mutant-
resident pair. This state cannot be reached if it exists. We would like to thank an
anonymous reviewer for pointing this out.
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be solved in exponential time. Hence, the issue of finding a tight bound on
the complexity for computing fixation probability is still an open problem.

Open Problem 2.1. What is the computational complexity of determining
ρ in an arbitrary evolutionary graph?

Open Problem 2.1 is important to the study of evolutionary graph the-
ory as virtually all current work in this area is perofrmed with simulation.
Often, it has been found that this approach does not scale well for large
graphs. Properly identifying the complexity class of this problem may pro-
vide insight into the development of a more efficient and scalable approach,
perhaps broadening the appeal of this paradigm.

What about the computational complexity of finding PC - the fixation
probability given seet C ⊆ V are mutants and the rest are residents? Clearly,

as ρ =
∑

vi∈V P{vi}

N
, solving N instances of PC can give us ρ. However, a

reduction going in the opposite direction seems less likely, so it is possible
that determining PC may be more difficult than finding ρ.

Despite the computational difficulty of determining the fixation proba-
bility in the general case, there are several special classes of EG’s where we
have analytical solutions (or at least good approximations). We review many
of these special cases in the next section. To address the issue of computa-
tion of the fixation probability in the general case (i.e., to confirm analytical
approximations), most work we review resorts to simulation methods via
Markov Chain Monte Carlo (MCMC). These simulations generally rely on
a direct application of the model we have already described (see [43] for a
pseudocode algorithm). However, as the size of the graph increases, even
such simulations may become impractical. In [4], the authors address the
issue of increasing the speed of such simulations. Their main technique for
the general case is to stop the simulation early if the number of mutants in
the population exceed a certain threshold (hence that particular simulation
would be considered to have reached fixation). They determine this thresh-
old by finding the conditional probability that mutants spread to M vertices
in the graph given that extinction eventually occurs. The authors plot the
probability distribution density of this function compared to M and deter-
mine for several types of networks (including E-R graphs) of size 103, that if
M > 102 then this probability drops to 10−5 – which is lower than the esti-
mated standard error of a MCMC simulation by several orders of magnitude
(the authors show that the estimated standard error for populations of 104
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to 106 have associated standard errors of at least 10−4). Hence, the outcome
of any simulation where the number of mutants exceeds 100 is considered
equivalent to fixation. The authors showed that for networks with 103 and
104 vertices, and showed it provided a significant speed-up of up to 100 times,
depending on the size of the network.

More recently, the authors of this review developed a novel approach that
can quickly compute the fixation probility in an evolutionary graph (with
weights and directions) under neutral drift. We rely on the idea of a vertex
probability - the probability of a given verterx being a mutant. In the limit
of time, these probabilities converge to the fixation probability (for strongly
connected graphs). We have shown that this convergence occurs quickly in
practice, providing an improvement over MCMC by several orders of magni-
tude. While this result is for the case of neutral drift, Theorem 3 suggests it
may provide good insight for r > 1. Further, the quick convergence of our
algorithm in practice may also suggest that having a value of r 6= 1 may be
a source of complexity.

Another recent development is the work of Houchmandzadeh and Vallade
who use dynamics to quickly approximate fixation probability in a certain
bi-level graph that generalizes the model of [24]. While this particular model
can also generalize the standard evolutionary graphs of [23]. However, it is
unclear if their approximation is still appropriate for arbitrary graphs. In
Section 3.3 we show how this approach can be used to derive the Moran
probability (ρ1). In Section 7.1 we discuss bi-level graphs and discuss their
approach further.

2.3. Game Theoretic Extensions

One of the most popular applications of EGT is to game theory. In the
game theoretic context, vertices of a graph represent agents and edges rep-
resent potential for interaction between them. Interactions between agents
are games played that can be described using a normal game theoretic pay-
off matrix. EGT thus provides a structural component for interactions in
populations of agents. Evolutionary game theory, which is concerned with
the population-dependent success of game theoretic strategies, has initially
mostly focused on well-mixed populations in which interactions between all
agents are equally likely. Incorporating EGT to evolutionary game theory
can take into account the effect of population structure, which has the ca-
pacity to crucially impact evolutionary trajectories, outcomes, and strategy
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success. Thus EGT is a welcome tool to explore how many of the results for
well-mixed populations are affected by population structure.

In game-theoretic applications of EGT, the evolutionary fitness (fi) of
individual vi is often related to their game theoretic payoff (P) (based on
game-play with neighbors) with something akin to the following equation:

fi = 1− w + w · P (4)

The parameter w relates the payoff acquired from games played to fitness.
If w = 1, the payoff acquired is equal to the fitness. If w = 0, the game
is irrelevant and we are at neutral drift. An often explored special case is
weak selection, where w << 1, which reflects the assumption that the game
of interest plays only a partial role in the overall fitness of individuals. Using
this paradigm, researchers have reached a variety of important conclusions on
the effects of population structure on game-theoretic concepts. The inclusion
of a game adds a layer of computational complexity to our already difficult
problem of determining fixation probability. As with fixation probability
computation under fixed fitness, much of the game theoretic work on EGT
is done using simulation. Hence, we have the following open problems.

Open Problem 2.2. Given a two-player game and w, what is the computa-
tional complexity of determining ρ with respect to an arbitrary evolutionary
graph?

Evolutionary game dynamics of finite populations on graphs for a general
two-player game between mutants and residents are often considered using
the following payoff matrix:

mutant resident
mutant a b
resident c d

(5)

Tarnita et al. [49] consider evolutionary dynamics (under weak selection)
on graphs for the general game given by (5) and present a theorem stating
that a strategy A (mutant) is favored over strategy B (resident) iff σa+ b >
c+σd, depending on the single parameter σ. “A is favored over B” means that
it is more abundant in the stationary distribution of the mutation selection
process. The authors show σ to depend on the population structure, update
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rule (see Section 5), and mutation rate. Thus the single parameter can be
used to quantify the ability of a population structure to promote the evolution
of cooperation or to choose efficient equilibria in coordination games. In
general, if the combination of update rule and population structure leads to a
σ > 1 (which can but does not necessarily occur for different combinations),
individuals of the same strategy type are more likely to interact due to a
clustering of strategies [34, 35].

In Section 4 we look at Broom et al. [7] who also study two-player games
on graphs, but are mainly concerned time to fixation for a given game. In
Section 6 we will review important other works considering various aspects
of game theoretic applications of EGT.

3. Determining Fixation Probability for Fixed Fitness

We now turn to the problem of determining fixation probability for some
special cases of graphs when the value of r is fixed (i.e., most non-game
theoretic work). First we look at computing fixation probabilities for graphs
of certain topologies. Then, we look at a very large special case - that of
undirected graphs.

3.1. Fixation Probability Calculations for Cetrain Topologies

In [23], the authors examine the fixation probability for a few special cases
of EG’s to illustrate how fixation can be amplified or suppressed based on
the structure of the graph. For example, they define a one-rooted graph as
a graph with a unique global sourc without incoming edges (i.e., a directed
tree, with edges directed toward the leaves, would be such a graph - the
unique global source being the root in this case). Hence, for any value of r,
if an EG is one-rooted its fixation probability is 1/N .

Another special case is the EG referred to as a super-star (see figure 1).
Such a structure, denoted SKL,M consists of a central vertex, vcenter surrounded
by L leaves. A leaf `, contains M reservoir vertices, r`,m and K − 2 ordered
chain vertices c`,1, . . . , c`,K−2. All directed edges are of the form (r`,m, c`,1),
(c`,w, c`,w+1), (c`,K−2, vcenter), and (vcenter, r`,m). Denoting the fixation prob-
ability of EG SKL,M as ρ(SKL,M), the following result is given in [23].

lim
L,M→∞

ρ(SKL,M) =
1− 1rK

1− 1/rK·N
(6)
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K = 3 

L = 2 

M = 4 

K = 2 

L = 8 

M = 1 

K = 3 

Figure 1: Left: Super-star EG, K = 3, L = 2,M = 4. Center: Star EG, K = 2, L =
8,M = 1. Right: Funnel EG, K = 3.

Because of the role it plays in enhancing fixation, the K parameter is often
referred to as the amplification factor. If K = 2, this is simply referred to as
a star EG (see figure 1). Another special case, related to the super-star, is
the funnel (see figure 1). A generalization of the funnel, known as a layered
network was studied in [3, 4]. In this type of EG, V can be partitioned into
K subsets V1, . . . , VK such that for all v ∈ Vi there are only outgoing edges
to vertices in set Vi+1modK . Barbosa et al. also presents a way to increase
the speed of MCMC simulations specific to layered networks in [4]. Their
technique involves skipping evolutionary steps where none of the vertices in
the graph changes a label. This is done by calculation the probability of a
change occurring somewhere in the graph. The tradeoff with this speed-up
is the price of calculating this probability compared to the savings. The
authors show for layered networks, that this probability can be efficiently
computed and yield a 2-3 times speed-up in simulations for K-funnels and
random layered networks.

These special cases represent important building blocks for other results.
For instance, [7] leverages some of these intuitions to study fixation proba-
bility for games on star graphs while the work on bi-level EG’s we review in
Section 7.1 leverages some of these ideas as well. More recently, this style of
analytical calculation of fixation probabilities has been applied to economics
in [58] where the authors determine the evolutionary stability of various forms
of business, which are modelled as star and bi-level graphs (we discuss this
work further in Section 7.1 as well). Analytically finding the value of ρ for
certain graph topologies will most likely continue to be an active area of
research in EGT, particularly as certain strucutures are identified in nature
or other domains. Perhaps an interesting direction would be to use work on
the subgraph isomorphism problem [14] to identify structures such as stars
and funnels in larger graphs. The presence of such structures may allow us
to make statements on the evolutionary stability of the larger graph and/or
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compare the probability PC for certain vertices in the larger graph (i.e., PC
may be higher for a set of nodes located in a star substructure of a larger
graph).

3.2. Undirected Evolutionary Graphs

Several works explore a large special case: undirected EG’s. In this case,
we shall use the symbol E to denote the set of edges. However, it is important
to note that the precise definition of this graph is somewhat different than
the standard concept of an undirected graph. Specifically, the weights in
both directions are not the same. This is defined by [9] as

wij =

{
d−1i iff (vi, vj) ∈ E or (vj, vi) ∈ E
0 otherwise

(7)

where di is the degree of vi. The intuition behind this asymmetric assignment
of weights is that if vi is chosen to reproduce, it replaces one of its neighbors
with a uniform probability. In [9], the authors determine a necessary and
sufficient condition for an isothermal undirected graph.

Theorem 4 (Undirected Isothermal Theorem [9]). An undirected EG
is isothermal iff it is regular.

Interestingly, for the undirected case, when r = 1 (neutral drift), there is a
tractable solution to the constraints specified by equation 3 that is presented
in [8].

PC =

∑
vi∈C(d−1i )∑
vj∈V (d−1j )

(8)

Hence, for an undirected graph with r = 1, we have ρ = 1/N . For the
case where a mutant is very advantageous, r >> 1, [10] provides us with an
approximation for PC when C is a singleton set (the approximation is based
on the assumption that once |C| ≥ 2, then fixation occurs).

P{vi} ≈
r

r +
∑

vj∈V−{vi}wji
(9)

The authors of [10] conducted an exhaustive study of undirected graphs
with 8 vertices and concluded that a low degree of a vertex corresponded with
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a more advantageous mutant and this advantage seemed to increase mono-

tonically for vertex vi with

∑
vj∈V dj

N
− di. This aligns well with equations 8

and 9. Further, they also provide the following analytical approximation for
relative mutant advantage.

P{vi}
P{vj}

≈ (
dj
di

)2 (10)

The inverse relationship between fixation and the degree of the initial
mutant vetex shown by [10] is in strong agreement with the previous work of
[1]. It is interesting to note that experimentally, it was observed in [10] that as
the relative fitness of the mutant increases, the fixation probabilities increase
more rapidly for mutants placed into vertices with higher degree. Some of
these results were experimentally verified in [11]. In Section 5, we examine
the correlation of the initial mutant’s degree to the fixation probability when
the dynamics of the evolutionary process is changed via different update
rules.

It is also interesting to note that the authors of [9] were able to analytically
solve for the fixation probabilities for the special case of undirected star
graphs (K = 2) of L leaf vertices (hence N = L+1). Let P 0

i (P ∅i ) denote the
fixation of probability given i mutants on the leaves and a the center being
a mutant (resp. the center being a resident). [9] derive the following.

P 0
1 =

1

1 + L
L+r

∑L−1
j=1

(
L+r

r(L·r+1)

)j (11)

P 0
0 =

r

r + L
P 0
1 P ∅0 =

r · L
r · L+ 1

P 0
1 (12)

From this, they derive the following for fixation probability (ρundir-star).

ρundir-star =
L · r·L

r·L+1
+ r

r+L

(L+ 1)

(
1 + L

L+r

∑L−1
j=1

(
L+r

r(L·r+1)

)j) (13)

lim
L→∞

ρundir-star =
1− 1

r2

1− 1
r2L

(14)
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3.3. Calculating Fixation Probability using Dynamics

Another novel approach to determining fixation probabilities is through
the use of dynamics which involves a carefully constructed variation of the
Kimura diffusion equation. This approach was introduced by Houchmandzadeh
and Vallade for well-mixed populations in [19] and extended to a graphical
case (that generalizes the model of [24]) in [20]. Here we illustrate this
approach by using it to derive the Moran probability, ρ1. This particular
approach is rooted in the master equation governing a continuous time birth-
death stochastic process in a community of fixed size N , when the probability
of observing k events in an infinitesimal time interval dt is proportional to
Poissonian events dtk. The transition rates χ, derived from the probability
density for the system to change its size from n to m individuals during the
infinitesimal period of time as dt → 0, become the weights of the master
equation summarized by

χ(n→ n+ 1) = χ+(n), (15)

χ(n→ n− 1) = χ−(n), (16)

χ(n→ n+ k) = 0 if |k| > 1. (17)

The master equation governing the probability, P (n, t), of observing n indi-
viduals at time t and incorporating the transition weight for each observance
is given by

∂P (n, t)

∂t
= χ+(n−1)P (n−1)−χ+(n)P (n)+χ−(n+1)P (n−1)−χ−(n)P (n).

(18)
We can generalize problems using the master equation to continuous time
Moran processes for haploid populations [20]. As usual, we have a popula-
tion of N individuals that are either mutants or residents. Individuals in this
population die randomly at a rate µ and are immediately replaced with a
duplicate of another individual. Also as normal, residents have a fitness of
1 and mutants have a fitness of r. We shall use the symbol s for the value
r − 1 - the difference in fitness between the two. This quantity s will be
factored into the duplication probability to decrease or increase the popula-
tion of individuals carrying the mutant gene by one unit within time step
dt. Designating n to be the number of individuals carrying the mutant gene
and (N − n) the number of all those who do not, the transition probabilities
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become [19]

χ−(n) = µn
(N − n)

N
(19)

χ+(n) = µn
(N − n)

N
(1 + r) (20)

where µn and µ(N −n) represent the probability per unit of time that either
one mutant individual dies and is replaced by a resident individual or vice
versa, respectively. The factor (1 + r) designates the differing fitness levels
of the mutants. Time will be measured in N/µ units so that µ/N = 1.

Because N and µ are fixed, equation 19 and equation 20 can be combined
as a function of two parameters allowing a slightly simpler version of equation
18. Thus,

χ(n, s) = µn
(N − n)

N
(1 + r) (21)

and
∂P (n, t)

∂t
= α(n, r)P (n− 1)− β(n, r)P (n). (22)

where α(n, r) = χ(n − 1, r) + χ(n − 1, 0) and β(n, r) = χ(n, r) − χ(n, 0).
To transform the discrete master equation 22 into a continuos differential
equation for large N , we must set x = n/N , dx = 1/N , p(x, t)dx = P (n, t),
and ψ(x, r) = χ(n, r). Developing equation 22 by transforming each term
into powers of dx yields

∂p(x, t)

∂t
= − 1

N

∂[α(x, r)p(x, t)]

∂x
+

1

2N2

∂2[β(x, r)p(x, t)]

∂x2
+O(dx3), (23)

and can be approximated by the Kimura diffusion equation, such that

∂p(x, t)

∂t
= −Nr∂[x(1− x)p(x, t)]

∂x
+
∂2[x(1− x)p(x, t)]

∂x2
. (24)

The neat thing about developing the equation this way is that we do not
have to use it as it is an approximation. By deriving Kimura’s diffusion
equation using the applied transition rates we validate that the method is
sound. So instead of resorting to the approximation, we can take a more
direct route and extract exact quantities such as the probability generating
function (PGF) by letting

φ(z, t) =
∑
n

znP (n, t), (25)
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where z is an auxiliary continuos variable. Notice that PGF φ(z, t) consti-
tutes the most complete information we can have on the given stochastic
process. The system will have two absorbing states at n = 0 and n = N .
This will have the added effect of ensuring that φ(z, t) is a polynomial of
degree N for n < 0 and n > N . Substituting φ(z, t) into the master equation
22 yields

∂φ

∂t
= 〈(zn+1 − zn)χ(n, r)〉+ 〈(zn−1 − zn)χ(n, 0)〉 (26)

We now turn to the transition rates, χ(n, r), for the Moran process. Recall
that because of the way we measure time, µ/N = 1 and therefore

χ(n, r) = k(r)n(N − n) (27)

where k(r) = 1 + r. Equation 26 becomes

∂φ

∂t
= 〈(zn+1 − zn)k(r)n(N − n)〉+ 〈(zn−1 − zn)k(0)n(N − n)〉 (28)

We can now make use of the identity [19]

〈zn+αk(r)n(N − n)〉 = k(r)zαz
∂

∂z

[
Nφ− z∂φ

∂z

]
(29)

which when used to evaluate equation 28 yields

∂φ

∂t
= (k(r)z2 − k(r)z + k(0)− k(0)z)

∂

∂z

[
Nφ− z∂φ

∂z

]
(30)

= (1− z)(k(0)− k(r)z)
∂

∂z

[
Nφ− z∂φ

∂z

]
(31)

= (1− z)(k(0)− k(r)z)
∂

∂z

[
Nφ− z∂φ

∂z

]
(32)

=
1

σ
(1− z)(σ − z)

∂

∂z

[
Nφ− z∂φ

∂z

]
(33)

where σ is the inverse of the fitness such that σ = k(0)/k(r) = 1/k(r) =
1/(1 + r). This partial differential equation is well-defined and has the exact
same formal structure as the diffusion equation. Notice that it is first order
in time t and second order in z. The initial and boundary conditions are
specified as well. For the initial condition examine time t = 0. There are n0
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individuals with the mutant gene. That means there is a 100% probability of
observing n0 individuals have the mutant gene or P (n0, 0) = 1 and equation
25 becomes

φ(z, 0) = zn0 . (34)

Further, because P (n, t) is stochastic we have a boundary in that

φ(1, t) = 1. (35)

If s = 0, then k(0) = k(r), 〈n(t)〉 = n0, and

∂φ

∂z

∣∣∣∣
=1

= n0 if r = 0. (36)

If r 6= 0, z = σ is a fixed point because

∂φ

∂t

∣∣∣∣
z=σ

= 0 if r 6= 0 (37)

which means that
φ(σ, t) = φ(σ, 0) = σn0 (38)

[20] demonstrate that equation 33 along with initial condition equation 34
and the boundary conditions equation 35 with either equation 36 or equation
38 constitute a well-posed problem.

Fortunately, φ(z, t) of equation 33 converges to stationary solution φs(z).
This stationary solution is found by solving the first order differential equa-
tion

Nφs(z)− zφ′

s(z) = K (39)

where K is a constant. The solution of 39 is

φs(z) = c1z
N + c0 (40)

If we now use the boundary conditions 35 and 36 when r = 0, we can solve
for c1 and c0. They become

c1 =
n0

N
, c0 =

N − n0

N
. (41)

Of course when r 6= 0, boundary condition 36 is replaced with 38 and

c1 =
1− σn0

1− σN
, c0 =

σn0 − σN

1− σN
. (42)
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It is interestingly to note that as r → 0, equation 42 converges to equation
41. Note that for relatively small fitness, r, c1 of equation 42 contains the
well-known result for fixation probability for haploid populations, namely the
Moran fixation probability result, equation 1 of the previous section.

ρ1 =
1− 1/r

1− 1/rN
(43)

4. Time to Fixation

In this section we explore an area of EGT that has recently seen some
interesitng activity: determining the mean time it takes to reach fixation.
First we examine this for fixed values of r and then for the case where r
depends on the payoff of a two-player game.

4.1. Time to Fixation for Fixed Fitness

Here, we examine research on time to fixation when the fitness of the mu-
tant and resident is fixed at r and 1 respectively (i.e., not determined by the
outcome of a game). In the undirected case, this was explored experimen-
tally in [53], [10], and [42]. Generally, these studies find that certain graph
structures which promote fixation (i.e., stars and funnels) also increase time
to fixation. In [53], the authors find that stars increase the time to fixation
over regular graphs by two orders of magnitude. In [42], the authors examine
domination times for lattices. Domination in that work refers to a mutant or
resident occupying a large fraction of vertices (approaching N) - hence the
term ‘dominate’ is used to describe the results of [42] rather than fixation.
They found experimentally that time t∗ for mutants to dominate lattices de-
creases as the dimension of the lattice increases (i.e., a fully-connected graph
has a faster time to domination than a square lattice) for several different
values of r.

There has also been some work to explore this problem analytically. In
[2], the authors provide a method for determining mean time to fixation (and
mean time to extinction) in well-mixed populations. This formal method was
later adopted by [33] for fixed fitness and [7] for fitness resulting from a two
player game (described in the next section). We briefly highlight the most
relevant parts of this method as follows. Given a well-mixed population of N
individuals, let 0, . . . , i, . . . , N denote N + 1 possible states identified by the
number of mutants in each state (analogous to the different configurations
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in an evolutionary graph). We will use the notation Pi, Pi to denote fixation
and extinction probabilities given initial state i. Let µi be the the transition
probability from state i to state i − 1 and λi be the transition probability
from state i to i+ 1. In [2], the authors show the following:

Pi =
s0,i−1
s0,N−1

(44)

Where sn,m =
∑m

k=n qk and qi =
∏i

j=1
µj
λj

. Now we define P
(t)
i , P

(t)
i be the

probabilities of entering fixation/extinction at time t. Let ti (resp. ti) be
the mean times to fixation (resp. extinction) given state i at time 0. We are
concerned with finding t1 - the probability of fixation given a single mutant
invader. Clearly, Pi =

∑∞
t=0 P

(t)
i and we can obtain the following for the

mean time to fixation.

ti =
1

Pi

∞∑
t=0

t · P (t)
i (45)

Additionally, the following recursions hold.

P
(t)
i = µiP

(t−1)
i−1 + (1− µi − λi)P (t−1)

i + λiP
(t−1)
i+1 (46)

Piti = µiPi−1(ti−1 + 1) + (1− µi − λi)Pi(ti + 1) + λiPi+1(ti+1 + 1)(47)

Through a series of further manipulations and by expression 44, [2] determine
the mean time to fixation as follows.

t1 =
N−1∑
n=1

s0,n−1sn,N−1
λnqns0,N−1

(48)

Note that [2] rely on determining mean time to fixation based on the transi-
tion probabilities (for example, [2] look at when these fixation probabilities
are dependent upon game-play, the problem becomes more complex, even for
well mixed populations). Further, in a well-mixed population there are N+1
states, significantly less than the 2N possible states for an arbitrary evolu-
tionary graph. Therefore, evolutionary graph theorists focus on reducing the
state space (usually by assuming a certain graph topology) and calculating
the transition probabilities (µ and λ). If a certain graph topology allows for
a tractable number of states, analytical results become apparent.
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This method was applied successfully for fixed fineness in [33]. Using
the aforementioned described method, they obtain the following result for
isothermal evolutionary graphs. Here the notation t1 refers to the mean time
to fixation given a single mutant picked with a uniform probability over the
set V .

Theorem 5 (Isothermal Mean Time to Fixation [33]). For large N in
an isothermal structure, the mean time to fixation is:

t1 =
N−1∑
n=1

(rn − 1)(rN−n − 1)(1 + r)

(rN − 1)(r − 1)
(49)

Then then show an analogous result for K-star structures.

Theorem 6 (K-Star Mean Time to Fixation [33]). For large N in a
k-star structure, the mean time to fixation is:

t1 =
N−1∑
n=1

(rnK − 1)(r(N−n)K − 1)(1 + rK)

(rNK − 1)(rK − 1)
(50)

Though we have analytical results for these special cases, there are still
many open questions dealing with mean time to fixation (and extinction).
For example, identifying the complexity of calculating the mean time to
fixation in the general case has not been addressed. A good complexity
analysis may lend some insight into this particular problem. To provide
some insight into this general case, we will derive a set of constraints similar
to expression 3 earlier in the paper. For a given configuration C of mutant
vertices (the remainder of the population being residents), let µC,i be the
transition probability from C to C − {vi}, λC,i be the transition probability
from C to C ∪ {vi}, and γC be the probability that C transitions to itself.
Hence, we have the following:

µC,i =
∑
vj /∈C

wji
N + r|C| − |C|

(51)

λC,i =
∑
vj∈C

wjir

N + r|C| − |C|
(52)

γC = 1−

∑
vi∈C

µC,i +
∑
vi /∈C

λC,i

 (53)
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We can now create an analogous recursion mirroring that of 46 for well-mixed
populations where P

(t)
C is the probability of entering an all-mutant state at

time t given initial set C.

P
(t)
C =

(∑
vi∈C

µC,iP
(t−1)
C−{vi}

)
+ γCP

(t−1)
C +

∑
vi /∈C

λC,iP
(t−1)
C∪{vi}


PCtC =

(∑
vi∈C

µC,iPC−{vi}(tC−{vi} + 1)

)
+ γCPC(tC + 1) +∑

vi /∈C

λC,iPC∪{vi}(tC∪{vi} + 1)


Clearly, as we are dealing with a intractable number of states there are an
intractable number of constraints and variables the above expression, making
it impractical. Hence, a more practical algorithm is in order if we are to avoid
simulation for this problem.

Another option would be to explore mean time to fixation for special
cases, such as undirected evolutionary graphs or the case of neutral drift.
Another area that is largely unexplored (in the general case) is time-to-
fixation under alternate update rules, such as the voter model (although for
games on star graphs, we review the work of [15] in the next section).

4.2. Time to Fixation for Games on Graphs

Broom et al. [7] study evolutionary dynamics for general games on several
special graph structures: the star, the circle, and the complete graph under a
Birth-Death update process (specifically the Invasion Process, see Section 5)
while placing an emphasis on the speed of the evolutionary process in their
analysis. At each time step, the fitness of an individual is assumed to be
the average of the payoffs of games against all its neighbors. The authors
analyze and derive exact solutions for the fixation probability of mutants,
the mean time to absorption and the fixation time of mutants on the three
graph structures considered. The authors find these quantities to differ for
the different graph structures and in general depend on population size and
graph heterogeneity.

The authors confirm earlier findings that fixation probability usually in-
creases with graph heterogeneity. The time to fixation for mutants was found
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to be shortest for the complete graph and longest for the star, confirming the
results from the previous section that fixation time generally is longer for
graph structures that promote fixation. Fixation times for all graphs ex-
plored were also shown to be longest in neutral drift. More interestingly
however, using a Hawk-Dove game as an example, the authors show that the
variation of the payoff values in the payoff matrix of a game played on graphs
plays a crucial role in the behavior of the analyzed quantities. Not only is the
fixation probability no longer the same for all regular graphs with N vertices,
but also which of the three considered graph types gives the highest mutant
fixation probability and the fastest time to fixation/absorption depends on
the values of the game’s payoff matrix. The authors give several interesting
features of the Hawk-Dove game considered regarding the analyzed quanti-
ties, but not that these results can be significantly different for a Hawk-Dove
game with an alternative payoff matrix.

In general, this work illuminates the fact that discovering and describing
(to the extent that they exist) general and consistent patterns in the effects of
game payoffs, graph types, and combinations thereof on fixation probability
and time to fixation is a challenging but important area for future work. Had-
jichrysanthou et al. [15] make a step of progress in this direction by providing
general formulae for fixation probability and mean time to absorption for star
graphs specifically. The authors provide detailed analysis of these quantities
for the fixed fitness case and the Hawk-Dove, Prisoner’s Dilemma and coor-
dination games. They find that the time to absorption on star graphs depend
crucially on the update process used: while in general Birth-Death processes
yield higher fixation probabilities for advantageous mutants, Birth-Death
processes take much longer to reach fixation/absorption than Death-Birth
processes (see Section 5 for details on these update processes). There is still
much room for this type of work on more general graphs:

Open Problem 4.1. Discover and describe patterns of the effects of a larger
variety of graph structures, game payoffs, and their combinations on fixation
probability and time to fixation.

5. Alternate Update Rules

Let us momentarily return to the original model of [23]. At each time-step,
some vertex vi is selected with probability fi∑

vj∈V fj
, where fi is the fitness of

vi and equal to either 1 or r. This is the vertex chosen to reproduce, hence a
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Table 1: Different families of update rules.

Update Rule Intuition

Birth-Death (BD) (1) vetex vi selected
(a.k.a. Invasion Process (IP)) (2) Neighbour of vi, vetex vj selected

(3) Offspring of vi replaces vj
Death-Birth (DB) (1) vetex vi selected
(a.k.a. Voter Model (VM)) (2) Neighbour of vi, vetex vj selected

(3) Offspring of vj replaces vi
Link Dynamics (LD) (1) Edge (vi, vj) selected

(2) The offspring of one vetex in the
edge replaces the other vetex

‘birth’ event. The next vertex selected is one of the neighbors of vi - lets call
it vj and it is selected with probability wij. This is a ‘death’ event as vj is
replaced with a duplicate of vi. Notice that the fitness of vj is not considered
when it is selected. Hence, the fitness bias is on the birth event. This method
of selecting vertices vi and vj is referred to as an update rule. The update rule
described in [23] is termed ‘birth-death with birth bias’ or BD-B updating.
Several works address different update rules including: [1, 38, 47, 26, 25].
Overall, we have identified three major families of update rules - birth-death
(a.k.a. the invasion process) where the vetex to reproduce is chosen first,
death-birth (a.k.a. the voter model) where the vetex to die is chosen first,
and link dynamics, where an edge is chosen. We summarize these in table 1.

Note that the three categories of table 1 are very broad as they do not
consider fitness-based bias in vetex selection (i.e., the BD-B updating of [23]
places the bias on the birth event as the first vertex is chosen with a prob-
ability proportional to its fitness). If there is a birth-bias, the individual
reproducing is chosen with a probability proportional to its fitness. If there
is a death-bias, the individual dying is chosen with a probability inversely
proportional to its fitness. We summarize how directionality and bias affect
the update rules in table 2. Note that imitation (IM) is also known as biased
link dynamics.
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Table 2: Variations of EGT. vi and vj are vertices in a graph that are neighbors, vi is
always chosen first. fi and fj are the associated fitness values which both equal 1 in the
case of neutral drift.

Update Rule Special Case Intuition

Birth-Death (BD)

Unbiased, undirected offspring of vi replace vj
Directed Considers vi’s outgoing edges
Biased-birth (BD-B) vi chosen w. prob. proportional to fi
Biased-death (BD-D) vj chosen w. prob. proportional to f−1j

Death-Birth (DB)

Unbiased, undirected offspring of vj replace vi
Directed Considers vi’s incoming edges
Biased-birth (DB-B) vj chosen w. prob. proportional to fj
Biased-death (DB-D) vi chosen w. prob. proportional to f−1i

Link Dyn. (LD)

Unbiased, undirected one vetex reproduces to replace the other
Imitation (IM) least fit vetex dies, replaced by offspring

of other vetex
Pairwise Compar. (PC) vj replaces vi iff fj > fx, o/w no change
Directed, unbiased edge from vi to vj, vi replaces vj
Directed, birth biased edge selected w. prob. proportional to fi
Directed, death biased edge selected w. prob. proportional to f−1j
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Table 3: Relationship between fixation and degree of initial vetex (undirected graphs).

Update Rule Fixation probability proportional to

BD-B Inverse of degree of initial vetex
DB-D Degree of initial vetex
LD Density of mutant vertices

5.1. Comparing Update Rules in Undirected EG’s

For the case on undirected graphs, there are many results based on the
initial placement of the mutant have been discovered for several update rules
(as we have described for BD-B in the previous section). In [1, 47], the
authors study moments of degree distribution, density, and degree-weighted
moments and show that the fixation probability is proportional to the average
degree-weighted moment for death-birth updating (a.k.a. voter model), the
inverse for birth-death (a.k.a. invasion process), and equal to the density
(the percentage of the number of vertices in the graph labeled as mutants)
for link dynamics, thus independent of the underlying graph in that case.
Note that their results for BD-B are in agreement with the finding of [10]
described earlier.

As shown in theorem 4, under BD-B, an undirected EG is isothermal iff
it is regular. In [1], this is extended to other update rules as follows.

Theorem 7 ([1]). Evolutionary dynamics under BD-B, DB-D, and LD are
equivalent for undirected regular EG’s.

Although there is currently an excellent suit of results for studying evolu-
tionary graphs under various different update rules in the directed case, there
has been no work (to the knowledge of the authors) that compares any of
these update rules to the synchronous update model described by Santos et
al. in [44].2 At each time-step, all individuals in the population update their
labels (i.e., mutant or resident, or strategy if game-play is involved) simulta-
neously. For each vertex vi, one of its neighbors (vertex vj) is selected at 1

di
.

2Note that the original work of Santos et al. is a model with a game theoretic extension.
Here we describe the natural, fixed fitness counterpart for the purpose of examining the
update rule. We review this work with respect to its game theoretic results in Section 6.
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Then, if and only if fj > fi, vi’s label is replaced with vj’s label with a prob-

ability proportional to fj−fi (i.e.,
fj−fi

max(di,dj)·r for example). There are several

interesting aspects about this model. For instance, the fitness of vertices does
not play a role in selecting which vertex is born and/or dies. Rather, the
fitness determines if a vertex is replaced by a neighbor and the probability at
which this happens. Additionally, as all vertices are updated simultaneously,
we might conjecture that the evolutionary process occurs faster than in the
other update rules. These topics may warrant some further consideration in
that synchronous updates may represent some real-world processes more ac-
curately or possibly be used as a proxy for the standard update rules we have
already described. Further, the synchronous update model can also easily be
extended to the directed case, which we cover for the other update rules in
the next section.

5.2. Comparing Update Rules in Directed EG’s

Not only does the original model of [23] utilize a directed graph, but many
real-world networks can be more accurately modeled as directed graphs than
undirected ones. This is the motivation of the work [26, 25]. There are two
main conclusions to their work: (1) degree correlation to fixation probability
(i.e., using the exact methods of [8] or the mean-field approximation) for
undirected graphs does not necessarily hold in the direct case and (2) directed
graphs generally suppress fixation more than undirected ones.

In [26], the authors study directed graphs under LD, BD, and DB for r = 1.
For all three update rules, under r = 1, they derive sets of linear constraints
using the mean-field approximation (degrees of connected vertices in the
EG are uncorrelated). They compare these analytical approximations with
experiments and find that, in general, the fixation probability is not only
dependent on the degree of the initial vetex but also the global structure
of the graph. In fact, often there is no observed relation between degree
and fixation. See table 4 for a summary of experimental results compared
with the analytical approximations. While [26] mainly considers the case of
neutral drift (r = 1), they also run some tests with r = 4 and claim that
fixation increases monotonically with r.

In [25], the authors perform an in-depth comparison on directed and
undirected networks for several variants of these rules. He exactly computes
fixation probabilities on an exhaustive set of small graphs (with six vertices)
and uses Monte-Carlo approximation for randomly generated larger graphs.
He found that directed networks tended to suppress more than undirected,

25



Table 4: Summary of experimental results for directed case with r = 1 in [26] illustrat-
ing whether experimentally-determined fixation probability results that alighned with the
mean-field approximation. din and dout are the in and out degrees of the initial mutant
vetex.

Mean-field approximation BD: 1/din DB: dout LD: dout/din

Asymmetric random 1/din dout dout/din
Asymmetric scale-free No relation dout dout/din
E-mail No relation No relation No relation
Asymmetric Small World No relation No relation No relation

regardless of update rule. Based on these experiments for small networks, the
order of amplification for rules is as follows: BD-B > LD > DB-D > BD-D >
DB-B (BD-B was least suppressive and DB-B was the most suppressive). The
value of r was set to 4 in these trials. For large graphs (also with r = 4), the
simulations provided the following ordering: BD-B > BD-D, LD > DB-D >
DB-B.

The authors are currently looking at adopting the algorithm of [45] for
alternate update rules on directed EG’s, which would allow us to obtain more
exact and deterministic results on larger graphs(as we would not resort to
simulation). This would provide a complement to the work of [25].

6. Further Game Theoretic Extensions

Now that we have described alternate update rules, we shall re-visit our
game-theoretic extensions and review some results regarding topics such as
cooperation, reciprocity, and evolutionary stability w.r.t. a game on the
graph under various update rules.

6.1. Evolutionary Stability on Graphs

Evolutionary stability, describing the ability of a player type comprising
a population to be resistant against invasion by another type, is an impor-
tant concept in evolutionary game theory that has been well studied for
well-mixed populations. Ohtsuki et al. [40] analyze evolutionary stability
on regular graphs of degree k > 2 for the BD, DB, and IM updating rules
through pairwise approximation and simulation. Evolutionary stability on
graphs means that a small fraction of rare mutants cannot spread, i.e., a
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resident strategy evolutionarily stable if it has a selective advantage over an
invading strategy (invading at an ε fraction of the total population). Oht-
suki et al. provide evolutionary stability conditions for this definition on
regular graphs for the different update rules considered, and (on top of the
game payoff matrix values) all these conditions depend on the graph degree
k. The results are validated through simulations on specific game examples.
The important point to consider from these results is that population struc-
ture can have crucial impact on the evolutionary stability of strategies, i.e.,
in the words of “traditional criterion for evolutionarily stable strategies in
well-mixed populations is neither necessary nor sufficient to guarantee evo-
lutionary stability in structured populations”.

6.2. Regular Graphs and the Replicator Equation

Ohtsuki et al. [38] study evolutionary games on regular graphs of degree
k considering the BD, DB, IM, PC update rules3. The authors use pair ap-
proximation ([28, 27, 22, 17, 51]) to derive a system of ordinary differential
equations describing the change in expected frequency of strategies in a game
on a graph over time. In the limit of weak selection (w << 1), the authors
show that under the update rules BD, DB, and IM this differential equation
is the well-known replicator equation with a transformed payoff matrix. The
payoff matrix is the original payoff matrix summed with a payoff matrix de-
scribing the local competition of strategies, different for BD, DB, and IM. PC
is shown to be equivalent to BD in the model used. This result is applied to
the Prisoner’s Dillema and the Snow Drift Game on regular graphs. Results
for the Prisoner’s Dillema coincide with those of [36], showing identical con-
ditions necessary for cooperators to be favored over defectors. Results for
the snow drift game qualitatively agree with those of Hauert et al. [18], who
observe that spatial structure inhibits cooperation in the snow drift game.

6.3. Evolution of Cooperation and Social Viscosity

Ohtsuki et al. [36] explore the problem of cooperation on a variety of
graphs through numerical simulations. The graph types explored are cycles,
spatial lattices, random regular graphs, random graphs and scale free net-
works. Every player plays a game with all its neighbor, where the game

3We use the shorter BD and DB notation for the update rules with birth bias BD-B
and DB-B. See Table 2.
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between two players is given by the payoff matrix (54) below. This game
represents a Prisoner’s Dilemma game between two players, and gives a kind
of Public Goods Game when each player plays the game with all its neigh-
bors. In this game b is called the benefit of the altruistic act and c is the
cost of the altruistic cooperation act. A Cooperator that is connected to n
Cooperators and m Defectors for receives a payoff of b n− c (n+m).

cooperate defect
cooperate b - c - c

defect b 0
(54)

Ohtsuki et al.’s results suggests that under the DB update rule, a neces-
sary condition for cooperation to arise in the types of graphs explores is that
b/c > k, where k is the average number of neighbors. This result is derived
under the conditions of weak selection and that the number of vertices in the
graph is much larger than the average degree. The authors note the close
and interesting relation of this result to Hamilton’s rule ([16]), which states
that kin selection can favor cooperation provided that b/c > 1/r, where r is
the coefficient of genetic relatedness between individuals. The condition for
cooperation fits less well for non-regular graphs, as one would expect due to
the larger variance in vertex degrees, but is a good approximation unless the
variance in degree distributions of the graph gets too large. Other dynamics
explored are IM 4, for which cooperation is favored when b/c > k + 2, and
BD, for which cooperation is never favored by selection.

Other authors have verified the condition introduced in [36] to hold in a
different model with network dynamics. Yang et al. [12] use pair approxima-
tion and numerical simulations to deduce cooperation frequencies for social
dilemma games (including the Prisoner’s Dilemma and Snow-Drift games) on
graphs whose structure changes as part of the update rule throughout evolu-
tion. The graphs originally are randomly connected with average degree k.
The update rule used is a type of DB process which also involves addition
and deletion of vertices and edges in the graph: “An individual is selected
for reproduction with a probability proportional to his fitness. The offspring

4The authors of [36] also note that mathematically, “IM updating can be obtained
from DB updating by adding loops to every vertex”.

28



is introduced with the same strategy of his parent and connects to his parent
always and other k − 1 individuals randomly. The offspring replaces a ran-
dom individual except for his parent. The randomly selected individual with
all its links are removed.” More recently, the preliminary work of Zhong et
al. [57] also confirmed Ohtsuki’s rule on a continuous version of the model.

In [52], Voelkl and Kasper used evolutionary graph theory to understand
the emergence of cooperation in primates. Using social interaction networks
derived from empirically observed social interactions, they looked at a two
player game with payoff matrix as above (54). The authors use selection
intensity equation 4 with w = 0.01 to determine fitness. The authors dis-
covered that the structured populations of the primates were more likely to
reach fixation than populations of well-mixed individuals.

The authors of [52] also looked at the community structure of the pri-
mate interaction networks. For this they leveraged the idea of modularity
introduced in [31]. Given a partition of vertices in a graph, modularity mea-
sures the quality of these partitions - often referred to as “communities”.
Intuitively, the modularity of a partition increases with the density of edges
within communities and decreases with the density of edges outside of com-
munities. Often in work dealing with modularity (such as [30] and [5]) re-
searchers attempt to find an optimal partition. Hence, the modularity of the
optimal partition can also be viewed as a property of graph topology. The
authors of [52] compare optimal modularity values to fixation probability
(ρ, determined by simulation) using linear regression. This led them to the
conclusion that 60% of the variance in fixation probability can be accounted
for by the modularity of the graph. An interesting direction for future work
would be a more detailed examination on the relationship between ρ and
optimal modularity based on a wider variety of graphs.

6.4. Graph Heterogeneity and Evolution of Cooperation

Santos et al. [44] investigate the effects of single-scale and scale-free net-
works on cooperation in the Prisoner’s Dillema, Snow-Drift, and Stag-Hunt
games through simulations. The update rule used is a type of imitation
dynamic in which all vertices update simultaneously in each generation, as
follows: for each vertex a random neighbor is chosen, and if that neighbor
has achieved a higher payoff, the vertex adopts the strategy of this neighbor
with a probability proportional to the payoff difference. The authors find
that in degree-heterogeneous graphs cooperation is easier to sustain than in
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well-mixed populations and thus identify heterogeneity as a “powerful mech-
anism for the emergence of cooperation.” Additionally, the authors find that
the sustainability of cooperation also depends on“detailed and intricate ties”
between agents. As evidence of this, scale free networks which exhibit prop-
erties like those that emerge from models of growth from preferential attach-
ment (Albert-Barbarasi topology) are shown to produce higher cooperation
than random scale-free networks.

Fu et al. [13] devise a framework for the general study of games on ar-
bitrary graphs under weak selection, formulating the game dynamics as a
discrete Markov process. Using DB updating and the game of the prisoner’s
dilemma, they employ their method on random regular graphs and scale-
free networks to demonstrate the utility of their framework compared to
pair-approximation and simulated data. The authors find a stronger corre-
lation between their approach and the simulated results. They also reach
some conclusions on the evolution of cooperation, most notably that under
DB updating and weak selection, degree heterogeneous graphs (e.g., scale-
free networks) generally impose higher invasion barriers than regular graphs.
This extends a result in [1] reporting that a heterogeneous graph is an inhos-
pitable environment for a mutant to evolve in the case of constant selection.
Fu et al. show this to be true for weak selection as well. This result seems to
be in disagreement with the conclusion of [44], which concludes that graph
heterogeneity aids the emergence of cooperation. Fu et al. point out that
this conclusion by [44] hinges on the simultaneous appearance of a number
of cooperators to overcome the invasion barrier.

6.5. Direct Reciprocity on Regular Graphs

Ohtsuki et al. [37] study reciprocity in the iterated prisoner’s dilemma
(exhibited by strategies such as Tit-for-Tat) on large, regular graphs through
pair approximation for the four update rules BD, DB, IM, and PC under
weak selection. The game concerned is again that of payoff matrix (54), but
translating the payoffs in the matrix to a repeated game with q probability of
playing another iteration and assuming a game between reciprocators playing
Tit-for-Tat and Defectors All-D gives the following payoffs:

cooperate defect
cooperate (b− c)/(1− q) - c

defect b 0
(55)
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The authors are particularly concerned with evolutionary stability and
“advantageousness” of reciprocators and find that different update rules have
a critical effect on these measures. A strategy is termed “advantageous” if
a single mutant following the strategy starting in a random position on the
graph has a fixation probability greater than the inverse of the population
size, meaning that selection favors it over residents. The authors find that
the ratio b/c necessary for a cooperator to be advantageous depends only
on the probability to play another round in the repeated game (q) and the
number of neighbors per individual (k). BD and PC produce identical results,
showing evolutionary stability to be harder to achieve for cooperators on
graphs compared to well-mixed populations, but it is easier for cooperation
to be advantageous. In contrast, DB and IM updating make it easier for
cooperation to be both evolutionarily stable and advantageous. In particular,
for DB and IM either small k or large q are sufficient for the evolution of
cooperation.

6.6. Separate Interaction and Replacement Graphs

Ohtsuki et al. [39] examine the evolution of cooperation in games on reg-
ular graphs - again with payoff matrix (54) . However, unlike other work,
the graph for the interactions between players in the game (interaction graph
H), and the graph among the relationships of who can replace whom (re-
placement graph G) are separate. The authors consider the case of weak
selection, where w << 1. The authors use BD, DB, and IM updating. The
authors consider regular graphs and again use pair approximation for their
analysis of fixation probabilites. For DB updating, the authors find the fol-
lowing result, which is verified through experiments: if c and b are the cost
and benefit associated with the game, ` is the degree of overlap between G
and H, and g and h are the degrees of G and H, then the following in-
equality holds under death-birth updating: b/c > hg/`. Hence, the authors
conclude that, for fixed cost and benefit values, cooperation is less likely to
evolve if there is a greater disparity between the interaction and replacement
graph, cooperation is maximized when G and H coincide. IM updating leads
to b/c > h(g + 2)/`, while BD, as has been shown before, never gives an
evolutionary advantage to cooperators.

6.7. Further Work for Game Theoretic Extensions

A main area for future work is the extension of any of the results as
described in this section to games with more than two competing strategies
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on graphs, as well as for multi-player (> 2) games:

Open Problem 6.1. Extend results on evolutionary games on graphs to
populations with more than two competing strategies and multi-player games.

However, there are still a significant amount of issues to explored in two-
player games. As noted in [35] the benefit-cost payoff matrix (54) used
in a number of works described is only a simplified version of the general
Prisoner’s Dilemma game that has been so important in the study of the
evolution of cooperation. Extending results to the general game seems to be
of considerable importance to the study of the evolution of cooperation on
graphs:

Open Problem 6.2. Extend results that used the benefit-cost payoff matrix
(54) version of the Prisoner’s Dilemma to the general Prisoner’s Dilemma
game payoff matrix.

In reviewing work on games in EGT, we have noted and important differ-
ence in fitness assignment used by different researchers, the effects of which
are unclear: While some works have used the average payoff of games on
graphs in their fitness computation and resulting analysis (e.g., Broom et al.
[7]) others use the total accumulated payoff of games. (e.g., Ohstuski et al.
[36] and Santos et al. [44]). There is an important distinction between these
on heterogeneous graphs: the former excludes the effect of playing a different
amounts of games due to different amounts of neighbors, while the latter does
not. It’s important to be aware of this difference and it’s of high interest to
the community to explore to what extent analytical and experimental results
are affected by this difference.

Open Problem 6.3. Explore and understand the effects of using the aver-
age vs. accumulated payoff from games played with neighbors for fitness in
evolutionary games on graphs.

On the analysis of reciprocity, while Ohtsuki et al. [37] have considered
direct reciprocity in their analyses for regular graphs, as noted by Nowak et
al. [35], much more work is needed to work direct and indirect reciprocity
into the mathematical frameworks presented by different authors (or a gen-
eral one) encompassing various update rules and more complex population
structures:
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Open Problem 6.4. Incorporate direct and indirect reciprocity into a gen-
eral mathematical framework for evolutionary games on graphs.

Concerning punishment and reputation, past work on spatial evolution-
ary games (e.g., [6]), where the population is structured on a simple grid,
has explored the effects of punishment and reputation on the evolution of
cooperation. However, the exploration of these mechanisms on general and
complex population structures has not yet been explored:

Open Problem 6.5. Using EGT to explore the effects of punishment and
reputation on the evolution of cooperation under the constraints of general,
more complex, population structures.

Generally, we feel there exists a need to incorporate EGT into more evolu-
tionary game theory applications: many existing applications of evolutionary
game theory, particularly those in anthropology, economics, and social mod-
eling and prediction could possibly greatly from EGT by using it to account
for effects of population structure.

Open Problem 6.6. Incorporate known or estimated population structures
into more existing evolutionary game theoretic applications.

7. Other Extensions to the Model

There are several other notable extensions to the original model of [23]
worth noting. These include scenarios with bi-level graphs, multiple mutants,
EG’s whose topology changes over time, and other modifications.

7.1. Bi-Level Evolutionary Graphs

Pu Yan Nie introduces bi-level EG’s in [32]. In general, a bi-level EG is
defined as follows: first, there is an EG representing relationships between
communities - with the vertices in this graph representing communities. The
work on bi-level EG’s often denote the community-level EG as graph B. Each
of the m vertices of B is itself an EG of individuals - vertex vi on graph B is
EG Ai. This type of EG has been shown to help describe several biological
phenomena. In the bi-level EG’s of [32, 56], one of the vertices in graph B is
an isothermal EG consisting of n individuals (‘leaders’). The remaining m−1
vertices in graph B represent single individuals (‘followers’). Hence, for the
entire graph, N = n + m − 1. As only one vertex in graph B represents an
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A 

Figure 2: A bi-level EG where the leaders (set A) form an isothermal EG. When they are
collapsed into a single vetex, we have a one-rooted EG.

EG, these works use A to refer to the EG consisting of the n leaders. As the
structure of A and B are independent, we have the following relationship:

ρ(AB) = ρ(A) · ρ(B) (56)

where ρ(AB) is the fixation probability of the entire bi-level EG, and ρ(A), ρ(B)
are the fixation probabilities of EG’s A and B respectively. In [32], graph B
is a star formation (K = 2,M = 1), with the central vetex being equivalent
to EG A. The author shows that for r 6= 1 this bi-level graph suppresses fixa-
tion more than an isothermal graph, thus helping to explain the evolutionary
stability of bi-level structures found in nature. In [56], the authors study a
bi-level EG where B is one-rooted and A is equivalent to the root-vetex of
B (see figure 2). The one-rooted case reflects hierarchical population struc-
tures. The authors show that when the number of followers is identical, that
a bi-level EG has a lower fixation probability than a one-rooted EG. They
also show that the fixation probability increases when the number of leaders
increase (making a bi-level EG of this type with 2 leaders the most stable bi-
level EG). They also show that an increase in number of followers decreases
fixation probability and that fixation probability for a bi-level EG is closely
tied to fitness. The authors apply these theoretical results to biology to help
explain why structure occurs in some animal populations. Examples of this
include symbiosis (such as the growth of Lichens) and commensalism (i.e.,
the relationship between clownfish and sea anemone).

The work on bi-level EG’s is extended in [55] where the authors consider
bi-level EG’s where the mutant has a different fitness depending on the level
of the graph. The model is described as follows. In this work, each vertex
of B is associated with an EG. Hence, vertices v1, . . . , vi, . . . , vm in EG B
are associated with EG’s A1, . . . , Ai, . . . , Am. Each of these groups has ni
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individuals and adjacency matrix Wi (B has adjacency matrix W0). The
fixation probability of a mutant with fitness r taking over one of these groups
is ρ(Wi, ni, r). For graph B, the fitness of the mutant is r0 and the fixation
probability for B is written ρ(W0,m, r0). The authors study the case where
the levels of the graph and r, r0 are independent. For the overall bi-level EG,
the authors obtain the following fixation probability (denoted ρ(W,n,m, r, r0)
where W = {W0, . . . ,Wm}).

ρ(W,n,m, r, r0) =

∑m
i=1 ni · ρ(Wi, ni, r)∑m

i=1 ni
· ρ(W0,m, r0) (57)

What if the fitness of one level of the population is dependent on the
other? Regretfully, this has not been addressed with the current work on bi-
level evolutionary graphs and provides us with the following open problem.

Open Problem 7.1. Computing the fixation probability for a bi-level EG
when r, r0 are not independent ([55] assumes independence).

Further, we also note that the stochastic evolutionary process on a bi-
level graph takes place on the entire graph (i.e., graphs A and B at the same
time scale). Essentially, a bi-level EG is a special case of an evolutionary
graph as defined in [23]. What happens when the two levels of the graph
evolve at different time scales? To study this, we would most likely view the
stochastic process on the two graph structures - A and B separately. Such
an addition would seem to add another layer of complexity to the problem.
Additionally, game theoretic extensions to bi-level graphs have also not yet
been considered. This would also likely go hand-in-hand with studying the
fixation probability of bi-level graphs under different model dynamics.

It turns out that the earlier model of [24] is also an evolutionary graph.
In that model, there are m islands whose relationship is specified in graph
B. This specifies the migration pattern between islands. Each island has n
individuals in a well mixed population (i.e., n = n1 = n2 = . . . = nm and
each Ai is a complete, undirected graph). In [24], the author uses birth-
death updating and assumes that progeny in an island descend only from
local individuals. The recent work of [20] explores this model without this
assumption and under both birth-death and death-birth dynamics. It is
interesting to note that their model is both a generalization and a special
case of the original model of [23]. As this model specifies a particular bi-
level graph, it is a special case. However, by setting n = 1 we can encode
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an arbitrary evolutionary graph. Adopting the technique of [19] for well-
mixed populations, (see Section 3.3) the authors develop an approximation
technique for fixation probability under this model. For r > 1, they show
that the approximation is valid when n ·m · (r− 1) is approximately greater
than 1. However, it is unclear how this approach can scale, particularly as
m increases - all of the experiments in [20] had m ≤ 5 (the experiments
where the approximation performed the best had n = 50). Not only is the
scalability of this approach an area for future work, but the issue of the
topology of the Ai graphs as well. Can the same approach be used for an
arbitrary bi-level graph?

In [55], the authors describe several anecdotal applications of bi-level
EG’s. or example, describe several species whose populations resemble a
non-hierarchical bi-level EG where both upper and lower level structures are
isothermal including the budgerigar of Oceania and the aptenodytes fosteri
(emperor penguins) of Antarctica. However, in [58] the authors take a step
further toward a real-world application by using bi-level EG’s and star EG’s
to examine the stability of various types of business forms. Specifically,
they look at corporations with individual decisions (CID’s), multi-person
decision corporations (MDC’s), and stock corporations (SC’s). They model
CID’s as 1-level star graphs and MDC’s and SC’s are modeled as bi-level
graphs. They find that, under reasonable conditions, MDC’s have a higher
fixation probability than CID’s, which have a higher fixation probability than
SC’s. Hence, by through the lens of EGT, SC’s represent the most stable
organizational structure for business.

7.2. Multiple Mutants

In [41], the authors discuss the issue of clonal interference where two
different lineages in a population compete with each other. In such a case,
multiple mutations exist in a population. Hence, the authors of this work
extend the model of [23] to allow for this case. These mutants are referred
to as type-1 and type-2 mutants. The authors are primarily concerned with
determining the fixation probability of the type-2 mutants. The authors view
the population of individuals as two disjoint sets. The first set defined by
the authors is the set of type-1 mutants which is referred to as the resident
mutant population (RMP). The authors use use m1 to denote the cardinality
of this set. The second set is the set of residents in the population which are
referred to as the wild type population (WTP). There are N −m1 individuals
in this set. To obtain the fixation probability of the type-2 mutant (ρ(2)),

36



the authors consider the fixation probability of the type-2 mutants within the
WTP and RMP populations. As the probability that a type-2 mutant occurs
in the WTP and RMP populations are (N −m1)/N , m1/N respectively, the
authors derive the following equation for the fixation probability of the type-2
mutant:

ρ(2) =
(N −m1) · ρ(2)WTP

N
+
m1 · ρ(2)RMP

N
(58)

where ρ
(2)
WTP is the fixation probability of a type-2 mutant in the WTP

and ρ
(2)
RMP is the fixation probability of the type-2 mutant in the RMP. The

authors come up with analytical approximations of fixation probabilities for
the type-2 mutants in the cases of lines and fully-connected graphs. These
approximations work well in the cases where m1 >> 1 and r is high. For a

lines, they obtain m1·(1−1/r)
N

+ (N−m1)2

2·N2 · (1 − 1/r) and for a fully-connected

graph they obtain N−m1

N
· 1
m1+1

+ m1

N
·
(

1− N+(r−1)m1

Nr2

)
The authors perform

simulation experiments that aligned well with these analytical results. Hence,
they were able to demonstrate that topology and the population of the type-
1 mutants figures significantly into fixation probability calculations in real
populations.

7.3. EG’s that Change Over Time

In [3], the authors modify the original formulation of [23] by examin-
ing a simple class of graphs that change over time [3]. Specifically, they
look at layered networks. They find, through experimental simulation, that
their growth structure also substantially increases the fixation probability.
In future work, the authors intend to explore a more general framework for
dynamic graphs.

In [10], the authors conjecture results for undirected graphs that change
over time for BD-B. They conjecture that existing BD-B results still hold if
the graph changes more slowly than it evolves. They also suspect that even if
the graph does not change slowly, that existing BD-B results will still provide
‘good’ estimates.

Overall, studying fixation probability on a graph whose topology changes
over time is an area ripe for new research. For example, preferential at-
tachment has been observed in graph-structured with evolving topologies
and essentially states that vertices of high degree are more likely to increase
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their connections as time progresses [21]. Now consider birth-death updat-
ing, where the results described in the previous sections show that fixation
probability is inversely proportional to its degree. So, under preferential at-
tachment with birth-death updating, do new mutant vertices whose degree
increases end up suppressing evolution as they connect to more residents?
How do the time scales of the topology evolution with the evolution of the
mutant trait affect each other? Further, would alternate methods of graph
evolution, such as the biologically-inspired models of [48] affect fixation (i.e.,
as compared to preferential attachment)?

7.4. Further Extensions

In [42], the authors examine the model of [23] under birth-death updating
on graphs where vetex connectivity is fixed - specifically lines, square lattices,
cubic lattices, and fully-connected graphs. They then extend the model to
allow offspring to not be perfect clones of their parents. Further, in their
model, the offspring of a parent subject to a mutation with a probability of
µ and increase the fitness with a probability p, or decrease it with probability
1− p. The calculation of the new fitness for the offspring is based on a pre-
viously studied model. They examined their asexual model experimentally
on graphs with 250, 000 vertices and the results showed that the equilibrium
fitness of the population was correlated with the dimensionality of the lattice
- specifically that more connected graphs had a higher level of equilibrium
fitness. No saturation was observed for the fully connected graph in this
case. The authors also examined a modification to the model allowing for
sexual reproduction with multiple genes per vetex. For sexual reproduction,
the equilibrium fitness increased not only with the dimension of the lattice,
but also with the population.

In [54], the authors study EGT in the case where the fitness of the mutant
changes with its frequency. For example, the fitness of cancer cells changes
with frequency which often causes a failure in therapy. Given a population of
size N , they assume N different values of r – each associated with a different
number of mutants in the population. They assume r1 ≤ r2 ≤ . . . ≤ rN and
obtain analytical approximation for the fixation probabilities of super-stars
and isothermal EG’s.

In [53], the authors consider a ‘local’ version of the Moran process where
the update rules are dependent upon a deme. In this work, a deme (indexed
the same way as the vertices in v) corresponds to the neighborhood of a
given vertex. In this case, [53] adds the requirement that for each vetex vi,
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wii > 0 (note that this type of self-loop is not permitted in the original mode
of [23]). At each step, a row Wi of the matrix is chosen with a probability
1/N . Next, a vetex vj is selected s proportional to the fitness of all vertices in
the deme. Finally, the vetex to be replaced is selected based on the outgoing
edge weights of vj. The authors experiment with this process on star and
Kawachi-style small world networks to find that this process achieves the
Moran probability for fixation.

8. Conclusion

In this paper we have described evolutionary graph theory, which was
first introduced in [23] and generalizes the classic Moran process of [29]. We
have described the original model, the major results and extensions, and
applications to game theory. While this is still a relatively new tool for fields
such as biology, physics, game theory, and computer science, the number of
publications on the topic seems to be steadily increasing each year - hence
resulting in this review. Our view is that there is great potential with EGT
for a variety of applications, and that represents the next wave of research in
this area. Applied work such as [58] for economics and [52] in biology most
likely represent just the beginning of a new trend. However as EGT becomes
more operational, many new questions arise. First, how can the model be
adjusted for certain applications? Second, can we learn the model and/or
mutant fitness from historical data? Third, many real-world applications
utilize large data sets, for example, a data set LiveJournal social network
data set consists of over 4 million vertices and over 6 million edges.5 Can
procedures for calculating fixation probability and time to fixation be scaled
for these large data-sets? There are multiple directions in which EGT can be
taken. We are very excited about the possibilities due to the large problem-
space.
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