Triangle Points

Finding How A Rule Converges

John Snyder, FSA
October 21, 2017
01:00 EDT

Problem

Let T_0 be the interior of a triangle in \mathbb{R}^2 with vertices A, B, C. Let T_1 be the interior of a triangle whose vertices are the midpoints of the sides of T_0, T_2 be the interior of a triangle whose vertices are the midpoints of the sides of T_1, and so on. Find the points, if any, in the set $\cap_{n=0}^{\infty} T_n$.

For another challenge, prove that you have found all of the points.

Solution

To see what is happening let's draw a random triangle inside the unit square.
\(\text{pts} = \text{RandomReal[{0, 1}, \{3, 2\}];}\)
\[
\begin{align*}
\text{plot} &= \text{Graphics}\left[\{\text{FaceForm[None]}, \text{EdgeForm[Black]}, \right. \\
&\quad \text{Rectangle[]}, \text{EdgeForm[\{Blue, Thick\}]}, \text{Triangle[pts]}\}\right].
\end{align*}
\]

Now we can iterate using the specified rule until the solution converges.

\(\text{end} = \text{Union@Round[FixedPoint[0.5 \left\{\begin{array}{l}
\text{pts }[[1]], \text{pts }[[2]] + \text{pts }[[3]], \\
\text{pts }[[2]], \text{pts }[[3]], \\
\text{pts }[[3]], \text{pts }[[1]], \\
\end{array}\right\} & \text{pts}], 10.0^\times -12]}\)

The solution has converged to a single point. This point is simply the mean of the three points which formed the vertices of the initial triangle.

\(\text{Mean[pts]}\)

\(\text{Out[87]} = \{0.347573, 0.622467\}\)

We plot this red point inside the initial triangle.
We can also attack the problem symbolically. After 5 iterations we have:

\[
\text{Out[89]= } \text{Nest}\left[\frac{1}{2} \left(\#\{1, 1\} + \#\{2, 1\}, \#\{1, 2\} + \#\{2, 2\} \right),
\quad
\left(\#\{2, 1\} + \#\{3, 1\}, \#\{2, 2\} + \#\{3, 2\} \right), \left(\#\{1, 1\} + \#\{3, 1\}, \#\{1, 2\} + \#\{3, 2\} \right) \right] \&,
\quad
\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}, 5 \right] \text{ // Together}
\]

After 15 iterations we have:

\[
\text{Out[90]= } \text{Nest}\left[\frac{1}{2} \left(\#\{1, 1\} + \#\{2, 1\}, \#\{1, 2\} + \#\{2, 2\} \right),
\quad
\left(\#\{2, 1\} + \#\{3, 1\}, \#\{2, 2\} + \#\{3, 2\} \right), \left(\#\{1, 1\} + \#\{3, 1\}, \#\{1, 2\} + \#\{3, 2\} \right) \right] \&,
\quad
\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}, 15 \right] \text{ // Together}
\]
the x or y coordinates of the initial triangle's vertices.

\[
\frac{\frac{1}{3} \alpha (2^n + 1) + \frac{1}{3} \beta (2^n + 1) + \gamma \left(\frac{1}{3} (2^n + 1) - 1 \right)}{2^n}
\]

Taking the limit as \(n \to \infty \) this converges to a single point which is the simply the mean of the three points which formed the vertices of the initial triangle.

\[
\text{Out[91]} = \frac{1}{3} (\alpha + \beta + \gamma)
\]

\text{In[91]} = \text{Limit}\left[\frac{\alpha (2^n + 1) / 3 + \beta (2^n + 1) / 3 + \gamma \left((2^n + 1) / 3 - 1 \right)}{2^n}, n \to \infty \right]